Epitranscriptomics of cardiovascular diseases (Review)
- Authors:
- Stefanos Leptidis
- Eleni Papakonstantinou
- Kalliopi Io Diakou
- Katerina Pierouli
- Thanasis Mitsis
- Konstantina Dragoumani
- Flora Bacopoulou
- Despina Sanoudou
- George P. Chrousos
- Dimitrios Vlachakis
-
Affiliations: Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece, Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece, Fourth Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, ‘Attikon’ Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece - Published online on: November 17, 2021 https://doi.org/10.3892/ijmm.2021.5064
- Article Number: 9
-
Copyright: © Leptidis et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Manzoni C, Kia DA, Vandrovcova J, Hardy J, Wood NW, Lewis PA and Ferrari R: Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences. Brief Bioinform. 19:286–302. 2018. View Article : Google Scholar : | |
Buriani A, Fortinguerra S, Sorrenti V, Gabbia D and Carrara M: Single-cell omics in personalized medicine. Single-Cell Omics. Barh D and Azevedo V: Academic Press; Cambridge, MA: pp. 221–236. 2019, View Article : Google Scholar | |
Korenke GC, Fuchs S, Krasemann E, Doerr HG, Wilichowski E, Hunneman DH and Hanefeld F: Cerebral adrenoleukodystrophy (ALD) in only one of monozygotic twins with an identical ALD genotype. Ann Neurol. 40:254–257. 1996. View Article : Google Scholar : PubMed/NCBI | |
Cavalli G and Heard E: Advances in epigenetics link genetics to the environment and disease. Nature. 571:489–499. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sarkies P: Molecular mechanisms of epigenetic inheritance: Possible evolutionary implications. Semin Cell Dev Biol. 97:106–115. 2020. View Article : Google Scholar : | |
Qureshi IA and Mehler MF: Epigenetic mechanisms underlying nervous system diseases. Handb Clin Neurol. 147:43–58. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schwartz S: Cracking the epitranscriptome. RNA. 22:169–174. 2016. View Article : Google Scholar : PubMed/NCBI | |
Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B, Wirecki TK, de Crécy-Lagard V, Ross R, Limbach PA, Kotter A, et al: MODOMICS: A database of RNA modification pathways. 2017 update. Nucleic Acids Res. 46:D303–D307. 2018. | |
Czerwoniec A, Dunin-Horkawicz S, Purta E, Kaminska KH, Kasprzak JM, Bujnicki JM, Grosjean H and Rother K: MODOMICS: A database of RNA modification pathways. 2008 update. Nucleic Acids Res. 37:D118–D121. 2009. View Article : Google Scholar : | |
Dunin-Horkawicz S, Czerwoniec A, Gajda MJ, Feder M, Grosjean H and Bujnicki JM: MODOMICS: A database of RNA modification pathways. Nucleic Acids Res. 34:D145–D149. 2006. View Article : Google Scholar : | |
Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, et al: MODOMICS: A database of RNA modification pathways–2013 update. Nucleic Acids Res. 41:D262–D267. 2013. View Article : Google Scholar | |
Xuan JJ, Sun WJ, Lin PH, Zhou KR, Liu S, Zheng LL, Qu LH and Yang JH: RMBase v2.0: Deciphering the map of RNA modifications from epitranscriptome sequencing data. Nucleic Acids Res. 46:D327–D334. 2018. View Article : Google Scholar | |
Kiran AM, O'Mahony JJ, Sanjeev K and Baranov PV: Darned in 2013: Inclusion of model organisms and linking with Wikipedia. Nucleic Acids Res. 41:D258–D261. 2013. View Article : Google Scholar : | |
Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang X, Vendeix FA, Fabris D and Agris PF: The RNA Modification Database, RNAMDB: 2011 update. Nucleic Acids Res. 39:D195–D201. 2011. View Article : Google Scholar | |
Picardi E, D'Erchia AM, Lo Giudice C and Pesole G: REDIportal: A comprehensive database of A-to-I RNA editing events in humans. Nucleic Acids Res. 45:D750–D757. 2017. View Article : Google Scholar | |
Schuebel K, Gitik M, Domschke K and Goldman D: Making sense of epigenetics. Int J Neuropsychopharmacol. 19:pyw0582016. View Article : Google Scholar | |
Kumari R, Ranjan P, Suleiman ZG, Goswami SK, Li J, Prasad R and Verma SK: mRNA modifications in cardiovascular biology and disease: With a focus on m6A modification. Cardiovasc Res. May 6–2021.Epub ahead of print. View Article : Google Scholar | |
Chen YS, Ouyang XP, Yu XH, Novák P, Zhou L, He P and Yin K: N6-adenosine methylation (m(6)A) RNA modification: An emerging role in cardiovascular diseases. J Cardiovasc Transl Res. Feb 25–2021.Epub ahead of print. View Article : Google Scholar | |
Napoli C, Benincasa G, Donatelli F and Ambrosio G: Precision medicine in distinct heart failure phenotypes: Focus on clinical epigenetics. Am Heart J. 224:113–128. 2020. View Article : Google Scholar | |
Fischer MA and Vondriska TM: Clinical epigenomics for cardiovascular disease: Diagnostics and therapies. J Mol Cell Cardiol. 154:97–105. 2021. View Article : Google Scholar : PubMed/NCBI | |
Schiano C, Benincasa G, Franzese M, Della Mura N, Pane K, Salvatore M and Napoli C: Epigenetic-sensitive pathways in personalized therapy of major cardiovascular diseases. Pharmacol Ther. 210:1075142020. View Article : Google Scholar | |
Vlachakis C, Dragoumani K, Raftopoulou S, Mantaiou M, Papageorgiou L, Champeris Tsaniras S, Megalooikonomou V and Vlachakis D: Human emotions on the onset of cardiovascular and small vessel related diseases. In Vivo. 32:859–870. 2018. View Article : Google Scholar : PubMed/NCBI | |
Timmis A, Townsend N, Gale CP, Torbica A, Lettino M, Petersen SE, Mossialos EA, Maggioni AP, Kazakiewicz D, May HT, et al: European Society of Cardiology: European Society of Cardiology: Cardiovascular Disease Statistics 2019. Eur Heart J. 41:12–85. 2020. View Article : Google Scholar | |
Flora GD and Nayak MK: A brief review of cardiovascular diseases, associated risk factors and current treatment regimes. Curr Pharm Des. 25:4063–4084. 2019. View Article : Google Scholar | |
Baccarelli A, Rienstra M and Benjamin EJ: Cardiovascular epigenetics: Basic concepts and results from animal and human studies. Circ Cardiovasc Genet. 3:567–573. 2010. View Article : Google Scholar | |
Zhong J, Agha G and Baccarelli AA: The role of DNA methylation in cardiovascular risk and disease: Methodological aspects, study design, and data analysis for epidemiological studies. Circ Res. 118:119–131. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vlachakis D, Zacharaki EI, Tsiamaki E, Koulouri M, Raftopoulou S, Papageorgiou L, Chrousos GP, Ellul J and Megalooikonomou V: Insights into the molecular mechanisms of stress and inflammation in ageing and frailty of the elderly. J Mol Biochem. 6:41–44. 2017. | |
Guerra J, Valadao AL, Vlachakis D, Polak K, Vila IK, Taffoni C, Prabakaran T, Marriott AS, Kaczmarek R, Houel A, et al: Lysyl-tRNA synthetase produces diadenosine tetraphosphate to curb STING-dependent inflammation. Sci Adv. 6:eaax33332020. View Article : Google Scholar : PubMed/NCBI | |
Soler-Botija C, Gálvez-Montón C and Bayés-Genís A: Epigenetic biomarkers in cardiovascular diseases. Front Genet. 10:950. 2019. View Article : Google Scholar | |
Shi H, Wei J and He C: Where, when, and how: Context-dependent functions of RNA methylation writers, readers, and eras. Mol Cell. 74:640–650. 2019. View Article : Google Scholar | |
Zaccara S, Ries RJ and Jaffrey SR: Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 20:608–624. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gatsiou A and Stellos K: Dawn of epitranscriptomic medicine. Circ Genom Precis Med. 11:e0019272018. View Article : Google Scholar : PubMed/NCBI | |
Anreiter I, Mir Q, Simpson JT, Janga SC and Soller M: New twists in detecting mRNA modification dynamics. Trends Biotechnol. 39:72–89. 2021. View Article : Google Scholar | |
