Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review)
- Authors:
- Yunfei Zhao
- Xiaojing Zhang
- Xinye Chen
- Yun Wei
-
Affiliations: Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA, Shanghai Licheng Bio‑Technique Co. Ltd., Shanghai 201900, P.R. China, Shanghai Licheng Bio‑Technique Co. Ltd., Shanghai 201900, P.R. China - Published online on: December 8, 2021 https://doi.org/10.3892/ijmm.2021.5070
- Article Number: 15
-
Copyright: © Zhao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, et al: Heart disease and stroke statistics-2017 update: A report from the American Heart Association. Circulation. 135:e146–e603. 2017. View Article : Google Scholar : PubMed/NCBI | |
GBD 2015 Mortality and Causes of Death Collaborators: Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet. 388:1459–1544. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bailey EL, Smith C, Sudlow CL and Wardlaw JM: Pathology of lacunar ischemic stroke in humans-a systematic review. Brain Pathol. 22:583–591. 2012. View Article : Google Scholar : PubMed/NCBI | |
Warlow C, Sudlow C, Dennis M, Wardlaw J and Sandercock P: Stroke. Lancet. 362:1211–1224. 2003. View Article : Google Scholar : PubMed/NCBI | |
Balch MHH, Nimjee SM, Rink C and Hannawi Y: Beyond the brain: The systemic pathophysiological response to acute ischemic stroke. J Stroke. 22:159–172. 2020. View Article : Google Scholar : PubMed/NCBI | |
Boyle PA, Yang J, Yu L, Leurgans SE, Capuano AW, Schneider JA, Wilson RS and Bennett DA: Varied effects of age-related neuropathologies on the trajectory of late life cognitive decline. Brain. 140:804–812. 2017.PubMed/NCBI | |
Boyle PA, Yu L, Wilson RS, Schneider JA and Bennett DA: Relation of neuropathology with cognitive decline among older persons without dementia. Front Aging Neurosci. 5:502013. View Article : Google Scholar : PubMed/NCBI | |
Corrada MM, Sonnen JA, Kim RC and Kawas CH: Microinfarcts are common and strongly related to dementia in the oldest-old: The 90+ study. Alzheimers Dement. 12:900–908. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ince PG, Minett T, Forster G, Brayne C and Wharton SB: Medical Research Council Cognitive Function and Ageing Neuropathology Study: Microinfarcts in an older population-representative brain donor cohort (MRC CFAS): Prevalence, relation to dementia and mobility, and implications for the evaluation of cerebral Small Vessel Disease. Neuropathol Appl Neurobiol. 43:409–418. 2017. View Article : Google Scholar | |
Kawas CH, Kim RC, Sonnen JA, Bullain SS, Trieu T and Corrada MM: Multiple pathologies are common and related to dementia in the oldest-old: The 90+ study. Neurology. 85:535–542. 2015. View Article : Google Scholar : PubMed/NCBI | |
White LR, Edland SD, Hemmy LS, Montine KS, Zarow C, Sonnen JA, Uyehara-Lock JH, Gelber RP, Ross GW, Petrovitch H, et al: Neuropathologic comorbidity and cognitive impairment in the Nun and Honolulu-Asia aging studies. Neurology. 86:1000–1008. 2016. View Article : Google Scholar : PubMed/NCBI | |
Buchman AS, Yu L, Boyle PA, Levine SR, Nag S, Schneider JA and Bennett DA: Microvascular brain pathology and late-life motor impairment. Neurology. 80:712–718. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hogan AM, Kirkham FJ, Prengler M, Telfer P, Lane R, Vargha-Khadem F and Haan M: An exploratory study of physiological correlates of neurodevelopmental delay in infants with sickle cell anaemia. Br J Haematol. 132:99–107. 2006. View Article : Google Scholar | |
Bernaudin F, Verlhac S, Freard F, Roudot-Thoraval F, Benkerrou M, Thuret I, Mardini R, Vannier JP, Ploix E, Romero M, et al: Multicenter prospective study of children with sickle cell disease: Radiographic and psychometric correlation. J Child Neurol. 15:333–343. 2000. View Article : Google Scholar : PubMed/NCBI | |
Brown RT, Davis PC, Lambert R, Hsu L, Hopkins K and Eckman J: Neurocognitive functioning and magnetic resonance imaging in children with sickle cell disease. J Pediatr Psychol. 25:503–513. 2000. View Article : Google Scholar : PubMed/NCBI | |
