1
|
Khan N and Mukhtar H: Tea polyphenols in
promotion of human health. Nutrients. 11:392018. View Article : Google Scholar
|
2
|
Zhao L, Cheng G, Choksi K, Samanta A,
Girgis M, Soder R, Vincent RJ, Wulser M, De Ruyter M, McEnulty P,
et al: Transplantation of human umbilical cord blood-derived
cellular fraction improves left ventricular function and remodeling
after myocardial ischemia/reperfusion. Circ Res. 125:759–772. 2019.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Grobe JL, Der Sarkissian S, Stewart JM,
Meszaros JG, Raizada MK and Katovich MJ: ACE2 overexpression
inhibits hypoxia-induced collagen production by cardiac
fibroblasts. Clin Sci (Lond). 113:357–364. 2007. View Article : Google Scholar
|
4
|
Li Y, Du W, Zhao R, Hu J, Li H, Han R, Yue
Q, Wu R, Li W and Zhao J: New insights into epigenetic
modifications in heart failure. Front Biosci (Landmark Ed).
22:230–247. 2017. View
Article : Google Scholar
|
5
|
Kim JK, Samaranayake M and Pradhan S:
Epigenetic mechanisms in mammals. Cell Mol Life Sci. 66:596–612.
2009. View Article : Google Scholar :
|
6
|
Ghosh AK, Rai R, Flevaris P and Vaughan
DE: Epigenetics in reactive and reparative cardiac fibrogenesis:
The promise of epigenetic therapy. J Cell Physiol. 232:1941–1956.
2017. View Article : Google Scholar
|
7
|
Segers VFM, Gevaert AB, Boen JRA, Van
Craenenbroeck EM and De Keulenaer GW: Epigenetic regulation of
intercellular communication in the heart. Am J Physiol Heart Circ
Physiol. 316:H1417–H1425. 2019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Li S, Peng B, Luo X, Sun H and Peng C:
Anacardic acid attenuates pressure-overload cardiac hypertrophy
through inhibiting histone acetylases. J Cell Mol Med.
23:2744–2752. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Peng C, Zhang W, Zhao W, Zhu J, Huang X
and Tian J: Alcohol-induced histone H3K9 hyperacetylation and
cardiac hypertrophy are reversed by a histone acetylases inhibitor
anacardic acid in developing murine hearts. Biochimie. 113:1–9.
2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Peng C, Luo X, Li S and Sun H:
Phenylephrine-induced cardiac hypertrophy is attenuated by a
histone acetylase inhibitor anacardic acid in mice. Mol Biosyst.
13:714–724. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ooi JY, Tuano NK, Rafehi H, Gao XM,
Ziemann M, Du XJ and El-Osta A: HDAC inhibition attenuates cardiac
hypertrophy by acetylation and deacetylation of target genes.
Epigenetics. 10:418–430. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Gorski PA, Jang SP, Jeong D, Lee A, Lee P,
Oh JG, Chepurko V, Yang DK, Kwak TH, Eom SH, et al: Role of SIRT1
in modulating acetylation of the sarco-endoplasmic reticulum
Ca2+-ATPase in heart failure. Circ Res. 124:pp. e63–e80. 2019,
View Article : Google Scholar :
|
13
|
Wang Y, Miao X, Liu Y, Li F, Liu Q, Sun J
and Cai L: Dysregulation of histone acetyltransferases and
deacetylases in cardiovascular diseases. Oxid Med Cell Longev.
2014.641979:2014.
|
14
|
Yang M, Zhang Y and Ren J: Acetylation in
cardiovascular diseases: Molecular mechanisms and clinical
implications. Biochim Biophys Acta Mol Basis Dis. 1866(165836):
2020
|
15
|
Steinmann J, Buer J, Pietschmann T and
Steinmann E: Anti-infective properties of
epigallocatechin-3-gallate (EGCG), a component of green tea. Br J
Pharmacol. 168:1059–1073. 2013. View Article : Google Scholar :
|
16
|
Yang CS, Landau JM, Huang MT and Newmark
HL: Inhibition of carcinogenesis by dietary polyphenolic compounds.