Mongelli A, Atlante S, Bachetti T, Martelli F, Farsetti A and Gaetano C: Epigenetic signaling and RNA regulation in cardiovascular diseases. Int J Mol Sci. 21:5092020. View Article : Google Scholar : | |
Zhang P, Wu W, Chen Q and Chen M: Non-coding RNAs and their integrated networks. J Integr Bioinform. 16:162019. View Article : Google Scholar | |
Gomes CPC, Schroen B, Kuster GM, Robinson EL, Ford K, Squire IB, Heymans S, Martelli F and Emanueli C: Regulatory RNAs in heart failure. Circulation. 141:313–328. 2020. View Article : Google Scholar : PubMed/NCBI | |
Esteller M and Pandolfi PP: The epitranscriptome of noncoding RNAs in cancer. Cancer Discov. 7:359–368. 2017. View Article : Google Scholar | |
Blow MJ, Grocock RJ, van Dongen S, Enright AJ, Dicks E, Futreal PA, Wooster R and Stratton MR: RNA editing of human microRNAs. Genome Biol. 7:R272006. View Article : Google Scholar : | |
Zhang Y, Zang Q, Xu B, Zheng W, Ban R, Zhang H, Yang Y, Hao Q, Iqbal F, Li A, et al: IsomiR Bank: A research resource for tracking IsomiRs. Bioinformatics. 32:2069–2071. 2016. View Article : Google Scholar : PubMed/NCBI | |
Neilsen CT, Goodall GJ and Bracken CP: IsomiRs - the overlooked repertoire in the dynamic microRNAome. Trends Genet. 28:544–549. 2012. View Article : Google Scholar | |
Newman MA, Mani V and Hammond SM: Deep sequencing of microRNA precursors reveals extensive 3′ end modification. RNA. 17:1795–1803. 2011. View Article : Google Scholar : | |
Cloonan N, Wani S, Xu Q, Gu J, Lea K, Heater S, Barbacioru C, Steptoe AL, Martin HC, Nourbakhsh E, et al: MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol. 12:R1262011. View Article : Google Scholar | |
Manzano M, Forte E, Raja AN, Schipma MJ and Gottwein E: Divergent target recognition by coexpressed 5′-isomiRs of miR-142-3p and selective viral mimicry. RNA. 21:1606–1620. 2015. View Article : Google Scholar : PubMed/NCBI | |
van der Kwast RV, van Ingen E, Parma L, Peters HA, Quax PH and Nossent AY: Adenosine-to-inosine editing of MicroRNA-487b alters target gene selection after ischemia and promotes Neovascularization. Circ Res. 122:444–456. 2018. View Article : Google Scholar | |
van der Kwast RV, Woudenberg T, Quax PHA and Nossent AY: MicroRNA-411 and its 5′-IsomiR have distinct targets and functions and are differentially regulated in the vasculature under ischemia. Mol Ther. 28:157–170. 2020. View Article : Google Scholar | |
Gilbert WV, Bell TA and Schaening C: Messenger RNA modifications: Form, distribution, and function. Science. 352:1408–1412. 2016. View Article : Google Scholar : | |
Yin L, Zhu X, Novák P, Zhou L, Gao L, Yang M, Zhao G and Yin K: The epitranscriptome of long noncoding RNAs in metabolic diseases. Clin Chim Acta. 515:80–89. 2021. View Article : Google Scholar | |
Zhou Y, Kong Y, Fan W, Tao T, Xiao Q, Li N and Zhu X: Principles of RNA methylation and their implications for biology and medicine. Biomed Pharmacother. 131:1107312020. View Article : Google Scholar | |
Wulff BE and Nishikura K: Substitutional A-to-I RNA editing. Wiley Interdiscip Rev RNA. 1:90–101. 2010. View Article : Google Scholar : PubMed/NCBI | |
Blanc V and Davidson NO: C-to-U RNA editing: Mechanisms leading to genetic diversity. J Biol Chem. 278:1395–1398. 2003. View Article : Google Scholar | |
Adachi H, De Zoysa MD and Yu YT: Post-transcriptional pseudouridylation in mRNA as well as in some major types of noncoding RNAs. Biochim Biophys Acta Gene Regul Mech. 1862:230–239. 2019. View Article : Google Scholar | |
Martinet W, De Meyer GR, Herman AG and Kockx MM: RNA damage in human atherosclerosis: Pathophysiological significance and implications for gene expression studies. RNA Biol. 2:4–7. 2005. View Article : Google Scholar | |
Desrosiers R, Friderici K and Rottman F: Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA. 71:3971–3975. 1974. View Article : Google Scholar | |
Perry RPK and Kelley DE: Existence of methylated messenger RNA in mouse L cells. Cell. 1:37–42. 1974. View Article : Google Scholar | |
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 485:201–206. 2012. View Article : Google Scholar | |
Molinie B, Wang J, Lim KS, Hillebrand R, Lu ZX, Van Wittenberghe N, Howard BD, Daneshvar K, Mullen AC, Dedon P, et al: m(6)A-LAIC-seq reveals the census and complexity of the m(6)A epitranscriptome. Nat Methods. 13:692–698. 2016. View Article : Google Scholar | |
Sun H, Li K, Zhang X, Liu J, Zhang M, Meng H and Yi C: m6Am-seq reveals the dynamic m6Am methylation in the human transcriptome. Nat Commun. 12:47782021. View Article : Google Scholar | |
Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE and Jaffrey SR: Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. 149:1635–1646. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, et al: N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 505:117–120. 2014. View Article : Google Scholar | |
Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB and Jaffrey SR: 5′ UTR m(6)a promotes cap-independent translation. Cell. 163:999–1010. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H and He C: N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. 161:1388–1399. 2015. View Article : Google Scholar | |
Kierzek E and Kierzek R: The thermodynamic stability of RNA duplexes and hairpins containing N6-alkyladenosines and 2-methylthio-N6-alkyladenosines. Nucleic Acids Res. 31:4472–4480. 2003. View Article : Google Scholar : PubMed/NCBI | |
Liu N, Dai Q, Zheng G, He C, Parisien M and Pan T: N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 518:560–564. 2015. View Article : Google Scholar : | |
Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, et al: Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell. 61:507–519. 2016. View Article : Google Scholar : PubMed/NCBI | |
Balatsos NA, Vlachakis D, Maragozidis P, Manta S, Anastasakis D, Kyritsis A, Vlassi M, Komiotis D and Stathopoulos C: Competitive inhibition of human poly(A)-specific ribonuclease (PARN) by synthetic fluoro-pyranosyl nucleosides. Biochemistry. 48:6044–6051. 2009. View Article : Google Scholar | |
Balatsos N, Vlachakis D, Chatzigeorgiou V, Manta S, Komiotis D, Vlassi M and Stathopoulos C: Kinetic and in silico analysis of the slow-binding inhibition of human poly(A)-specific ribonuclease (PARN) by novel nucleoside analogues. Biochimie. 94:214–221. 2012. View Article : Google Scholar | |
Fustin JM, Doi M, Yamaguchi Y, Hida H, Nishimura S, Yoshida M, Isagawa T, Morioka MS, Kakeya H, Manabe I, et al: RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell. 155:793–806. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xiang Y, Laurent B, Hsu CH, Nachtergaele S, Lu Z, Sheng W, Xu C, Chen H, Ouyang J, Wang S, et al: RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature. 543:573–576. 2017. View Article : Google Scholar : | |
Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, et al: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 10:93–95. 2014. View Article : Google Scholar : | |
Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z and Zhao JC: N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol. 16:191–198. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, et al: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24:177–189. 2014. View Article : Google Scholar : | |
Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, Bushkin GG, Mertins P, Ter-Ovanesyan D, Habib N, Cacchiarelli D, et al: Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep. 8:284–296. 2014. View Article : Google Scholar : | |
Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z, Gong Z, Wang Q, Huang J, Tang C, et al: Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature. 534:575–578. 2016. View Article : Google Scholar : PubMed/NCBI | |