DeBaun MR, Schatz J, Siegel MJ, Koby M, Craft S, Resar L, Chu JY, Launius G, Dadash-Zadeh M, Lee RB and Noetzel M: Cognitive screening examinations for silent cerebral infarcts in sickle cell disease. Neurology. 50:1678–1682. 1998. View Article : Google Scholar : PubMed/NCBI | |
Hogan AM, Pit-ten Cate IM, Vargha-Khadem F, Prengler M and Kirkham FJ: Physiological correlates of intellectual function in children with sickle cell disease: Hypoxaemia, hyperaemia and brain infarction. Dev Sci. 9:379–387. 2006. View Article : Google Scholar : PubMed/NCBI | |
Steen RG, Miles MA, Helton KJ, Strawn S, Wang W, Xiong X and Mulhern RK: Cognitive impairment in children with hemoglobin SS sickle cell disease: Relationship to MR imaging findings and hematocrit. AJNR Am J Neuroradiol. 24:382–389. 2003.PubMed/NCBI | |
Watkins KE, Hewes DK, Connelly A, Kendall BE, Kingsley DP, Evans JE, Gadian DG, Vargha-Khadem F and Kirkham FJ: Cognitive deficits associated with frontal-lobe infarction in children with sickle cell disease. Dev Med Child Neurol. 40:536–543. 1998. View Article : Google Scholar : PubMed/NCBI | |
Chen YC, Ma NX, Pei ZF, Wu Z, Do-Monte FH, Keefe S, Yellin E, Chen MS, Yin JC, Lee G, et al: A neuroD1 AAV-based gene therapy for functional brain repair after ischemic injury through in vivo astrocyte-to-neuron conversion. Mol Ther. 28:217–234. 2020. View Article : Google Scholar | |
Hu X, Wu D, He X, Zhao H, He Z, Lin J, Wang K, Wang W, Pan Z, Lin H and Wang M: circGSK3β promotes metastasis in esophageal squamous cell carcinoma by augmenting β-catenin signaling. Mol Cancer. 18:1602019. View Article : Google Scholar | |
Ren X, Hu H, Farooqi I and Simpkins JW: Blood substitution therapy rescues the brain of mice from ischemic damage. Nat Commun. 11:40782020. View Article : Google Scholar : PubMed/NCBI | |
Sommer CJ: Ischemic stroke: Experimental models and reality. Acta Neuropathol. 133:245–261. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zhang RL, Jiang Q, Ding G, Chopp M and Zhang ZG: Focal embolic cerebral ischemia in the rat. Nat Protoc. 10:539–547. 2015. View Article : Google Scholar : PubMed/NCBI | |
McBride DW and Zhang JH: Precision stroke animal models: The permanent MCAO model should be the primary model, not transient MCAO. Transl Stroke Res. Jul 17–2017.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Lunardi Baccetto S and Lehmann C: Microcirculatory changes in experimental models of stroke and CNS-injury induced immunodepression. Int J Mol Sci. 20:51842019. View Article : Google Scholar : | |
Fujie W, Kirino T, Tomukai N, Iwasawa T and Tamura A: Progressive shrinkage of the thalamus following middle cerebral artery occlusion in rats. Stroke. 21:1485–1488. 1990. View Article : Google Scholar : PubMed/NCBI | |
Prabhakaran S, Ruff I and Bernstein RA: Acute stroke intervention: A systematic review. JAMA. 313:1451–1462. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Yuan B, Chen J, Feng D, Zhao B, Qin C and Chen YF: Endothelial progenitor cells: Therapeutic perspective for ischemic stroke. CNS Neurosci Ther. 19:67–75. 2013. View Article : Google Scholar | |
Kidwell CS, Alger JR and Saver JL: Beyond mismatch: Evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke. 34:2729–2735. 2003. View Article : Google Scholar : PubMed/NCBI | |
Khoshnam SE, Winlow W, Farzaneh M, Farbood Y and Moghaddam HF: Pathogenic mechanisms following ischemic stroke. Neurol Sci. 38:1167–1186. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guo JD, Zhao X, Li Y, Li GR and Liu XL: Damage to dopaminergic neurons by oxidative stress in Parkinson's disease (Review). Int J Mol Med. 41:1817–1825. 2018.PubMed/NCBI | |
Kierdorf K, Wang Y and Neumann H: Immune-mediated CNS damage. Results Probl Cell Differ. 51:173–196. 2010. View Article : Google Scholar | |
Lazarov O and Hollands C: Hippocampal neurogenesis: Learning to remember. Prog Neurobiol. 138-140:1–18. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Zhang Y, Liu E, Ma Q, Anatol M, Han H and Yan J: The roles of astrocyte in the brain pathologies following ischemic stroke. Brain Inj. 33:712–716. 2019. View Article : Google Scholar | |