Annu Rev Nutr. 21:381–406. 2001. View Article : Google Scholar : PubMed/NCBI
|
17
|
Khurana S, Venkataraman K, Hollingsworth
A, Piche M and Tai TC: Polyphenols: Benefits to the cardiovascular
system in health and in aging. Nutrients. 5:3779–3827. 2013.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Li K, Teng C and Min Q: Advanced
nanovehicles-enabled delivery systems of epigallocatechin gallate
for cancer therapy. Front Chem. 8(573297): 2020
|
19
|
Hu Y, McIntosh GH, Le Leu RK, Somashekar
R, Meng XQ, Gopalsamy G, Bambaca L, McKinnon RA and Young GP:
Supplementation with Brazil nuts and green tea extract regulates
targeted biomarkers related to colorectal cancer risk in humans. Br
J Nutr. 116:1901–1911. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Evans LW, Athukorala M, Martinez-Guryn K
and Ferguson BS: The role of histone acetylation and the microbiome
in phytochemical efficacy for cardiovascular diseases. Int J Mol
Sci. 21(4006): 2020
|
21
|
Gregoretti IV, Lee YM and Goodson HV:
Molecular evolution of the histone deacetylase family: Functional
implications of phylogenetic analysis. J Mol Biol. 338:17–31. 2004.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang L, Deng M, Lu A, Chen Y, Chen Y, Wu
C, Tan Z, Boini KM, Yang T, Zhu Q and Wang L: Sodium butyrate
attenuates angiotensin II-induced cardiac hypertrophy by inhibiting
COX2/PGE2 pathway via a HDAC5/HDAC6-dependent mechanism. J Cell Mol
Med. 23:8139–8150. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chandrasekaran S, Peterson RE, Mani SK,
Addy B, Buchholz AL, Xu L, Thiyagarajan T, Kasiganesan H, Kern CB
and Menick DR: Histone deacetylases facilitate sodium/calcium
exchanger up-regulation in adult cardiomyocytes. FASEB J.
23:3851–3864. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Melleby AO, Romaine A, Aronsen JM, Veras
I, Zhang L, Sjaastad I, Lunde IG and Christensen G: A novel method
for high precision aortic constriction that allows for generation
of specific cardiac phenotypes in mice. Cardiovasc Res.
114:1680–1690. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Riehle C and Bauersachs J: Small animal
models of heart failure. Cardiovasc Res. 115:1838–1849. 2019.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Mecklenburg J, Patil MJ, Koek W and
Akopian AN: Effects of local and spinal administrations of
mu-opioids on postoperative pain in aged versus adult mice. Pain
Rep. 2:pp. e5842017, View Article : Google Scholar : PubMed/NCBI
|
27
|
Zaw AM, Williams CM, Law HK and Chow BK:
Minimally invasive transverse aortic constriction in mice. J Vis
Exp:. 55293:2017.
|
28
|
Zhao Y, Wang C, Hong X, Miao J, Liao Y,
Hou FF, Zhou L and Liu Y: Wnt/β-catenin signaling mediates both
heart and kidney injury in type 2 cardiorenal syndrome. Kidney Int.
95:815–829. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
30
|
Liu L, Zhao W, Liu J, Gan Y, Liu L and
Tian J: Epigallocatechin-3 gallate prevents pressure
overload-induced heart failure by up-regulating SERCA2a via histone
acetylation modification in mice. PLoS One. 13:pp. e02051232018,
View Article : Google Scholar : PubMed/NCBI
|
31
|
Pan B, Quan J, Liu L, Xu Z, Zhu J, Huang X
and Tian J: Epigallocatechin gallate reverses cTnI-low
expression-induced age-related heart diastolic dysfunction through
histone acetylation modification. J Cell Mol Med. 21:2481–2490.
2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Uriel N, Sayer G, Annamalai S, Kapur NK
and Burkhoff D: Mechanical unloading in heart failure. J Am Coll
Cardiol. 72:569–580. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Bouwens E, Brankovic M, Mouthaan H, Baart
S, Rizopoulos D, van Boven N, Caliskan K, Manintveld O, Germans T,
van Ramshorst J, et al: Temporal patterns of 14 blood biomarker
candidates of cardiac remodeling in relation to prognosis of
patients with chronic heart failure-the Bio-SH i FT study. J Am
Heart Assoc. 8:pp. e0095552019, View Article : Google Scholar
|
34
|
Zhou X, Ferrara F, Contaldi C and Bossone
E: Right ventricular size and function in chronic heart failure:
Not to be forgotten. Heart Fail Clin. 15:205–217. 2019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sabia C, Picascia A, Grimaldi V, Amarelli
C, Maiello C and Napoli C: The epigenetic promise to improve
prognosis of heart failure and heart transplantation. Transplant
Rev (Orlando). 31:249–256. 2017. View Article : Google Scholar
|
36
|
Barnes CE, English DM and Cowley SM:
Acetylation & Co: An expanding repertoire of histone acylations
regulates chromatin and transcription. Essays Biochem. 63:97–107.
2019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wu X, Pan B, Liu L, Zhao W, Zhu J, Huang X
and Tian J: In utero exposure to PM2.5 during gestation caused
adult cardiac hypertrophy through histone acetylation modification.