Meyer KD and Jaffrey SR: Rethinking m6A readers, writers, and eras. Annu Rev Cell Dev Biol. 33:319–342. 2017. View Article : Google Scholar | |
Longenecker JZ, Gilbert CJ, Golubeva VA, Martens CR and Accornero F: Epitranscriptomics in the heart: A focus on m6A. Curr Heart Fail Rep. 17:205–212. 2020. View Article : Google Scholar | |
Qin Y, Li L, Luo E, Hou J, Yan G, Wang D, Qiao Y and Tang C: Role of m6A RNA methylation in cardiovascular disease (Review). Int J Mol Med. 46:1958–1972. 2020. View Article : Google Scholar | |
Zheng N, Su J, Hu H, Wang J and Chen X: Research progress of N6-methyladenosine in the cardiovascular system. Med Sci Monit. 26. pp. e9217422020, View Article : Google Scholar | |
Dorn LE, Lasman L, Chen J, Xu X, Hund TJ, Medvedovic M, Hanna JH, van Berlo JH and Accornero F: The N6-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation. 139:533–545. 2019. View Article : Google Scholar : | |
Song H, Pu J, Wang L, Wu L, Xiao J, Liu Q, Chen J, Zhang M, Liu Y, Ni M, et al: ATG16L1 phosphorylation is oppositely regulated by CSNK2/casein kinase 2 and PPP1/protein phosphatase 1 which determines the fate of cardiomyocytes during hypoxia/reoxygenation. Autophagy. 11:1308–1325. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pastore N, Brady OA, Diab HI, Martina JA, Sun L, Huynh T, Lim JA, Zare H, Raben N, Ballabio A, et al: TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy. 12:1240–1258. 2016. View Article : Google Scholar | |
Zhao E and Czaja MJ: Transcription factor EB: A central regulator of both the autophagosome and lysosome. Hepatology. 55:1632–1634. 2012. View Article : Google Scholar : PubMed/NCBI | |
Song H, Feng X, Zhang H, Luo Y, Huang J, Lin M, Jin J, Ding X, Wu S, Huang H, et al: METTL3 and ALKBH5 oppositely regulate m6A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy. 15:1419–1437. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kmietczyk V, Riechert E, Kalinski L, Boileau E, Malovrh E, Malone B, Gorska A, Hofmann C, Varma E, Jürgensen L, et al: m6A-mRNA methylation regulates cardiac gene expression and cellular growth. Life Sci Alliance. 2:e2018002332019. View Article : Google Scholar : | |
Berulava T, Buchholz E, Elerdashvili V, Pena T, Islam MR, Lbik D, Mohamed BA, Renner A, von Lewinski D, Sacherer M, et al: Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur J Heart Fail. 22:54–66. 2020. View Article : Google Scholar | |
Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, Brüning JC and Rüther U: Inactivation of the Fto gene protects from obesity. Nature. 458:894–898. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mathiyalagan P, Adamiak M, Mayourian J, Sassi Y, Liang Y, Agarwal N, Jha D, Zhang S, Kohlbrenner E, Chepurko E, et al: FTO-dependent N6-methyladenosine regulates cardiac function during remodeling and repair. Circulation. 139:518–532. 2019. View Article : Google Scholar | |
Mathiyalagan P, Adamiak M, Mayourian J, Sassi Y, Liang Y, Agarwal N, Jha D, Shihong Zhang S, Kohlbrenner E, Chepurko E, et al: FTO-dependent m6A regulates cardiac function during remodeling and repair. Circulation. 139:518–532. 2019. View Article : Google Scholar | |
Michlewski G and Cáceres JF: Post-transcriptional control of miRNA biogenesis. RNA. 25:1–16. 2019. View Article : Google Scholar : | |
Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH, Wang F, Wang TT, Xu QG, Zhou WP and Sun SH: METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary MicroRNA processing. Hepatology. 65:529–543. 2017. View Article : Google Scholar | |
Han J, Wang JZ, Yang X, Yu H, Zhou R, Lu HC, Yuan WB, Lu JC, Zhou ZJ, Lu Q, et al: METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer. 18:1102019. View Article : Google Scholar : | |
Baarsma H and Königshoff M: 'WNT-er is coming': WNT signalling in chronic lung diseases. Thorax. 72:746–759. 2017. View Article : Google Scholar | |
Savai R, Al-Tamari HM, Sedding D, Kojonazarov B, Muecke C, Teske R, Capecchi MR, Weissmann N, Grimminger F, Seeger W, et al: Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension. Nat Med. 20:1289–1300. 2014. View Article : Google Scholar | |
Lin B, Xu J, Wang F, Wang J, Zhao H and Feng D: LncRNA XIST promotes myocardial infarction by regulating FOS through targeting miR-101a-3p. Aging (Albany NY). 12:7232–7247. 2020. View Article : Google Scholar | |
Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M and Jaffrey SR: m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 537:369–373. 2016. View Article : Google Scholar | |
Sun R and Zhang L: Long non-coding RNA MALAT1 regulates cardiomyocytes apoptosis after hypoxia/reperfusion injury via modulating miR-200a-3p/PDCD4 axis. Biomed Pharmacother. 111:1036–1045. 2019. View Article : Google Scholar | |
Liu N, Parisien M, Dai Q, Zheng G, He C and Pan T: Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA. 19:1848–1856. 2013. View Article : Google Scholar | |
Spitale RC, Flynn RA, Zhang QC, Crisalli P, Lee B, Jung JW, Kuchelmeister HY, Batista PJ, Torre EA, Kool ET, et al: Erratum: Structural imprints in vivo decode RNA regulatory mechanisms. Nature. 527:2642015. View Article : Google Scholar | |
Coker H, Wei G and Brockdorff N: m6A modification of non-coding RNA and the control of mammalian gene expression. Biochim Biophys Acta Gene Regul Mech. 1862:310–318. 2019. View Article : Google Scholar | |
Mendel M, Chen KM, Homolka D, Gos P, Pandey RR, McCarthy AA and Pillai RS: Methylation of structured RNA by the m6A writer METTL16 is essential for mouse embryonic development. Mol Cell. 71:986–1000.e11. 2018. View Article : Google Scholar : | |
Brown JA, Kinzig CG, DeGregorio SJ and Steitz JA: Methyltransferase-like protein 16 binds the 3′-terminal triple helix of MALAT1 long noncoding RNA. Proc Natl Acad Sci USA. 113:14013–14018. 2016. View Article : Google Scholar | |
Dunn DB: The occurrence of 1-methyladenine in ribonucleic acid. Biochim Biophys Acta. 46:198–200. 1961. View Article : Google Scholar | |
Agris PF: The importance of being modified: Roles of modified nucleosides and Mg2+ in RNA structure and function. Prog Nucleic Acid Res Mol Biol. 53:79–129. 1996. View Article : Google Scholar | |
Xiong X, Li X and Yi C: N1-methyladenosine methylome in messenger RNA and non-coding RNA. Curr Opin Chem Biol. 45:179–186. 2018. View Article : Google Scholar : PubMed/NCBI | |
Waku T, Nakajima Y, Yokoyama W, Nomura N, Kako K, Kobayashi A, Shimizu T and Fukamizu A: NML-mediated rRNA base methylation links ribosomal subunit formation to cell proliferation in a p53-dependent manner. J Cell Sci. 129:2382–2393. 2016.PubMed/NCBI | |
Chujo T and Suzuki T: Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. RNA. 18:2269–2276. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vilardo E, Nachbagauer C, Buzet A, Taschner A, Holzmann J and Rossmanith W: A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase - extensive moon-lighting in mitochondrial tRNA biogenesis. Nucleic Acids Res. 40:11583–11593. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ozanick S, Krecic A, Andersland J and Anderson JT: The bipartite structure of the tRNA m1A58 methyltransferase from S. cerevisiae is conserved in humans. RNA. 11:1281–1290. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhang C and Jia G: Reversible RNA modification N1-methyladenosine (m1A) in mRNA and tRNA. Genomics Proteomics Bioinformatics. 16:155–161. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shi Q, Xue C, Yuan X, He Y and Yu Z: Gene signatures and prognostic values of m1A-related regulatory genes in hepatocellular carcinoma. Sci Rep. 10:150832020. View Article : Google Scholar : PubMed/NCBI | |