Liu Z and Chopp M: Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol. 144:103–120. 2016. View Article : Google Scholar : | |
L'Episcopo F, Serapide MF, Tirolo C, Testa N, Caniglia S, Morale MC, Pluchino S and Marchetti B: A Wnt1 regulated Frizzled-1/β-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection. Mol Neurodegener. 6:492011. View Article : Google Scholar | |
Salinas PC: Wnt signaling in the vertebrate central nervous system: From axon guidance to synaptic function. Cold Spring Harb Perspect Biol. 4:a0080032012. View Article : Google Scholar : PubMed/NCBI | |
Grainger S and Willert K: Mechanisms of Wnt signaling and control. Wiley Interdiscip Rev Syst Biol Med. Mar 30–2018, Epub ahead of print. View Article : Google Scholar | |
Kalani MY, Cheshier SH, Cord BJ, Bababeygy SR, Vogel H, Weissman IL, Palmer TD and Nusse R: Wnt-mediated self-renewal of neural stem/progenitor cells. Proc Natl Acad Sci USA. 105:16970–16975. 2008. View Article : Google Scholar : PubMed/NCBI | |
Clevers H, Loh KM and Nusse R: Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science. 346:12480122014. View Article : Google Scholar : PubMed/NCBI | |
Pal S, Hartnett KA, Nerbonne JM, Levitan ES and Aizenman E: Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. J Neurosci. 23:4798–4802. 2003. View Article : Google Scholar : PubMed/NCBI | |
Baver SB and O'Connell KM: The C-terminus of neuronal Kv2.1 channels is required for channel localization and targeting but not for NMDA-receptor-mediated regulation of channel function. Neuroscience. 217:56–66. 2012. View Article : Google Scholar : PubMed/NCBI | |
Justice JA, Schulien AJ, He K, Hartnett KA, Aizenman E and Shah NH: Disruption of KV2.1 somato-dendritic clusters prevents the apoptogenic increase of potassium currents. Neuroscience. 354:158–167. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schulien AJ, Yeh CY, Orange BN, Pav OJ, Hopkins MP, Moutal A, Khanna R, Sun D, Justice JA and Aizenman E: Targeted disruption of Kv2.1-VAPA association provides neuroprotection against ischemic stroke in mice by declustering Kv2.1 channels. Sci Adv. 6:eaaz81102020. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Morán I, Rodríguez C, Lapresa R, Agulla J, Sobrino T, Castillo J, Bolaños JP and Almeida A: Nuclear WRAP53 promotes neuronal survival and functional recovery after stroke. Sci Adv. 6:eabc57022020. View Article : Google Scholar : PubMed/NCBI | |
Ji HJ, Wang DM, Hu JF, Sun MN, Li G, Li ZP, Wu DH, Liu G and Chen NH: IMM-H004, a novel courmarin derivative, protects against oxygen-and glucose-deprivation/restoration-induced apoptosis in PC12 cells. Eur J Pharmacol. 723:259–266. 2014. View Article : Google Scholar | |
Canudas S, Hernández-Alonso P, Galié S, Muralidharan J, Morell-Azanza L, Zalba G, García-Gavilán J, Martí A, Salas-Salvadó J and Bulló M: Pistachio consumption modulates DNA oxidation and genes related to telomere maintenance: A crossover randomized clinical trial. Am J Clin Nutr. 109:1738–1745. 2019. View Article : Google Scholar : PubMed/NCBI | |
van Rooden S, Goos JD, van Opstal AM, Versluis MJ, Webb AG, Blauw GJ, van der Flier WM, Scheltens P, Barkhof F, van Buchem MA and van der Grond J: Increased number of microinfarcts in Alzheimer disease at 7-T MR imaging. Radiology. 270:205–211. 2014. View Article : Google Scholar | |
Bernaudin F, Verlhac S, Arnaud C, Kamdem A, Chevret S, Hau I, Coïc L, Leveillé E, Lemarchand E, Lesprit E, et al: Impact of early transcranial Doppler screening and intensive therapy on cerebral vasculopathy outcome in a newborn sickle cell anemia cohort. Blood. 117:1130–1140. 2011. View Article : Google Scholar | |
Hindmarsh PC, Brozovic M, Brook CG and Davies SC: Incidence of overt and covert neurological damage in children with sickle cell disease. Postgrad Med J. 63:751–753. 1987. View Article : Google Scholar : PubMed/NCBI | |