J Cell Biochem. 120:4375–4384. 2019. View Article : Google Scholar
|
38
|
Chen K, Jian D, Zhao L, Zang X, Song W, Ma
J, Jia Z, Wang X and Gao C: Protective effect of histone
methyltransferase NSD3 on ISO-induced cardiac hypertrophy. FEBS
Lett. 593:2556–2565. 2019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Xu WP, Yao TQ, Jiang YB, Zhang MZ, Wang
YP, Yu Y, Li JX and Li YG: Effect of the angiotensin II receptor
blocker valsartan on cardiac hypertrophy and myocardial histone
deacetylase expression in rats with aortic constriction. Exp Ther
Med. 9:2225–2228. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Parra M: Class IIa HDACs-new insights into
their functions in physiology and pathology. FEBS J. 282:1736–1744.
2015. View Article : Google Scholar
|
41
|
Vega RB, Harrison BC, Meadows E, Roberts
CR, Papst PJ, Olson EN and McKinsey TA: Protein kinases C and D
mediate agonist-dependent cardiac hypertrophy through nuclear
export of histone deacetylase 5. Mol Cell Biol. 24:8374–8385. 2004.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Luo Y, Xu Y, Liang C, Xing W and Zhang T:
The mechanism of myocardial hypertrophy regulated by the
interaction between mhrt and myocardin. Cell Signal. 43:11–20.
2018. View Article : Google Scholar
|
43
|
Gaggin HK and Januzzi JL Jr: Biomarkers
and diagnostics in heart failure. Biochim Biophys Acta.
1832.2442–2450. 2013.
|
44
|
Scholz B, Schulte JS, Hamer S, Himmler K,
Pluteanu F, Seidl MD, Stein J, Wardelmann E, Hammer E, Völker U and
Müller FU: HDAC (histone deacetylase) inhibitor valproic acid
attenuates atrial remodeling and delays the onset of atrial
fibrillation in mice. Circ Arrhythm Electrophysiol. 12:pp.
e0070712019, View Article : Google Scholar : PubMed/NCBI
|
45
|
Zou G, Zhong W, Wu F, Wang X and Liu L:
Catalpol attenuates cardiomyocyte apoptosis in diabetic
cardiomyopathy via Neat1/miR-140-5p/HDAC4 axis. Biochimie.
165:90–99. 2019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Yoon S, Kim M, Min HK, Lee YU, Kwon DH,
Lee M, Lee S, Kook T, Joung H, Nam KI, et al: Inhibition of heat
shock protein 70 blocks the development of cardiac hypertrophy by
modulating the phosphorylation of histone deacetylase 2. Cardiovasc
Res. 115:1850–1860. 2019. View Article : Google Scholar : PubMed/NCBI
|
47
|
Lee E, Lee HA, Kim M, Do GY, Cho HM, Kim
GJ, Jung H, Song JH, Cho JM and Kim I: Upregulation of C/EBPβ and
TSC2 by an HDAC inhibitor CG200745 protects heart from DOCA-induced
hypertrophy. Clin Exp Pharmacol Physiol. 46:226–236. 2019.
View Article : Google Scholar
|
48
|
Zhao W, Hu W, Wang X, Xia N, Hu Q and Zhou
H: A traditional Chinese medicine, Lujiao prescription, as a
potential therapy for hypertrophic cardiomyocytes by acting on
histone acetylation. J Chin Med Assoc. 78:486–493. 2015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Habibian J and Ferguson BS: The crosstalk
between acetylation and phosphorylation: Emerging new roles for
hDAC inhibitors in the heart. Int J Mol Sci. 20:1022018. View Article : Google Scholar
|
50
|
Wallner M, Eaton DM, Berretta RM,
Liesinger L, Schittmayer M, Gindlhuber J, Wu J, Jeong MY, Lin YH,
Borghetti G, et al: HDAC inhibition improves cardiopulmonary
function in a feline model of diastolic dysfunction. Sci Transl
Med. 12:pp. eaay72052020, View Article : Google Scholar : PubMed/NCBI
|
51
|
Jung H, Lee E, Kim I, Song JH and Kim GJ:
Histone deacetylase inhibition has cardiac and vascular protective
effects in rats with pressure overload cardiac hypertrophy. Physiol
Res. 68:727–737. 2019. View Article : Google Scholar : PubMed/NCBI
|
52
|
Yan H, Yi S, Zhuang H, Wu L, Wang DW and
Jiang J: Sphingosine-1-phosphate ameliorates the cardiac
hypertrophic response through inhibiting the activity of histone
deacetylase-2. Int J Mol Med. 41:1704–1714. 2018.