Li X, Xiong X, Zhang M, Wang K, Chen Y, Zhou J, Mao Y, Lv J, Yi D, Chen XW, et al: Base-resolution mapping reveals distinct m1A methylome in nuclear- and mitochondrial-encoded transcripts. Mol Cell. 68:993–1005.e9. 2017. View Article : Google Scholar | |
Siasos G, Tsigkou V, Kosmopoulos M, Theodosiadis D, Simantiris S, Tagkou NM, Tsimpiktsioglou A, Stampouloglou PK, Oikonomou E, Mourouzis K, et al: Mitochondria and cardiovascular diseases-from pathophysiology to treatment. Ann Transl Med. 6:2562018. View Article : Google Scholar : PubMed/NCBI | |
Poznyak AV, Ivanova EA, Sobenin IA, Yet SF and Orekhov AN: The role of mitochondria in cardiovascular diseases. Biology (Basel). 9:92020. | |
Ali AT, Idaghdour Y and Hodgkinson A: Analysis of mitochondrial m1A/G RNA modification reveals links to nuclear genetic variants and associated disease processes. Commun Biol. 3:1472020. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Liu X, Sheng N, Oo KS, Liang J, Chionh YH, Xu J, Ye F, Gao YG, Dedon PC, et al: Three distinct 3-methylcytidine (m3C) methyltransferases modify tRNA and mRNA in mice and humans. J Biol Chem. 292:14695–14703. 2017. View Article : Google Scholar | |
Chen Z, Qi M, Shen B, Luo G, Wu Y, Li J, Lu Z, Zheng Z, Dai Q and Wang H: Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. Nucleic Acids Res. 47:2533–2545. 2019. View Article : Google Scholar | |
Ma CJ, Ding JH, Ye TT, Yuan BF, Feng YQ and Alk B: AlkB homologue 1 demethylates N3-methylcytidine in mRNA of mammals. ACS Chem Biol. 14:1418–1425. 2019. View Article : Google Scholar | |
Lentini JM, Alsaif HS, Faqeih E, Alkuraya FS and Fu D: DALRD3 encodes a protein mutated in epileptic encephalopathy that targets arginine tRNAs for 3-methylcytosine modification. Nat Commun. 11:25102020. View Article : Google Scholar : | |
Yang X, Yang Y, Sun BF, Chen YS, Xu JW, Lai WY, Li A, Wang X, Bhattarai DP, Xiao W, et al: 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res. 27:606–625. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gambaryan AS, Venkstern TV and Baev AA: Use of the method of mixed substrates to study the specificity of tRNA methylases. Mol Biol (Mosk). 10:697–705. 1976. | |
Amort T, Rieder D, Wille A, Khokhlova-Cubberley D, Riml C, Trixl L, Jia XY, Micura R and Lusser A: Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biol. 18:12017. View Article : Google Scholar | |
Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT, Parker BJ, Suter CM and Preiss T: Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 40:5023–5033. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sharma S, Yang J, Watzinger P, Kötter P and Entian KD: Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively. Nucleic Acids Res. 41:9062–9076. 2013. View Article : Google Scholar : | |
Brzezicha B, Schmidt M, Makalowska I, Jarmolowski A, Pienkowska J and Szweykowska-Kulinska Z: Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA). Nucleic Acids Res. 34:6034–6043. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hussain S, Sajini AA, Blanco S, Dietmann S, Lombard P, Sugimoto Y, Paramor M, Gleeson JG, Odom DT, Ule J, et al: NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep. 4:255–261. 2013. View Article : Google Scholar : PubMed/NCBI | |
Haag S, Sloan KE, Ranjan N, Warda AS, Kretschmer J, Blessing C, Hübner B, Seikowski J, Dennerlein S, Rehling P, et al: NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation. EMBO J. 35:2104–2119. 2016. View Article : Google Scholar : PubMed/NCBI | |
Metodiev MD, Spåhr H, Loguercio Polosa P, Meharg C, Becker C, Altmueller J, Habermann B, Larsson NG and Ruzzenente B: NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly. PLoS Genet. 10:e10041102014. View Article : Google Scholar : PubMed/NCBI | |
Schosserer M, Minois N, Angerer TB, Amring M, Dellago H, Harreither E, Calle-Perez A, Pircher A, Gerstl MP, Pfeifenberger S, et al: Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Nat Commun. 6:61582015. View Article : Google Scholar | |
Haag S, Warda AS, Kretschmer J, Günnigmann MA, Höbartner C and Bohnsack MT: NSUN6 is a human RNA methyltransferase that catalyzes formation of m5C72 in specific tRNAs. RNA. 21:1532–1543. 2015. View Article : Google Scholar : | |
Kaiser S, Jurkowski TP, Kellner S, Schneider D, Jeltsch A and Helm M: The RNA methyltransferase Dnmt2 methylates DNA in the structural context of a tRNA. RNA Biol. 14:1241–1251. 2017. View Article : Google Scholar | |
Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, Golic KG, Jacobsen SE and Bestor TH: Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science. 311:395–398. 2006. View Article : Google Scholar | |
Abbasi-Moheb L, Mertel S, Gonsior M, Nouri-Vahid L, Kahrizi K, Cirak S, Wieczorek D, Motazacker MM, Esmaeeli-Nieh S, Cremer K, et al: Mutations in NSUN2 cause autosomal-recessive intellectual disability. Am J Hum Genet. 90:847–855. 2012. View Article : Google Scholar | |
Frye M and Watt FM: The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Curr Biol. 16:971–981. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yi J, Gao R, Chen Y, Yang Z, Han P, Zhang H, Dou Y, Liu W, Wang W, Du G, et al: Overexpression of NSUN2 by DNA hypomethylation is associated with metastatic progression in human breast cancer. Oncotarget. 8:20751–20765. 2017. View Article : Google Scholar | |
Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, Cole CG, Ward S, Dawson E, Ponting L, et al: COSMIC: Somatic cancer genetics at high-resolution. Nucleic Acids Res. 45:D777–D783. 2017. View Article : Google Scholar | |
Elhardt W, Shanmugam R, Jurkowski TP and Jeltsch A: Somatic cancer mutations in the DNMT2 tRNA methyltransferase alter its catalytic properties. Biochimie. 112:66–72. 2015. View Article : Google Scholar | |
Ghanbarian H, Wagner N, Polo B, Baudouy D, Kiani J, Michiels JF, Cuzin F, Rassoulzadegan M and Wagner KD: Dnmt2/Trdmt1 as mediator of RNA polymerase II transcriptional activity in cardiac growth. PLoS One. 11:e01569532016. View Article : Google Scholar : | |
Luo Y, Feng J, Xu Q, Wang W and Wang X: NSun2 deficiency protects endothelium from inflammation via mRNA methylation of ICAM-1. Circ Res. 118:944–956. 2016. View Article : Google Scholar | |
Wang N, Tang H, Wang X, Wang W and Feng J: Homocysteine upregulates interleukin-17A expression via NSun2-mediated RNA methylation in T lymphocytes. Biochem Biophys Res Commun. 493:94–99. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yuan S, Tang H, Xing J, Fan X, Cai X, Li Q, Han P, Luo Y, Zhang Z, Jiang B, et al: Methylation by NSun2 represses the levels and function of microRNA 125b. Mol Cell Biol. 34:3630–3641. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wen P, Cao H, Fang L, Ye H, Zhou Y, Jiang L, Su W, Xu H, He W, Dai C, et al: miR-125b/Ets1 axis regulates transdifferentiation and calcification of vascular smooth muscle cells in a high-phosphate environment. Exp Cell Res. 322:302–312. 2014. View Article : Google Scholar : PubMed/NCBI | |
Goettsch C, Rauner M, Pacyna N, Hempel U, Bornstein SR and Hofbauer LC: miR-125b regulates calcification of vascular smooth muscle cells. Am J Pathol. 179:1594–1600. 2011. View Article : Google Scholar : | |
Trixl L and Lusser A: The dynamic RNA modification 5-methylcytosine and its emerging role as an epitranscriptomic mark. Wiley Interdiscip Rev RNA. 10:e15102019. View Article : Google Scholar | |
Jacob R, Zander S and Gutschner T: The dark side of the epitranscriptome: Chemical modifications in long non-coding RNAs. Int J Mol Sci. 18:182017. View Article : Google Scholar | |
