1
|
Franekova M, Halasova E, Bukovska E,
Luptak J and Dobrota D: Gene polymorphisms in bladder cancer. Urol
Oncol. 26:1–8. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kochańska-Dziurowicz AA, Mielniczuk MJ,
Bijak A and Palugniok R: Estimation of usefulness of monitoring
tissue polypeptide antigen-TPA-M concentrations in the
effectiveness surgical treatment of urinary bladder cancer. Nucl
Med Rev Cent East Eur. 5:109–111. 2002.
|
3
|
McLellan RA, French CG and Bell DG: Trends
in the incidence of bladder cancer in Nova Scotia: A twenty-year
perspective. Can J Urol. 10:1880–1884. 2003.PubMed/NCBI
|
4
|
Dalbagni G: The management of superficial
bladder cancer. Nat Clin Pract Urol. 4:254–260. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kiyoshima K, Akitake M, Shiota M, Takeuchi
A, Takahashi R, Inokuchi J, Tatsugami K, Yokomizo A and Eto M:
Prognostic significance of preoperative urine cytology in low-grade
non-muscleinvasive bladder cancer. Anticancer Res. 36:799–802.
2016.PubMed/NCBI
|
6
|
Lavery HJ, Zaharieva B, McFaddin A,
Heerema N and Pohar KS: A prospective comparison of UroVysion FISH
and urine cytology in bladder cancer detection. BMC Cancer.
17:2472017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ikushima H, Iwamoto S, Osaki K, Furutani
S, Yamashita K, Kawanaka T, Kubo A, Takegawa Y, Kudoh T, Kanayama H
and Nishitani H: Effective bladder preservation strategy with
low-dose radiation therapy and concurrent intraarterial
chemotherapy for muscle-invasive bladder cancer. Radiat Med.
26:156–163. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Black PC, Agarwal PK and Dinney CP:
Targeted therapies in bladder cancer-an update. Urol Oncol.
25:433–438. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Li Y, Yang X, Su LJ and Flaig TW: VEGFR
and EGFR inhibition increases epithelial cellular characteristics
and chemotherapy sensitivity in mesenchymal bladder cancer cells.
Oncol Rep. 24:1019–1028. 2010.PubMed/NCBI
|
10
|
Huang Z, Zhang M, Chen G, Wang W, Zhang P,
Yue Y, Guan Z, Wang X and Fan J: Bladder cancer cells interact with
vascular endothelial cells triggering EGFR signals to promote tumor
progression. Int J Oncol. 54:1555–1566. 2019.PubMed/NCBI
|
11
|
Miki T, Nishina M and Goshima G: RNAi
screening identifies the armadillo repeat-containing kinesins
responsible for microtubule-dependent nuclear positioning in
Physcomitrella patens. Plant Cell Physiol. 56:737–749. 2015.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Gould R, Freund C, Palmer F, Knapp PE,
Huang J, Morrison H and Feinstein DL: Messenger RNAs for kinesins
and dynein are located in neural processes. Biol Bull. 197:259–260.
1999. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Hu Z, Liang Y, Meng D, Wang L and Pan J:
Microtubule depolymerizing kinesins in the regulation of assembly,
disassembly, and length of cilia and flagella. Int Rev Cell Mol
Biol. 317:241–265. 2015. View Article : Google Scholar
|
14
|
Vicente JJ and Wordeman L: Mitosis,
microtubule dynamics and the evolution of kinesins. Exp Cell Res.
334:61–69. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Min BJ, Kim N, Chung T, Kim OH, Nishimura
G, Chung CY, Song HR, Kim HW, Lee HR, Kim J, et al: Whole-exome
sequencing identifies mutations of KIF22 in spondyloepimetaphyseal
dysplasia with joint laxity, leptodactylic type. Am J Hum Genet.
89:760–766. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Park SM, Littleton JT, Park HR and Lee JH:
Drosophila homolog of human KIF22 at the autism-linked 16p112 loci
influences synaptic connectivity at larval neuromuscular junctions.
Exp Neurobiol. 25:33–39. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bruzzoni-Giovanelli H, Fernandez P, Veiga
L, Podgorniak MP, Powell DJ, Candeias MM, Mourah S, Calvo F and
Marín M: Distinct expression patterns of the E3 ligase SIAH-1 and
its partner Kid/KIF22 in normal tissues and in the breast tumoral
processes. J Exp Clin Cancer Res. 29:102010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yu Y, Wang XY, Sun L, Wang YL, Wan YF, Li
XQ and Feng YM: Inhibition of KIF22 suppresses cancer cell
proliferation by delaying mitotic exit through upregulating CDC25C
expression. Carcinogenesis. 35:1416–1425. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Manning CS, Hooper S and Sahai EA:
Intravital imaging of SRF and Notch signalling identifies a key
role for EZH2 in invasive melanoma cells. Oncogene. 34:4320–4332.
2015. View Article : Google Scholar :
|
20
|
Pike R, Ortiz-Zapater E, Lumicisi B,
Santis G and Parsons M: KIF22 coordinates CAR and EGFR dynamics to
promote cancer cell proliferation. Sci Signal. 11:eaaq10602018.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Ayad NG, Rankin S, Murakami M,
Jebanathirajah J, Gygi S and Kirschner MW: Tome-1, a trigger of
mitotic entry, is degraded during G1 via the APC. Cell.