Kwiatkowski JL, Zimmerman RA, Pollock AN, Seto W, Smith-Whitley K, Shults J, Blackwood-Chirchir A and Ohene-Frempong K: Silent infarcts in young children with sickle cell disease. Br J Haematol. 146:300–305. 2009. View Article : Google Scholar : PubMed/NCBI | |
Moser FG, Miller ST, Bello JA, Pegelow CH, Zimmerman RA, Wang WC, Ohene-Frempong K, Schwartz A, Vichinsky EP, Gallagher D and Kinney TR: The spectrum of brain MR abnormalities in sickle-cell disease: A report from the cooperative study of sickle cell disease. AJNR Am J Neuroradiol. 17:965–972. 1996.PubMed/NCBI | |
Westover MB, Bianchi MT, Yang C, Schneider JA and Greenberg SM: Estimating cerebral microinfarct burden from autopsy samples. Neurology. 80:1365–1369. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hilal S, Sikking E, Shaik MA, Chan QL, van Veluw SJ, Vrooman H, Cheng CY, Sabanayagam C, Cheung CY, Wong TY, et al: Cortical cerebral microinfarcts on 3T MRI: A novel marker of cerebrovascular disease. Neurology. 87:1583–1590. 2016. View Article : Google Scholar : PubMed/NCBI | |
van Veluw SJ, Hilal S, Kuijf HJ, Ikram MK, Xin X, Yeow TB, Venketasubramanian N, Biessels GJ and Chen C: Cortical microinfarcts on 3T MRI: Clinical correlates in memory-clinic patients. Alzheimers Dement. 11:1500–1509. 2015. View Article : Google Scholar : PubMed/NCBI | |
Anenberg E, Arstikaitis P, Niitsu Y, Harrison TC, Boyd JD, Hilton BJ, Tetzlaff W and Murphy TH: Ministrokes in channel-rhodopsin-2 transgenic mice reveal widespread deficits in motor output despite maintenance of cortical neuronal excitability. J Neurosci. 34:1094–1104. 2014. View Article : Google Scholar : PubMed/NCBI | |
Summers PM, Hartmann DA, Hui ES, Nie X, Deardorff RL, McKinnon ET, Helpern JA, Jensen JH and Shih AY: Functional deficits induced by cortical microinfarcts. J Cereb Blood Flow Metab. 37:3599–3614. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Iliff JJ, Liao Y, Chen MJ, Shinseki MS, Venkataraman A, Cheung J, Wang W and Nedergaard M: Cognitive deficits and delayed neuronal loss in a mouse model of multiple microinfarcts. J Neurosci. 32:17948–17960. 2012. View Article : Google Scholar : PubMed/NCBI | |
Armstrong FD, Thompson RJ Jr, Wang W, Zimmerman R, Pegelow CH, Miller S, Moser F, Bello J, Hurtig A and Vass K: Cognitive functioning and brain magnetic resonance imaging in children with sickle cell disease. Neuropsychology committee of the cooperative study of sickle cell disease. Pediatrics. 97:864–870. 1996. View Article : Google Scholar : PubMed/NCBI | |
Steen RG, Reddick WE, Mulhern RK, Langston JW, Ogg RJ, Bieberich AA, Kingsley PB and Wang WC: Quantitative MRI of the brain in children with sickle cell disease reveals abnormalities unseen by conventional MRI. J Magn Reson Imaging. 8:535–543. 1998. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Enos L, Gallagher D, Thompson R, Guarini L, Vichinsky E, Wright E, Zimmerman R and Armstrong FD: Cooperative Study of Sickle Cell Disease: Neuropsychologic performance in school-aged children with sickle cell disease: A report from the cooperative study of sickle cell disease. J Pediatr. 139:391–397. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hardingham GE and Bading H: Synaptic versus extrasynaptic NMDA receptor signalling: Implications for neurodegenerative disorders. Nat Rev Neurosci. 11:682–696. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lai TW, Shyu WC and Wang YT: Stroke intervention pathways: NMDA receptors and beyond. Trends Mol Med. 17:266–275. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu QJ and Tymianski M: Targeting NMDA receptors in stroke: New hope in neuroprotection. Mol Brain. 11:152018. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Lu TJ, Chen XJ, Zhou Y, Chen Q, Feng XY, Xu L, Duan WH and Xiong ZQ: Differential roles of NMDA receptor subtypes in ischemic neuronal cell death and ischemic tolerance. Stroke. 39:3042–3048. 2008. View Article : Google Scholar : PubMed/NCBI | |