Fu L, Guerrero CR, Zhong N, Amato NJ, Liu Y, Liu S, Cai Q, Ji D, Jin SG, Niedernhofer LJ, et al: Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J Am Chem Soc. 136:11582–11585. 2014. View Article : Google Scholar : | |
Fang S, Li J, Xiao Y, Lee M, Guo L, Han W, Li T, Hill MC, Hong T, Mo W, et al: Tet inactivation disrupts YY1 binding and long-range chromatin interactions during embryonic heart development. Nat Commun. 10:42972019. View Article : Google Scholar : | |
Ramanathan A, Robb GB and Chan S-H: mRNA capping: Biological functions and applications. Nucleic Acids Res. 44:7511–7526. 2016. View Article : Google Scholar : PubMed/NCBI | |
Furuichi Y: Discovery of m(7)G-cap in eukaryotic mRNAs. Proc Jpn Acad, Ser B, Phys Biol Sci. 91:394–409. 2015. View Article : Google Scholar | |
Pandolfini L, Barbieri I, Bannister AJ, Hendrick A, Andrews B, Webster N, Murat P, Mach P, Brandi R, Robson SC, et al: METTL1 promotes let-7 MicroRNA processing via m7G methylation. Mol Cell. 74:1278–1290.e9. 2019. View Article : Google Scholar : | |
Bao MH, Feng X, Zhang YW, Lou XY, Cheng Y and Zhou HH: Let-7 in cardiovascular diseases, heart development and cardiovascular differentiation from stem cells. Int J Mol Sci. 14:23086–23102. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bernstein DL, Jiang X and Rom S: let-7 microRNAs: Their role in cerebral and cardiovascular diseases, inflammation, cancer, and their regulation. Biomedicines. 9:92021. View Article : Google Scholar | |
Tolonen A-M, Magga J, Szabó Z, Viitala P, Gao E, Moilanen AM, Ohukainen P, Vainio L, Koch WJ, Kerkelä R, et al: Inhibition of Let-7 microRNA attenuates myocardial remodeling and improves cardiac function postinfarction in mice. Pharmacol Res Perspect. 2:e00056. 2014. View Article : Google Scholar | |
Yang Y, Ago T, Zhai P, Abdellatif M and Sadoshima J: Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7. Circ Res. 108:305–313. 2011. View Article : Google Scholar | |
Satoh M, Minami Y, Takahashi Y, Tabuchi T and Nakamura M: A cellular microRNA, let-7i, is a novel biomarker for clinical outcome in patients with dilated cardiomyopathy. J Card Fail. 17:923–929. 2011. View Article : Google Scholar | |
Dimitrova DG, Teysset L and Carré C: RNA 2′-O-Methylation (Nm) modification in human diseases. Genes (Basel). 10:102019. View Article : Google Scholar | |
Somme J, Van Laer B, Roovers M, Steyaert J, Versées W and Droogmans L: Characterization of two homologous 2′-O-methyltransferases showing different specificities for their tRNA substrates. RNA. 20:1257–1271. 2014. View Article : Google Scholar | |
Cavaillé J, Nicoloso M and Bachellerie J-P: Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature. 383:732–735. 1996. View Article : Google Scholar | |
O'Brien JE Jr, Kibiryeva N, Zhou X-G, Marshall JA, Lofland GK, Artman M, Chen J and Bittel DC: Noncoding RNA expression in myocardium from infants with tetralogy of Fallot. Circ Cardiovasc Genet. 5:279–286. 2012. View Article : Google Scholar | |
Nagasawa C, Ogren A, Kibiryeva N, Marshall J, O'Brien JE Jr, Kenmochi N and Bittel DC: The role of scaRNAs in adjusting alternative mRNA splicing in heart development. J Cardiovasc Dev Dis. 5:262018. View Article : Google Scholar | |
Elliott BA, Ho H-T, Ranganathan SV, Vangaveti S, Ilkayeva O, Abou Assi H, Choi AK, Agris PF and Holley CL: Modification of messenger RNA by 2′-O-methylation regulates gene expression in vivo. Nat Commun. 10:34012019. View Article : Google Scholar | |
Gagnidze K, Rayon-Estrada V, Harroch S, Bulloch K and Papavasiliou FN: A new chapter in genetic medicine: RNA Editing and its role in disease pathogenesis. Trends Mol Med. 24:294–303. 2018. View Article : Google Scholar | |
Nishikura K: A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol. 17:83–96. 2016. View Article : Google Scholar : | |
Uchida S and Jones SP: RNA editing: Unexplored opportunities in the cardiovascular system. Circ Res. 122:399–401. 2018. View Article : Google Scholar : PubMed/NCBI | |
Picardi E, Manzari C, Mastropasqua F, Aiello I, D'Erchia AM and Pesole G: Profiling RNA editing in human tissues: Towards the inosinome Atlas. Sci Rep. 5:149412015. View Article : Google Scholar : | |
Sukhova GK, Zhang Y, Pan JH, Wada Y, Yamamoto T, Naito M, Kodama T, Tsimikas S, Witztum JL, Lu ML, et al: Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. J Clin Invest. 111:897–906. 2003. View Article : Google Scholar | |
Wang B, Sun J, Kitamoto S, Yang M, Grubb A, Chapman HA, Kalluri R and Shi GP: Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors. J Biol Chem. 281:6020–6029. 2006. View Article : Google Scholar | |
Zhu Y, Pirnie SP and Carmichael GG: High-throughput and site-specific identification of 2′-O-methylation sites using ribose oxidation sequencing (RibOxi-seq). RNA. 23:1303–1314. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stellos K, Gatsiou A, Stamatelopoulos K, Perisic Matic L, John D, Lunella FF, Jaé N, Rossbach O, Amrhein C, Sigala F, et al: Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation. Nat Med. 22:1140–1150. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Men M, Xie B, Shan J, Wang C, Liu J, Zheng H, Yang W, Xue S and Guo C: Inhibition of PKR protects against H2O2-induced injury on neonatal cardiac myocytes by attenuating apoptosis and inflammation. Sci Rep. 6:387532016. View Article : Google Scholar | |
Moore JB IV, Sadri G, Fischer AG, Weirick T, Militello G, Wysoczynski M, Gumpert AM, Braun T and Uchida S: The A-to-I RNA editing enzyme Adar1 is essential for normal embryonic cardiac growth and development. Circ Res. 127:550–552. 2020. View Article : Google Scholar : | |
El Azzouzi H, Vilaça AP, Feyen DA, Gommans WM, de Weger RA, Doevendans PA and Sluijter JP: Cardiomyocyte specific deletion of ADAR1 causes severe cardiac dysfunction and increased lethality. Front Cardiovasc Med. 7:302020. View Article : Google Scholar | |
Stulić M and Jantsch MF: Spatio-temporal profiling of Filamin A RNA-editing reveals ADAR preferences and high editing levels outside neuronal tissues. RNA Biol. 10:1611–1617. 2013. View Article : Google Scholar | |
Jain M, Mann TD, Stulić M, Rao SP, Kirsch A, Pullirsch D, Strobl X, Rath C, Reissig L, Moreth K, et al: RNA editing of Filamin A pre-mRNA regulates vascular contraction and diastolic blood pressure. EMBO J. 37:372018. View Article : Google Scholar | |
Vu LT and Tsukahara T: C-to-U editing and site-directed RNA editing for the correction of genetic mutations. Biosci Trends. 11:243–253. 2017. View Article : Google Scholar | |
Gerber AP and Keller W: RNA editing by base deamination: More enzymes, more targets, new mysteries. Trends Biochem Sci. 26:376–384. 2001. View Article : Google Scholar | |
Rosenberg BR, Dewell S and Papavasiliou FN: Identifying mRNA editing deaminase targets by RNA-Seq. Methods Mol Biol. 718:103–119. 2011. View Article : Google Scholar | |
Powell LM, Wallis SC, Pease RJ, Edwards YH, Knott TJ and Scott J: A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell. 50:831–840. 1987. View Article : Google Scholar : PubMed/NCBI | |
Teng B, Burant CF and Davidson NO: Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science. 260:1816–1819. 1993. View Article : Google Scholar | |
Blanc V and Davidson NO: APOBEC-1-mediated RNA editing. Wiley Interdiscip Rev Syst Biol Med. 2:594–602. 2010. View Article : Google Scholar | |
Anant S, Henderson JO, Mukhopadhyay D, Navaratnam N, Kennedy S, Min J and Davidson NO: Novel role for RNA-binding protein CUGBP2 in mammalian RNA editing. CUGBP2 modulates C to U editing of apolipoprotein B mRNA by interacting with apobec-1 and ACF, the apobec-1 complementation factor. J Biol Chem. 276:47338–47351. 2001. View Article : Google Scholar : PubMed/NCBI | |