|
53
|
Bagchi RA and Weeks KL: Histone
deacetylases in cardiovascular and metabolic diseases. J Mol Cell
Cardiol. 130:151–159. 2019. View Article : Google Scholar : PubMed/NCBI
|
54
|
Kim DJ, Dunleavey JM, Xiao L, Ollila DW,
Troester MA, Otey CA, Li W, Barker TH and Dudley AC: Suppression of
TGFβ-mediated conversion of endothelial cells and fibroblasts into
cancer associated (myo)fibroblasts via HDAC inhibition. Br J
Cancer. 118:1359–1368. 2018. View Article : Google Scholar : PubMed/NCBI
|
55
|
Hu T, Schreiter FC, Bagchi RA, Tatman PD,
Hannink M and McKinsey TA: HDAC5 catalytic activity suppresses
cardiomyocyte oxidative stress and NRF2 target gene expression. J
Biol Chem. 294:8640–8652. 2019. View Article : Google Scholar : PubMed/NCBI
|
56
|
Eng QY, Thanikachalam PV and Ramamurthy S:
Molecular understanding of epigallocatechin gallate (EGCG) in
cardiovascular and metabolic diseases. J Ethnopharmacol.
210:296–310. 2018. View Article : Google Scholar
|
57
|
Papadaki M, Vikhorev PG, Marston SB and
Messer AE: Uncoupling of myofilament Ca2+ sensitivity from troponin
I phosphorylation by mutations can be reversed by
epigallocatechin-3-gallate. Cardiovasc Res. 108:99–110. 2015.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Oliveira MR, Nabavi SF, Daglia M,
Rastrelli L and Nabavi SM: Epigallocatechin gallate and
mitochondria-a story of life and death. Pharmacol Res. 104:70–85.
2016. View Article : Google Scholar : PubMed/NCBI
|
59
|
Isbrucker RA, Edwards JA, Wolz E,
Davidovich A and Bausch J: Safety studies on epigallocatechin
gallate (EGCG) preparations. Part 3: Teratogenicity and
reproductive toxicity studies in rats. Food Chem Toxicol.
44:651–661. 2006. View Article : Google Scholar : PubMed/NCBI
|
60
|
Afzal M, Safer AM and Menon M: Green tea
polyphenols and their potential role in health and disease.
Inflammopharmacology. 23:151–161. 2015. View Article : Google Scholar : PubMed/NCBI
|
61
|
Qin S, Chen MH, Fang W, Tan XF, Xie L,
Yang YG, Qin T and Li N: Cerebral protection of epigallocatechin
gallate (EGCG) via preservation of mitochondrial function and ERK
inhibition in a rat resuscitation model. Drug Des Devel Ther.
13:2759–2768. 2019. View Article : Google Scholar : PubMed/NCBI
|
62
|
Hertog MG, Feskens EJ, Hollman PC, Katan
MB and Kromhout D: Dietary antioxidant flavonoids and risk of
coronary heart disease: The zutphen elderly study. Lancet.
342:1007–1011. 1993. View Article : Google Scholar : PubMed/NCBI
|
63
|
Nakachi K, Matsuyama S, Miyake S, Suganuma
M and Imai K: Preventive effects of drinking green tea on cancer
and cardiovascular disease: Epidemiological evidence for multiple
targeting prevention. Biofactors. 13:49–54. 2000. View Article : Google Scholar
|
64
|
Potenza MA, Iacobazzi D, Sgarra L and
Montagnani M: The intrinsic virtues of EGCG, an extremely good cell
guardian, on prevention and treatment of diabesity complications.
Molecules. 25(3061): 2020
|
65
|
Yang L and Zhang W, Chopra S, Kaur D, Wang
H, Li M, Chen P and Zhang W: The epigenetic modification of
epigallocatechin gallate (EGCG) on cancer. Curr Drug Targets.
21:1099–1104. 2020PubMed/NCBI
|
66
|
Sheng J, Shi W, Guo H, Long W, Wang Y, Qi
J, Liu J and Xu Y: The inhibitory effect of
(-)-epigallocatechin-3-gallate on breast cancer progression via
reducing SCUBE2 methylation and DNMT activity. Molecules.
24:28992019. View Article : Google Scholar
|
67
|
Oyama JI, Shiraki A, Nishikido T, Maeda T,
Komoda H, Shimizu T, Makino N and Node K: EGCG, a green tea
catechin, attenuates the progression of heart failure induced by
the heart/muscle-specific deletion of MnSOD in mice. J Cardiol.
69:417–427. 2017. View Article : Google Scholar
|
68
|
Muhammed I, Sankar S and Govindaraj S:
Ameliorative effect of epigallocatechin gallate on cardiac
hypertrophy and fibrosis in aged rats. J Cardiovasc Pharmacol.
71:65–75. 2018. View Article : Google Scholar : PubMed/NCBI
|
69
|
Li C, Sun XN, Chen BY, Zeng MR, Du LJ, Liu
T, Gu HH, Liu Y, Li YL, Zhou LJ, et al: Nuclear receptor
corepressor 1 represses cardiac hypertrophy. EMBO Mol Med. 11:pp.
e91272019, View Article : Google Scholar : PubMed/NCBI
|