Choo AM, Geddes-Klein DM, Hockenberry A, Scarsella D, Mesfin MN, Singh P, Patel TP and Meaney DF: NR2A and NR2B subunits differentially mediate MAP kinase signaling and mitochondrial morphology following excitotoxic insult. Neurochem Int. 60:506–516. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L, Lai TW, Wu DC, Lu J, Tymianski M, Craig AM and Wang YT: NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci. 27:2846–2857. 2007. View Article : Google Scholar : PubMed/NCBI | |
DeRidder MN, Simon MJ, Siman R, Auberson YP, Raghupathi R and Meaney DF: Traumatic mechanical injury to the hippocampus in vitro causes regional caspase-3 and calpain activation that is influenced by NMDA receptor subunit composition. Neurobiol Dis. 22:165–176. 2006. View Article : Google Scholar | |
Eyo UB, Bispo A, Liu J, Sabu S, Wu R, DiBona VL, Zheng J, Murugan M, Zhang H, Tang Y and Wu LJ: The GluN2A subunit regulates neuronal NMDA receptor-induced microglia-neuron physical interactions. Sci Rep. 8:8282018. View Article : Google Scholar : PubMed/NCBI | |
Manzerra P, Behrens MM, Canzoniero LM, Wang XQ, Heidinger V, Ichinose T, Yu SP and Choi DW: Zinc induces a Src family kinase-mediated up-regulation of NMDA receptor activity and excitotoxicity. Proc Natl Acad Sci USA. 98:11055–11061. 2001. View Article : Google Scholar : PubMed/NCBI | |
Terasaki Y, Sasaki T, Yagita Y, Okazaki S, Sugiyama Y, Oyama N, Omura-Matsuoka E, Sakoda S and Kitagawa K: Activation of NR2A receptors induces ischemic tolerance through CREB signaling. J Cereb Blood Flow Metab. 30:1441–1449. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhang Q, Tu J, Zhu Y, Yang F, Liu B, Brann D and Wang R: Prosurvival NMDA 2A receptor signaling mediates postconditioning neuroprotection in the hippocampus. Hippocampus. 25:286–296. 2015. View Article : Google Scholar | |
Zhou M and Baudry M: Developmental changes in NMDA neurotoxicity reflect developmental changes in subunit composition of NMDA receptors. J Neurosci. 26:2956–2963. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hardingham GE, Fukunaga Y and Bading H: Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci. 5:405–414. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lu W, Man H, Ju W, Trimble WS, MacDonald JF and Wang YT: Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron. 29:243–254. 2001. View Article : Google Scholar : PubMed/NCBI | |
Karpova A, Mikhaylova M, Bera S, Bar J, Reddy PP, Behnisch T, Rankovic V, Spilker C, Bethge P, Sahin J, et al: Encoding and transducing the synaptic or extrasynaptic origin of NMDA receptor signals to the nucleus. Cell. 152:1119–1133. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kaufman AM, Milnerwood AJ, Sepers MD, Coquinco A, She K, Wang L, Lee H, Craig AM, Cynader M and Raymond LA: Opposing roles of synaptic and extrasynaptic NMDA receptor signaling in cocultured striatal and cortical neurons. J Neurosci. 32:3992–4003. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lau D, Bengtson CP, Buchthal B and Bading H: BDNF reduces toxic extrasynaptic NMDA receptor signaling via synaptic NMDA receptors and nuclear-calcium-induced transcription of inhba/activin A. Cell Rep. 12:1353–1366. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang WY, Jia LJ, Luo Y, Zhang HH, Cai F, Mao H, Xu WC, Fang JB, Peng ZY, Ma ZW, et al: Location- and subunit-specific NMDA receptors determine the developmental sevoflurane neurotoxicity through ERK1/2 signaling. Mol Neurobiol. 53:216–230. 2016. View Article : Google Scholar | |
Wang Y, Briz V, Chishti A, Bi X and Baudry M: Distinct roles for µ-calpain and m-calpain in synaptic NMDAR-mediated neuroprotection and extrasynaptic NMDAR-mediated neurodegeneration. J Neurosci. 33:18880–18892. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ivanov A, Pellegrino C, Rama S, Dumalska I, Salyha Y, Ben-Ari Y and Medina I: Opposing role of synaptic and extra-synaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons. J Physiol. 572:789–798. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wu GY, Deisseroth K and Tsien RW: Activity-dependent CREB phosphorylation: Convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA. 98:2808–2813. 2001. View Article : Google Scholar : PubMed/NCBI | |
Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd JW, Wang YT, Salter MW and Tymianski M: Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science. 298:846–850. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sattler R, Xiong Z, Lu WY, Hafner M, MacDonald JF and Tymianski M: Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science. 284:1845–1848. 1999. View Article : Google Scholar : PubMed/NCBI | |
Pei L, Shang Y, Jin H, Wang S, Wei N, Yan H, Wu Y, Yao C, Wang X, Zhu LQ and Lu Y: DAPK1-p53 interaction converges necrotic and apoptotic pathways of ischemic neuronal death. J Neurosci. 34:6546–6556. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian MM, Balel C, Wang M, Jia N, Zhang W, et al: DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell. 140:222–234. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ning K, Pei L, Liao M, Liu B, Zhang Y, Jiang W, Mielke JG, Li L, Chen Y, El-Hayek YH, et al: Dual neuroprotective signaling mediated by downregulating two distinct phosphatase activities of PTEN. J Neurosci. 24:4052–4060. 2004. View Article : Google Scholar : PubMed/NCBI | |
Beschorner R, Adjodah D, Schwab JM, Mittelbronn M, Pedal I, Mattern R, Schluesener HJ and Meyermann R: Long-term expression of heme oxygenase-1 (HO-1, HSP-32) following focal cerebral infarctions and traumatic brain injury in humans. Acta Neuropathol. 100:377–384. 2000. View Article : Google Scholar : PubMed/NCBI | |
Komkova MA, Karyakina EE and Karyakin AA: Catalytically synthesized prussian blue nanoparticles defeating natural enzyme peroxidase. J Am Chem Soc. 140:11302–11307. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Hu S, Yin JJ, He W, Lu W, Ma M, Gu N and Zhang Y: Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J Am Chem Soc. 138:5860–5865. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Tu M, Gao W, Cai X, Song F, Chen Z, Zhang Q, Wang J, Jin C, Shi J, et al: Hollow prussian blue nanozymes drive neuroprotection against ischemic stroke via attenuating oxidative stress, counteracting inflammation, and suppressing cell apoptosis. Nano Lett. 19:2812–2823. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dirnagl U, Klehmet J, Braun JS, Harms H, Meisel C, Ziemssen T, Prass K and Meisel A: Stroke-induced immunodepression: Experimental evidence and clinical relevance. Stroke. 38(Suppl 2): S770–S773. 2007. View Article : Google Scholar | |
Sarvari S, Moakedi F, Hone E, Simpkins JW and Ren X: Mechanisms in blood-brain barrier opening and metabolism-challenged cerebrovascular ischemia with emphasis on ischemic stroke. Metab Brain Dis. 35:851–868. 2020. View Article : Google Scholar : PubMed/NCBI | |
Simpkins AN, Dias C and Leigh R: National Institutes of Health Natural History of Stroke Investigators: Identification of reversible disruption of the human blood-brain barrier following acute ischemia. Stroke. 47:2405–2408. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lakhan SE, Kirchgessner A and Hofer M: Inflammatory mechanisms in ischemic stroke: Therapeutic approaches. J Transl Med. 7:972009. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Wei J and Shi Y: Platelet microvesicles promote the recovery of neurological function in mouse model of cerebral infarction by inducing angiogenesis. Biochem Biophys Res Commun. 513:997–1004. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rosińska J, Maciejewska J, Narożny R, Kozubski W and Łukasik M: Association of platelet-derived microvesicles with high on-treatment platelet reactivity in convalescent ischemic stroke patients treated with acetylsalicylic acid. Wiad Lek. 72:1426–1436. 2019. View Article : Google Scholar | |
Ghoreishy A, Khosravi A and Ghaemmaghami A: Exosomal microRNA and stroke: A review. J Cell Biochem. 120:16352–16361. 2019. View Article : Google Scholar : PubMed/NCBI | |