Blech-Hermoni Y, Dasgupta T, Coram RJ and Ladd AN: Identification of targets of CUG-BP, Elav-like family member 1 (CELF1) regulation in embryonic heart muscle. PLoS One. 11:e01490612016. View Article : Google Scholar : PubMed/NCBI | |
Giudice J, Xia Z, Li W and Cooper TA: Neonatal cardiac dysfunction and transcriptome changes caused by the absence of Celf1. Sci Rep. 6:355502016. View Article : Google Scholar | |
Liao W, Hong SH, Chan BH, Rudolph FB, Clark SC and Chan L: APOBEC-2, a cardiac - and skeletal muscle-specific member of the cytidine deaminase supergene family. Biochem Biophys Res Commun. 260:398–404. 1999. View Article : Google Scholar : PubMed/NCBI | |
Sharma S, Patnaik SK, Taggart RT, Kannisto ED, Enriquez SM, Gollnick P and Baysal BE: APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages. Nat Commun. 6:68812015. View Article : Google Scholar : PubMed/NCBI | |
Sharma S, Patnaik SK, Kemer Z and Baysal BE: Transient overexpression of exogenous APOBEC3A causes C-to-U RNA editing of thousands of genes. RNA Biol. 14:603–610. 2017. View Article : Google Scholar : | |
Li X, Ma S and Yi C: Pseudouridine: The fifth RNA nucleotide with renewed interests. Curr Opin Chem Biol. 33:108–116. 2016. View Article : Google Scholar | |
Cohn WE and Volkin E: Nucleoside-5′-phosphates from ribonucleic acid. Nature. 167:483–484. 1951. View Article : Google Scholar | |
Sengupta R, Vainauskas S, Yarian C, Sochacka E, Malkiewicz A, Guenther RH, Koshlap KM and Agris PF: Modified constructs of the tRNA TPsiC domain to probe substrate conformational requirements of m(1)A(58) and m(5)U(54) tRNA methyltransferases. Nucleic Acids Res. 28:1374–1380. 2000. View Article : Google Scholar | |
Charette M and Gray MW: Pseudouridine in RNA: What, where, how, and why. IUBMB Life. 49:341–351. 2000. View Article : Google Scholar | |
Davis DR: Stabilization of RNA stacking by pseudouridine. Nucleic Acids Res. 23:5020–5026. 1995. View Article : Google Scholar | |
Karijolich J and Yu YT: Converting nonsense codons into sense codons by targeted pseudouridylation. Nature. 474:395–398. 2011. View Article : Google Scholar : PubMed/NCBI | |
Spenkuch F, Motorin Y and Helm M: Pseudouridine: Still mysterious, but never a fake (uridine)! RNA Biol. 11:1540–1554. 2014. View Article : Google Scholar | |
Safra M, Nir R, Farouq D, Vainberg Slutskin I and Schwartz S: TRUB1 is the predominant pseudouridine synthase acting on mammalian mRNA via a predictable and conserved code. Genome Res. 27:393–406. 2017. View Article : Google Scholar | |
Antonicka H, Choquet K, Lin ZY, Gingras AC, Kleinman CL and Shoubridge EA: A pseudouridine synthase module is essential for mitochondrial protein synthesis and cell viability. EMBO Rep. 18:28–38. 2017. View Article : Google Scholar | |
Zaganelli S, Rebelo-Guiomar P, Maundrell K, Rozanska A, Pierredon S, Powell CA, Jourdain AA, Hulo N, Lightowlers RN, Chrzanowska-Lightowlers ZM, et al: The pseudouridine synthase RPUSD4 is an essential component of mitochondrial RNA granules. J Biol Chem. 292:4519–4532. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mei YP, Liao JP, Shen J, Yu L, Liu BL, Liu L, Li RY, Ji L, Dorsey SG, Jiang ZR, et al: Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene. 31:2794–2804. 2012. View Article : Google Scholar | |
Bykhovskaya Y, Casas K, Mengesha E, Inbal A and Fischel-Ghodsian N: Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am J Hum Genet. 74:1303–1308. 2004. View Article : Google Scholar | |
Zucchini C, Strippoli P, Biolchi A, Solmi R, Lenzi L, D'Addabbo P, Carinci P and Valvassori L: The human TruB family of pseudouridine synthase genes, including the Dyskeratosis Congenita 1 gene and the novel member TRUB1. Int J Mol Med. 11:697–704. 2003.PubMed/NCBI | |
Jády BE and Kiss T: A small nucleolar guide RNA functions both in 2′-O-ribose methylation and pseudouridylation of the U5 spliceosomal RNA. EMBO J. 20:541–551. 2001. View Article : Google Scholar | |
Darzacq X, Jády BE, Verheggen C, Kiss AM, Bertrand E and Kiss T: Cajal body-specific small nuclear RNAs: A novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO J. 21:2746–2756. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nagasawa CK, Kibiryeva N, Marshall J, O'Brien JE Jr and Bittel DC: scaRNA1 levels alter pseudouridylation in spliceosomal RNA U2 affecting alternative mRNA splicing and embryonic development. Pediatr Cardiol. 41:341–349. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wilusz JE: Long noncoding RNAs: Re-writing dogmas of RNA processing and stability. Biochim Biophys Acta. 1859:128–138. 2016. View Article : Google Scholar | |
Kanvah S, Joseph J, Schuster GB, Barnett RN, Cleveland CL and Landman U: Oxidation of DNA: Damage to nucleobases. Acc Chem Res. 43:280–287. 2010. View Article : Google Scholar | |
Faucher F, Doublié S and Jia Z: 8-oxoguanine DNA glycosylases: One lesion, three subfamilies. Int J Mol Sci. 13:6711–6729. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shah A, Gray K, Figg N, Finigan A, Starks L and Bennett M: Defective base excision repair of oxidative DNA damage in vascular smooth muscle cells promotes atherosclerosis. Circulation. 138:1446–1462. 2018. View Article : Google Scholar : PubMed/NCBI | |
Seok H, Lee H, Lee S, Ahn SH, Lee HS, Kim GD, Peak J, Park J, Cho YK, Jeong Y, et al: Position-specific oxidation of miR-1 encodes cardiac hypertrophy. Nature. 584:279–285. 2020. View Article : Google Scholar | |
Wang J, Wang Q, Watson LJ, Jones SP and Epstein PN: Cardiac overexpression of 8-oxoguanine DNA glycosylase 1 protects mitochondrial DNA and reduces cardiac fibrosis following transaortic constriction. Am J Physiol Heart Circ Physiol. 301:H2073–H2080. 2011. View Article : Google Scholar : | |
Noren Hooten N, Ejiogu N, Zonderman AB and Evans MK: Association of oxidative DNA damage and C-reactive protein in women at risk for cardiovascular disease. Arterioscler Thromb Vasc Biol. 32:2776–2784. 2012. View Article : Google Scholar : PubMed/NCBI | |
Motorin Y and Helm M: RNA nucleotide methylation. Wiley Interdiscip Rev RNA. 2:611–631. 2011. View Article : Google Scholar | |
Garcia-Campos MA, Edelheit S, Toth U, Safra M, Shachar R, Viukov S, Winkler R, Nir R, Lasman L, Brandis A, et al: Deciphering the 'm6A Code' via antibody-independent quantitative profiling. Cell. 178:731–747.e16. 2019. View Article : Google Scholar | |
Zhang Z, Chen L-Q, Zhao Y-L, Yang CG, Roundtree IA, Zhang Z, Ren J, Xie W, He C and Luo GZ: Single-base mapping of m6A by an antibody-independent method. Sci Adv. 5:eaax02502019. View Article : Google Scholar : | |
Liu N and Pan T: Probing N6-methyladenosine (m6A) RNA modification in total RNA with SCARLET. Methods Mol Biol. 1358:285–292. 2016. View Article : Google Scholar | |
Dominissini D, Moshitch-Moshkovitz S, Salmon-Divon M, Amariglio N and Rechavi G: Transcriptome-wide mapping of N(6)-methyladenosine by m(6)A-seq based on immunocapturing and massively parallel sequencing. Nat Protoc. 8:176–189. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen K, Lu Z, Wang X, Fu Y, Luo GZ, Liu N, Han D, Dominissini D, Dai Q, Pan T, et al: High-resolution N(6)-methyladenosine (m(6) A) map using photo-crosslinking-assisted m(6) A sequencing. Angew Chem Int Ed Engl. 54:1587–1590. 2015. View Article : Google Scholar | |
Marchand V, Bourguignon-Igel V, Helm M and Motorin Y: Analysis of pseudouridines and other RNA modifications using HydraPsiSeq protocol. Methods. Sep 1–2021.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Motorin Y and Helm M: Methods for RNA modification mapping using deep sequencing: Established and new emerging technologies. Genes (Basel). 10:352019. View Article : Google Scholar | |