113:101–113. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Adams MN, Burgess JT, He Y, Gately K,
Snell C, Zhang SD, Hooper JD, Richard DJ and O'Byrne KJ: Expression
of CDCA3 is a prognostic biomarker and potential therapeutic target
in non-small cell lung cancer. J Thorac Oncol. 12:1071–1084. 2017.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Uchida F, Uzawa K, Kasamatsu A, Takatori
H, Sakamoto Y, Ogawara K, Shiiba M, Tanzawa H and Bukawa H:
Overexpression of cell cycle regulator CDCA3 promotes oral cancer
progression by enhancing cell proliferation with prevention of G1
phase arrest. BMC Cancer. 12:3212012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen J, Zhu S, Jiang N, Shang Z, Quan C
and Niu Y: HoxB3 promotes prostate cancer cell progression by
transactivating CDCA3. Cancer Lett. 330:217–224. 2013. View Article : Google Scholar
|
25
|
Hu Q, Fu J, Luo B, Huang M, Guo W, Lin Y,
Xie X and Xiao S: OY-TES-1 may regulate the malignant behavior of
liver cancer via NANOG, CD9, CCND2 and CDCA3: A bioinformatic
analysis combine with RNAi and oligonucleotide microarray. Oncol
Rep. 33:1965–1975. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Li B, Zhu FC, Yu SX, Liu SJ and Li BY:
Suppression of KIF22 inhibits cell proliferation and xenograft
tumor growth in colon cancer. Cancer Biother Radiopharm. 35:50–57.
2020. View Article : Google Scholar
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
28
|
Zhao Y, Zhao Z, Cui Y, Chen X, Chen C, Xie
C, Qin B and Yang Y: Redox-responsive glycosylated combretastatin
A-4 derivative as novel tubulin polymerization inhibitor for glioma
and drug delivery. Drug Develop Res. Sep 29–2021.Epub ahead of
print. View Article : Google Scholar
|
29
|
Obermann EC, Meyer S, Hellge D, Zaak D,
Filbeck T, Stoehr R, Hofstaedter F, Hartmann A and Knuechel R:
Fluorescence in situ hybridization detects frequent chromosome 9
deletions and aneuploidy in histologically normal urothelium of
bladder cancer patients. Oncol Rep. 11:745–751. 2004.PubMed/NCBI
|
30
|
van Kessel KE, Zuiverloon TC, Alberts AR,
Boormans JL and Zwarthoff EC: Targeted therapies in bladder cancer:
An overview of in vivo research. Nat Rev Urol. 12:681–694. 2015.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Hautmann RE, Abol-Enein H, Davidsson T,
Gudjonsson S, Hautmann SH, Holm HV, Lee CT, Liedberg F,
Madersbacher S, Manoharan M, et al: ICUD-EAU international
consultation on bladder cancer 2012: Urinary diversion. Eur Urol.
63:67–80. 2013. View Article : Google Scholar
|
32
|
Liu J, Zhang Y, Yu C, Zhang P, Gu S, Wang
G, Xiao H and Li S: Bergenin inhibits bladder cancer progression
via activating the PPARγ/PTEN/Akt signal pathway. Drug Dev Res.
82:278–286. 2021. View Article : Google Scholar
|
33
|
Li Y, Lu W, Chen D, Boohaker RJ, Zhai L,
Padmalayam I, Wennerberg K, Xu B and Zhang W: KIFC1 is a novel
potential therapeutic target for breast cancer. Cancer Biol Ther.
16:1316–1322. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wang J, Ma S, Ma R, Qu X, Liu W, Lv C,
Zhao S and Gong Y: KIF2A silencing inhibits the proliferation and
migration of breast cancer cells and correlates with unfavorable
prognosis in breast cancer. BMC Cancer. 14:4612014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Huang X, Liu F, Zhu C, Cai J, Wang H, Wang
X, He S, Liu C, Yao L, Ding Z, et al: Suppression of KIF3B
expression inhibits human hepatocellular carcinoma proliferation.
Dig Dis Sci. 59:795–806. 2014. View Article : Google Scholar :
|
36
|
Xu H, Choe C, Shin SH, Park SW, Kim HS,
Jung SH, Yim SH, Kim TM and Chung YJ: Silencing of KIF14 interferes
with cell cycle progression and cytokinesis by blocking the
p27(Kip1) ubiquitination pathway in hepatocellular carcinoma. Exp
Mol Med. 46:e972014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chen S, Han M, Chen W, He Y, Huang B, Zhao
P, Huang Q, Gao L, Qu X and Li X: KIF1B promotes glioma migration
and invasion via cell surface localization of MT1-MMP. Oncol Rep.
35:971–977. 2016. View Article : Google Scholar
|
38
|
Thériault BL, Basavarajappa HD, Lim H,
Pajovic S, Gallie BL and Corson TW: Transcriptional and epigenetic
regulation of KIF14 overexpression in ovarian cancer. PLoS One.
9:e915402014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang C, Zhu C, Chen H, Li L, Guo L, Jiang
W and Lu SH: Kif18A is involved in human breast carcinogenesis.
Carcinogenesis. 31:1676–1684. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Maddika S, Sy SM and Chen J: Functional
interaction between Chfr and Kif22 controls genomic stability. J
Biol Chem. 284:12998–13003. 2009. View Article : Google Scholar : PubMed/NCBI
|