Loffreda A, Nizzardo M, Arosio A, Ruepp MD, Calogero RA, Volinia S, Galasso M, Bendotti C, Ferrarese C, Lunetta C, et al: miR-129-5p: A key factor and therapeutic target in amyotrophic lateral sclerosis. Prog Neurobiol. 190:1018032020. View Article : Google Scholar : PubMed/NCBI | |
Krützfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T, Manoharan M and Stoffel M: Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res. 35:2885–2892. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jickling GC, Ander BP, Zhan X, Noblett D, Stamova B and Liu D: microRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets. PLoS One. 9:e992832014. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Li K, Xu K and Liu QH: MiR-155-5p accelerates cerebral ischemia-reperfusion injury via targeting DUSP14 by regulating NF-κB and MAPKs signaling pathways. Eur Rev Med Pharmacol Sci. 24:1408–1419. 2020.PubMed/NCBI | |
Sun H, Zhong D, Wang C, Sun Y, Zhao J and Li G: MiR-298 exacerbates ischemia/reperfusion injury following ischemic stroke by targeting act1. Cell Physiol Biochem. 48:528–539. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Wang X, Zheng Y, Shang G, Huang J, Tao J and Chen L: Electroacupuncture inhibits inflammatory injury by targeting the miR-9-mediated NF-κB signaling pathway following ischemic stroke. Mol Med Rep. 13:1618–1626. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guo D, Ma J, Li T and Yan L: Up-regulation of miR-122 protects against neuronal cell death in ischemic stroke through the heat shock protein 70-dependent NF-κB pathway by targeting FOXO3. Exp Cell Res. 369:34–42. 2018. View Article : Google Scholar : PubMed/NCBI | |
Block HS and Biller J: Commonly asked questions: Thrombolytic therapy in the management of acute stroke. Expert Rev Neurother. 13:157–165. 2013. View Article : Google Scholar : PubMed/NCBI | |
Murray V, Norrving B, Sandercock PA, Terént A, Wardlaw JM and Wester P: The molecular basis of thrombolysis and its clinical application in stroke. J Intern Med. 267:191–208. 2010. View Article : Google Scholar : PubMed/NCBI | |
Röther J, Ford GA and Thijs VN: Thrombolytics in acute ischaemic stroke: Historical perspective and future opportunities. Cerebrovasc Dis. 35:313–319. 2013. View Article : Google Scholar : PubMed/NCBI | |
Saver JL: Number needed to treat estimates incorporating effects over the entire range of clinical outcomes: Novel derivation method and application to thrombolytic therapy for acute stroke. Arch Neurol. 61:1066–1070. 2004. View Article : Google Scholar : PubMed/NCBI | |
Saver JL, Gornbein J, Grotta J, Liebeskind D, Lutsep H, Schwamm L, Scott P and Starkman S: Number needed to treat to benefit and to harm for intravenous tissue plasminogen activator therapy in the 3- to 4.5-h window: Joint outcome table analysis of the ECASS 3 trial. Stroke. 40:2433–2437. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ahmed N, Wahlgren N, Grond M, Hennerici M, Lees KR, Mikulik R, Parsons M, Roine RO and Toni D: Implementation and outcome of thrombolysis with alteplase 3-4.5 h after an acute stroke: An updated analysis from SITS-ISTR. Lancet Neurol. 9:866–874. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schwamm LH, Ali SF, Reeves MJ, Smith EE, Saver JL, Messe S, Bhatt DL, Grau-Sepulveda MV, Peterson ED and Fonarow GC: Temporal trends in patient characteristics and treatment with intravenous thrombolysis among acute ischemic stroke patients at Get With The Guidelines-Stroke hospitals. Circ Cardiovasc Qual Outcomes. 6:543–549. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wahlgren N, Ahmed N, Davalos A, Ford GA, Grond M, Hacke W, Hennerici MG, Kaste M, Kuelkens S, Larrue V, et al: Thrombolysis with alteplase for acute ischaemic stroke in the safe implementation of thrombolysis in stroke-monitoring study (SITS-MOST): An observational study. Lancet. 369:275–282. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ingall TJ, O'Fallon WM, Asplund K, Goldfrank LR, Hertzberg VS, Louis TA and Christianson TJH: Findings from the reanalysis of the NINDS tissue plasminogen activator for acute ischemic stroke treatment trial. Stroke. 35:2418–2424. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jansen O, von Kummer R, Forsting M, Hacke W and Sartor K: Thrombolytic therapy in acute occlusion of the intracranial internal carotid artery bifurcation. AJNR Am J Neuroradiol. 16:1977–1986. 1995.PubMed/NCBI | |