Dai Q, Moshitch-Moshkovitz S, Han D, Kol N, Amariglio N, Rechavi G, Dominissini D and He C: Nm-seq maps 2′-O-methylation sites in human mRNA with base precision. Nat Methods. 14:695–698. 2017. View Article : Google Scholar : PubMed/NCBI | |
Birkedal U, Christensen-Dalsgaard M, Krogh N, Sabarinathan R, Gorodkin J and Nielsen H: Profiling of ribose methylations in RNA by high-throughput sequencing. Angew Chem Int Ed Engl. 54:451–455. 2015. | |
Yoluç Y, Ammann G, Barraud P, Jora M, Limbach PA, Motorin Y, Marchand V, Tisné C, Borland K and Kellner S: Instrumental analysis of RNA modifications. Crit Rev Biochem Mol Biol. 56:178–204. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang TY, Liu J and McLuckey SA: Top-down tandem mass spectrometry of tRNA via ion trap collision-induced dissociation. J Am Soc Mass Spectrom. 21:890–898. 2010. View Article : Google Scholar : PubMed/NCBI | |
Durairaj A and Limbach PA: Improving CMC-derivatization of pseudouridine in RNA for mass spectrometric detection. Anal Chim Acta. 612:173–181. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kowalak JA, Pomerantz SC, Crain PF and McCloskey JA: A novel method for the determination of post-transcriptional modification in RNA by mass spectrometry. Nucleic Acids Res. 21:4577–4585. 1993. View Article : Google Scholar : PubMed/NCBI | |
Heiss M, Borland K, Yoluç Y and Kellner S: Quantification of Modified nucleosides in the context of NAIL-MS. Methods Mol Biol. 2298:279–306. 2021. View Article : Google Scholar | |
Wein S, Andrews B, Sachsenberg T, Santos-Rosa H, Kohlbacher O, Kouzarides T, Garcia BA and Weisser H: A computational platform for high-throughput analysis of RNA sequences and modifications by mass spectrometry. Nat Commun. 11:9262020. View Article : Google Scholar : PubMed/NCBI | |
Marceca GP, Tomasello L, Distefano R, Acunzo M, Croce CM and Nigita G: Detecting and characterizing A-To-I microRNA editing in cancer. Cancers (Basel). 13:16992021. View Article : Google Scholar | |
Okada S, Ueda H, Noda Y and Suzuki T: Transcriptome-wide identification of A-to-I RNA editing sites using ICE-seq. Methods. 156:66–78. 2019. View Article : Google Scholar | |
Adachi H, DeZoysa MD and Yu YT: Detection and quantification of pseudouridine in RNA. Epitranscriptomics: Methods and Protocols. Wajapeyee N and Gupta R: Springer; New York, NY: pp. 219–235. 2019, View Article : Google Scholar | |
Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, León-Ricardo BX, Engreitz JM, Guttman M, Satija R, Lander ES, et al: Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell. 159:148–162. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lovejoy AF, Riordan DP and Brown PO: Transcriptome-wide mapping of pseudouridines: Pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS One. 9:e1107992014. View Article : Google Scholar : PubMed/NCBI | |
Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM and Gilbert WV: Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature. 515:143–146. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhu P, Ma S, Song J, Bai J, Sun F and Yi C: Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol. 11:592–597. 2015. View Article : Google Scholar : PubMed/NCBI | |
Banerjee A, Mikhailova E, Cheley S, Gu LQ, Montoya M, Nagaoka Y, Gouaux E and Bayley H: Molecular bases of cyclodextrin adapter interactions with engineered protein nanopores. Proc Natl Acad Sci USA. 107:8165–8170. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yang Q and Wang Z: The evolution of nanopore sequencing. Front Genet. 5:449. 2015. View Article : Google Scholar : PubMed/NCBI | |
Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ and Timp W: Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods. 14:407–410. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vlachakis D, Papakonstantinou E, Sagar R, Bacopoulou F, Exarchos T, Kourouthanassis P, Karyotis V, Vlamos P, Lyketsos C, Avramopoulos D, et al: Improving the utility of polygenic risk scores as a biomarker for Alzheimer's disease. Cells. 10:16272021. View Article : Google Scholar : PubMed/NCBI | |
Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, McMahon A, Morales J, Mountjoy E, Sollis E, et al: The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47:D1005–D1012. 2019. View Article : Google Scholar | |
Zheng Y, Nie P, Peng D, He Z, Liu M, Xie Y, Miao Y, Zuo Z and Ren J: m6AVar: A database of functional variants involved in m6A modification. Nucleic Acids Res. 46:D139–D145. 2018. View Article : Google Scholar : | |
Jiang S, Xie Y, He Z, Zhang Y, Zhao Y, Chen L, Zheng Y, Miao Y, Zuo Z and Ren J: m6ASNP: A tool for annotating genetic variants by m6A function. Gigascience. 7:72018. View Article : Google Scholar | |
Song B, Tang Y, Chen K, Wei Z, Rong R, Lu Z, Su J, de Magalhães JP, Rigden DJ and Meng J: m7GHub: Deciphering the location, regulation and pathogenesis of internal mRNA N7-methylguanosine (m7G) sites in human. Bioinformatics. 36:3528–3536. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen K, Song B, Tang Y, Wei Z, Xu Q, Su J, de Magalhães JP, Rigden DJ and Meng J: RMDisease: A database of genetic variants that affect RNA modifications, with implications for epitranscriptome pathogenesis. Nucleic Acids Res. 49:D1396–D1404. 2021. View Article : Google Scholar | |
Incarnato D, Morandi E, Simon LM and Oliviero S: RNA Framework: An all-in-one toolkit for the analysis of RNA structures and post-transcriptional modifications. Nucleic Acids Res. 46:e972018. View Article : Google Scholar : PubMed/NCBI | |
Mo XB, Lei SF, Zhang YH and Zhang H: Detection of m6A-associated SNPs as potential functional variants for coronary artery disease. Epigenomics. 10:1279–1287. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mo XB, Lei SF, Zhang YH and Zhang H: Examination of the associations between m6A-associated single-nucleotide polymorphisms and blood pressure. Hypertens Res. 42:1582–1589. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mo X, Lei S, Zhang Y and Zhang H: Genome-wide enrichment of m6A-associated single-nucleotide polymorphisms in the lipid loci. Pharmacogenomics J. 19:347–357. 2019. View Article : Google Scholar | |
Mo X-B, Lei S-F, Zhang Y-H and Zhang H: Integrative Analysis identified IRF6 and NDST1 as potential causal genes for ischemic stroke. Front Neurol. 10:5172019. View Article : Google Scholar : | |
Nielsen JB, Thorolfsdottir RB, Fritsche LG, Zhou W, Skov MW, Graham SE, Herron TJ, McCarthy S, Schmidt EM, Sveinbjornsson G, et al: Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat Genet. 50:1234–1239. 2018. View Article : Google Scholar | |
Ehret GB, Ferreira T, Chasman DI, Jackson AU, Schmidt EM, Johnson T, Thorleifsson G, Luan J, Donnelly LA, Kanoni S, et al CHARGE-EchoGen consortium; CHARGE-HF consortium: Wellcome Trust Case Control Consortium: The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet. 48:1171–1184. 2016. View Article : Google Scholar : | |
Franzén O, Ermel R, Sukhavasi K, Jain R, Jain A, Betsholtz C, Giannarelli C, Kovacic JC, Ruusalepp A, Skogsberg J, et al: Global analysis of A-to-I RNA editing reveals association with common disease variants. PeerJ. 6:e4466. 2018. View Article : Google Scholar : | |