Wolpert SM, Bruckmann H, Greenlee R, Wechsler L, Pessin MS and del Zoppo GJ: Neuroradiologic evaluation of patients with acute stroke treated with recombinant tissue plasminogen activator. The rt-PA acute stroke study group. AJNR Am J Neuroradiol. 14:3–13. 1993.PubMed/NCBI | |
Mandavia R, Qureshi MI, Dharmarajah B, Head K and Davies AH: Safety of carotid intervention following thrombolysis in acute ischaemic stroke. Eur J Vasc Endovasc Surg. 48:505–512. 2014. View Article : Google Scholar : PubMed/NCBI | |
Furlan AJ and Abou-Chebl A: The role of recombinant pro-urokinase (r-pro-UK) and intra-arterial thrombolysis in acute ischaemic stroke: The PROACT trials. Prolyse in acute cerebral thromboembolism. Curr Med Res Opin. 18(Suppl 2): S44–S47. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hao C, Ding W, Xu X, Sun Q, Li X, Wang W, Zhao Z and Tang L: Effect of recombinant human prourokinase on thrombolysis in a rabbit model of thromboembolic stroke. Biomed Rep. 8:77–84. 2018.PubMed/NCBI | |
Agrawal A, Golovoy D, Nimjee S, Ferrell A, Smith T and Britz G: Mechanical thrombectomy devices for endovascular management of acute ischemic stroke: Duke stroke center experience. Asian J Neurosurg. 7:166–170. 2012. View Article : Google Scholar | |
Deng L, Qiu S, Wang L, Li Y, Wang D and Liu M: Comparison of four food and drug administration-approved mechanical thrombectomy devices for acute ischemic stroke: A network meta-analysis. World Neurosurg. 127:e49–e57. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nogueira RG, Lutsep HL, Gupta R, Jovin TG, Albers GW, Walker GA, Liebeskind DS and Smith WS: TREVO 2 Trialists: Trevo versus Merci retrievers for thrombectomy revascularisation of large vessel occlusions in acute ischaemic stroke (TREVO 2): A randomised trial. Lancet. 380:1231–1240. 2012. View Article : Google Scholar : PubMed/NCBI | |
Saver JL, Jahan R, Levy EI, Jovin TG, Baxter B, Nogueira RG, Clark W, Budzik R and Zaidat OO: SWIFT Trialists: Solitaire flow restoration device versus the merci retriever in patients with acute ischaemic stroke (SWIFT): A randomised, parallel-group, non-inferiority trial. Lancet. 380:1241–1249. 2012. View Article : Google Scholar : PubMed/NCBI | |
Suzuki K, Matsumaru Y, Takeuchi M, Morimoto M, Kanazawa R, Takayama Y, Kamiya Y, Shigeta K, Okubo S, Hayakawa M, et al: Effect of mechanical thrombectomy without vs with intravenous thrombolysis on functional outcome among patients with acute ischemic stroke: The SKIP randomized clinical trial. JAMA. 325:244–253. 2021. View Article : Google Scholar : PubMed/NCBI | |
Machado M, Alves M, Fior A, Fragata I, Papoila AL, Reis J and Nunes AP: Functional outcome after mechanical thrombectomy with or without previous thrombolysis. J Stroke Cerebrovasc Dis. 30:1054952021. View Article : Google Scholar | |
Cirillo C, Le Friec A, Frisach I, Darmana R, Robert L, Desmoulin F and Loubinoux I: Focal malonate injection into the internal capsule of rats as a model of lacunar stroke. Front Neurol. 9:10722018. View Article : Google Scholar | |
Fries W, Danek A, Scheidtmann K and Hamburger C: Motor recovery following capsular stroke. Role of descending pathways from multiple motor areas. Brain. 116:369–382. 1993. View Article : Google Scholar : PubMed/NCBI | |
Haga KK, Gregory LJ, Hicks CA, Ward MA, Beech JS, Bath PW, Williams SC and O'Neill MJ: The neuronal nitric oxide synthase inhibitor, TRIM, as a neuroprotective agent: Effects in models of cerebral ischaemia using histological and magnetic resonance imaging techniques. Brain Res. 993:42–53. 2003. View Article : Google Scholar : PubMed/NCBI |