Lee JY, Lee BS, Shin DJ, Woo Park K, Shin YA, Joong Kim K, Heo L, Young Lee J, Kyoung Kim Y, Jin Kim Y, et al: A genome-wide association study of a coronary artery disease risk variant. J Hum Genet. 58:120–126. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jeemon P, Pettigrew K, Sainsbury C, Prabhakaran D and Padmanabhan S: Implications of discoveries from genome-wide association studies in current cardiovascular practice. World J Cardiol. 3:230–247. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wakil SM, Ram R, Muiya NP, Mehta M, Andres E, Mazhar N, Baz B, Hagos S, Alshahid M, Meyer BF, et al: A genome-wide association study reveals susceptibility loci for myocardial infarction/coronary artery disease in Saudi Arabs. Atherosclerosis. 245:62–70. 2016. View Article : Google Scholar | |
Terasawa Y, Ladha Z, Leonard SW, Morrow JD, Newland D, Sanan D, Packer L, Traber MG and Farese RV Jr: Increased atherosclerosis in hyperlipidemic mice deficient in alpha -tocopherol transfer protein and vitamin E. Proc Natl Acad Sci USA. 97:13830–13834. 2000. View Article : Google Scholar | |
Lu N, Li X, Yu J, Li Y, Wang C, Zhang L, Wang T and Zhong X: Curcumin attenuates lipopolysaccharide-induced hepatic lipid metabolism disorder by modification of m6A RNA methylation in piglets. Lipids. 53:53–63. 2018. View Article : Google Scholar | |
Sikorski V, Karjalainen P, Blokhina D, Oksaharju K, Khan J, Katayama S, Rajala H, Suihko S, Tuohinen S, Teittinen K, et al: Epitranscriptomics of ischemic heart disease-the IHD-EPITRAN study design and objectives. Int J Mol Sci. 22:222021. View Article : Google Scholar | |
Huang Y, Yan J, Li Q, Li J, Gong S, Zhou H, Gan J, Jiang H, Jia GF, Luo C, et al: Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res. 43:373–384. 2015. View Article : Google Scholar | |
Li J, Chen Z, Chen F, Xie G, Ling Y, Peng Y, Lin Y, Luo N, Chiang CM and Wang H: Targeted mRNA demethylation using an engineered dCas13b-ALKBH5 fusion protein. Nucleic Acids Res. 48:5684–5694. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J and Zhang F: RNA editing with CRISPR-Cas13. Science. 358:1019–1027. 2017. View Article : Google Scholar : PubMed/NCBI | |
Papageorgiou L, Cuong NT and Vlachakis D: Antibodies as stratagems against cancer. Mol Biosyst. 12:2047–2055. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vlachakis D: Antibody clustering and 3D modelling for neurodegenerative diseases. Computational Neurodegeneration. Vlamos P, Kotsireas I and Tarnanas I: Springer; New York, NY: pp. 1–13. 2020 | |
Altaf F, Vesely C, Sheikh AM, Munir R, Shah ST and Tariq A: Modulation of ADAR mRNA expression in patients with congenital heart defects. PLoS One. 14:e02009682019. View Article : Google Scholar : PubMed/NCBI | |
van der Kwast RV, Quax PH and Nossent AY: An emerging role for isomiRs and the microRNA epitranscriptome in neovascularization. Cells. 9:92019. View Article : Google Scholar | |
Dai DF, Chen T, Johnson SC, Szeto H and Rabinovitch PS: Cardiac aging: From molecular mechanisms to significance in human health and disease. Antioxid Redox Signal. 16:1492–1526. 2012. View Article : Google Scholar | |
McMahon M, Forester C and Buffenstein R: Aging through an epitranscriptomic lens. Nat Aging. 1:335–346. 2021. View Article : Google Scholar | |
Komal S, Zhang LR and Han SN: Potential regulatory role of epigenetic RNA methylation in cardiovascular diseases. Biomed Pharmacother. 137:1113762021. View Article : Google Scholar | |
Van Haute L, Dietmann S, Kremer L, Hussain S, Pearce SF, Powell CA, Rorbach J, Lantaff R, Blanco S, Sauer S, et al: Deficient methylation and formylation of mt-tRNA(Met) wobble cytosine in a patient carrying mutations in NSUN3. Nat Commun. 7:120392016. View Article : Google Scholar : PubMed/NCBI | |
Bohnsack MT and Sloan KE: The mitochondrial epitranscriptome: The roles of RNA modifications in mitochondrial translation and human disease. Cell Mol Life Sci. 75:241–260. 2018. View Article : Google Scholar | |
Vilardo E and Rossmanith W: Molecular insights into HSD10 disease: Impact of SDR5C1 mutations on the human mitochondrial RNase P complex. Nucleic Acids Res. 43:66492015. View Article : Google Scholar | |
Vlachakis D, Tsagrasoulis D, Megalooikonomou V and Kossida S: Introducing Drugster: A comprehensive and fully integrated drug design, lead and structure optimization toolkit. Bioinformatics. 29:126–128. 2013. View Article : Google Scholar | |
Xu Z, Peng B, Cai Y, Wu G, Huang J, Gao M, Guo G, Zeng S, Gong Z and Yan Y: N6-methyladenosine RNA modification in cancer therapeutic resistance: Current status and perspectives. Biochem Pharmacol. 182:1142582020. View Article : Google Scholar : PubMed/NCBI | |
Tsaniras S and Vlachakis D: Diet, obesity and cancer. J Mol Biochem. 4:202016. | |
Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, Sun G, Lu Z, Huang Y, Yang CG, et al: m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 18:2622–2634. 2017. View Article : Google Scholar : | |
Singh B, Kinne HE, Milligan RD, Washburn LJ, Olsen M and Lucci A: Important role of FTO in the survival of rare panresistant triple-negative inflammatory breast cancer cells facing a severe metabolic challenge. PLoS One. 11:e01590722016. View Article : Google Scholar : PubMed/NCBI | |
Charalampopoulou M, Syrigos K, Filopoulos E, Megalooikonomou V, Vlachakis D, Chrousos G and Darviri C: Reliability and validity of the instrument newly diagnosed breast cancer stress scale in the Greek population. J Mol Biochem. 9:5–12. 2020. | |
Su R, Dong L, Li C, Nachtergaele S, Wunderlich M, Qing Y, Deng X, Wang Y, Weng X, Hu C, et al: R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling. Cell. 172:90–105.e23. 2018. View Article : Google Scholar | |
Huang Y, Su R, Sheng Y, Dong L, Dong Z, Xu H, Ni T, Zhang ZS, Zhang T, Li C, et al: Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell. 35:677–691.e10. 2019. View Article : Google Scholar : | |
Floresta G, Pistarà V, Amata E, Dichiara M, Damigella A, Marrazzo A, Prezzavento O, Punzo F and Rescifina A: Molecular modeling studies of pseudouridine isoxazolidinyl nucleoside analogues as potential inhibitors of the pseudouridine 5′-mono-phosphate glycosidase. Chem Biol Drug Des. 91:519–525. 2018. View Article : Google Scholar | |
Vlachakis D, Fakourelis P, Megalooikonomou V, Makris C and Kossida S: DrugOn: A fully integrated pharmacophore modeling and structure optimization toolkit. PeerJ. 3:e7252015. View Article : Google Scholar : PubMed/NCBI | |
Vlachakis D and Kossida S: Molecular modeling and pharmacophore elucidation study of the Classical Swine Fever virus helicase as a promising pharmacological target. PeerJ. 1:e852013. View Article : Google Scholar : PubMed/NCBI | |
Papageorgiou L, Loukatou S, Sofia K, Maroulis D and Vlachakis D: An updated evolutionary study of Flaviviridae NS3 helicase and NS5 RNA-dependent RNA polymerase reveals novel invariable motifs as potential pharmacological targets. Mol Biosyst. 12:2080–2093. 2016. View Article : Google Scholar | |
Papageorgiou L, Loukatou S, Koumandou VL, Makałowski W, Megalooikonomou V, Vlachakis D and Kossida S: Structural models for the design of novel antiviral agents against Greek Goat Encephalitis. PeerJ. 2:e6642014. View Article : Google Scholar : PubMed/NCBI | |
Amidi S, Amidi A, Vlachakis D, Paragios N and Zacharaki EI: Automatic single- and multi-label enzymatic function prediction by machine learning. PeerJ. 5:e30952017. View Article : Google Scholar : PubMed/NCBI | |
Marinou M, Platis D, Ataya FS, Chronopoulou E, Vlachakis D and Labrou NE: Structure-based design and application of a nucleotide coenzyme mimetic ligand: Application to the affinity purification of nucleotide dependent enzymes. J Chromatogr A. 1535:88–100. 2018. View Article : Google Scholar | |
Vlachakis D and Vlamos P: Mathematical multidimensional modelling and structural artificial intelligence pipelines provide insights for the designing of highly specific antiSARS-CoV2 agents. Math Comput Sci. 15:877–888. 2021. View Article : Google Scholar |