1
|
Wen PY and Reardon DA: Neuro-oncology in
2015: Progress in glioma diagnosis, classification and treatment.
Nat Rev Neurol. 12:69–70. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ostrom QT, Cote DJ, Ascha M, Kruchko C and
Barnholtz-Sloan JS: Adult glioma incidence and survival by race or
ethnicity in the United States from 2000 to 2014. JAMA Oncol.
4:1254–1262. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Johnson DR and Galanis E: Incorporation of
prognostic and predictive factors into glioma clinical trials. Curr
Oncol Rep. 15:56–63. 2013. View Article : Google Scholar
|
4
|
Molinaro AM, Taylor JW, Wiencke JK and
Wrensch MR: Genetic and molecular epidemiology of adult diffuse
glioma. Nat Rev Neurol. 15:405–417. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Li DQ, Nair SS, Ohshiro K, Kumar A, Nair
VS, Pakala SB, Reddy SD, Gajula RP, Eswaran J, Aravind L and Kumar
R: MORC2 signaling integrates phosphorylation-dependent,
ATPase-coupled chromatin remodeling during the DNA damage response.
Cell Rep. 2:1657–1669. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ding QS, Zhang L, Wang BC, Zeng Z, Zou XQ,
Cao PB, Zhou GM, Tang M, Wu L, Wu LL, et al: Aberrant high
expression level of MORC2 is a common character in multiple
cancers. Hum Pathol. 76:58–67. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Liu J, Shao Y, He Y, Ning K, Cui X, Liu F,
Wang Z and Li F: MORC2 promotes development of an aggressive
colorectal cancer phenotype through inhibition of NDRG1. Cancer
Sci. 110:135–146. 2019. View Article : Google Scholar :
|
8
|
Sahni S, Krishan S and Richardson DR:
NDRG1 as a molecular target to inhibit the epithelial-mesenchymal
transition: The case for developing inhibitors of metastasis.
Future Med Chem. 6:1241–1244. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Liao G, Liu X, Wu D, Duan F, Xie X, Wen S,
Li Y and Li S: MORC2 promotes cell growth and metastasis in human
cholangiocarcinoma and is negatively regulated by miR-186-5p. Aging
(Albany NY). 11:3639–3649. 2019. View Article : Google Scholar
|
10
|
Kovacevic Z, Chikhani S, Lui GY,
Sivagurunathan S and Richardson DR: The iron-regulated metastasis
suppressor NDRG1 targets NEDD4L, PTEN, and SMAD4 and inhibits the
PI3K and ras signaling pathways. Antioxid Redox Signal. 18:874–887.
2013. View Article : Google Scholar
|
11
|
Guo LP, Zhang ZJ, Li RT, Li HY and Cui YQ:
Influences of LncRNA SNHG20 on proliferation and apoptosis of
glioma cells through regulating the PTEN/PI3K/AKT signaling
pathway. Eur Rev Med Pharmacol Sci. 23:253–261. 2019.PubMed/NCBI
|
12
|
Chai C, Song LJ, Han SY, Li XQ and Li M:
MicroRNA-21 promotes glioma cell proliferation and inhibits
senescence and apoptosis by targeting SPRY1 via the PTEN/PI3K/AKT
signaling pathway. CNS Neurosci Ther. 24:369–380. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
14
|
Bi L, Liu Y, Yang Q, Zhou X, Li H, Liu Y,
Li J, Lu Y and Tang H: Paris saponin H inhibits the proliferation
of glioma cells through the A1 and A3 adenosine receptormediated
pathway. Int J Mol Med. 47:302021. View Article : Google Scholar
|
15
|
Zhang Q, Xu B, Hu F, Chen X, Liu X, Zhang
Q and Zuo Y: Tenascin C promotes glioma cell malignant behavior and
inhibits chemosensitivity to paclitaxel via activation of the
PI3K/AKT signaling pathway. J Mol Neurosc. 71:1636–1647. 2021.
View Article : Google Scholar
|
16
|
Wang X and Zhu Y: Circ_0000020 elevates
the expression of PIK3CA and facilitates the malignant phenotypes
of glioma cells via targeting miR-142-5p. Cancer Cell Int.
21:792021. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li B, Wang F, Liu N, Shen W and Huang T:
Astragaloside IV inhibits progression of glioma via blocking
MAPK/ERK signaling pathway. Biochem Biophys Res Commun. 491:98–103.
2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang J, Quan Y, Lv J, Dong Q and Gong S:
LncRNA IDH1-AS1 suppresses cell proliferation and tumor growth in
glioma. Biochem Cell Biol. 98:556–564. 2020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Thiery JP, Acloque H, Huang RY and Nieto
MA: Epithelialmesenchymal transitions in development and disease.
Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Gao Y, Zheng H, Li L, Zhou C, Chen X, Zhou
X and Cao Y: KIF3C promotes proliferation, migration, and invasion
of glioma cells by activating the PI3K/AKT pathway and inducing
EMT. Biomed Res Int. 2020:63493122020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang J, Cai H, Sun L, Zhan P, Chen M,
Zhang F, Ran Y and Wan J: LGR5, a novel functional glioma stem cell
marker, promotes EMT by activating the wnt/β-catenin pathway and
predicts poor survival of glioma patients. J Exp Clin Cancer Res.
37:2252018. View Article : Google Scholar
|
22
|
Li DQ, Nair SS and Kumar R: The MORC
family: New epigenetic regulators of transcription and DNA damage
response. Epigenetics. 8:685–693. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang GL, Wang CY, Cai XZ, Chen W, Wang XH
and Li F: Identification and expression analysis of a novel CW-type
zinc finger protein MORC2 in cancer cells. Anat Rec (Hoboken).
293:1002–1009. 2010. View
Article : Google Scholar
|
24
|
Pan Z, Ding Q, Guo Q, Guo Y, Wu L, Wu L,
Tang M, Yu H and Zhou F: MORC2, a novel oncogene, is upregulated in
liver cancer and contributes to proliferation, metastasis and
chemoresistance. Int J Oncol. 53:59–72. 2018.PubMed/NCBI
|
25
|
Liu M, Sun X and Shi S: MORC2 enhances
tumor growth by promoting angiogenesis and tumor-associated
macrophage recruitment via wnt/β-catenin in lung cancer. Cell
Physiol Biochem. 51:1679–1694. 2018. View Article : Google Scholar
|
26
|
Liao XH, Zhang Y, Dong WJ, Shao ZM and Li
DQ: Chromatin remodeling protein MORC2 promotes breast cancer
invasion and metastasis through a PRD domain-mediated interaction
with CTNND1. Oncotarget. 8:97941–97954. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Shao Y, Li Y, Zhang J, Liu D, Liu F, Zhao
Y, Shen T and Li F: Involvement of histone deacetylation in
MORC2-mediated down-regulation of carbonic anhydrase IX. Nucleic
Acids Res. 38:2813–2824. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kovacevic Z and Richardson DR: The
metastasis suppressor, Ndrg-1: A new ally in the fight against
cancer. Carcinogenesis. 27:2355–2366. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Nishio S, Ushijima K, Tsuda N, Takemoto S,
Kawano K, Yamaguchi T, Nishida N, Kakuma T, Tsuda H, Kasamatsu T,
et al: Cap43/NDRG1/Drg-1 is a molecular target for angiogenesis and
a prognostic indicator in cervical adenocarcinoma. Cancer Lett.
264:36–43. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Li A, Zhu X, Wang C, Yang S, Qiao Y, Qiao
R and Zhang J: Upregulation of NDRG1 predicts poor outcome and
facilitates disease progression by influencing the EMT process in
bladder cancer. Sci Rep. 9:51662019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Cheng J, Xie HY, Xu X, Wu J, Wei X, Su R,
Zhang W, Lv Z, Zheng S and Zhou L: NDRG1 as a biomarker for
metastasis, recurrence and of poor prognosis in hepatocellular
carcinoma. Cancer Lett. 310:35–45. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
de Lima JM, Morand GB, Macedo CCS, Diesel
L, Hier MP, Mlynarek A, Kowalski LP, Maschietto M, Alaoui-Jamali MA
and da Silva SD: NDRG1 deficiency is associated with regional
metastasis in oral cancer by inducing epithelial-mesenchymal
transition. Carcinogenesis. 41:769–777. 2020. View Article : Google Scholar : PubMed/NCBI
|
33
|
Dong X, Hong Y, Sun H, Chen C, Zhao X and
Sun B: NDRG1 suppresses vasculogenic mimicry and tumor
aggressiveness in gastric carcinoma. Oncol Lett. 18:3003–3016.
2019.PubMed/NCBI
|
34
|
Ma J, Gao Q, Zeng S and Shen H: Knockdown
of NDRG1 promote epithelial-mesenchymal transition of colorectal
cancer via NF-κB signaling. J Surg Oncol. 114:520–527. 2016.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhao SP, Wang F, Yang M, Wang XY, Jin CL,
Ji QK, Li S and Zhao XL: CBX3 promotes glioma U87 cell
proliferation and predicts an unfavorable prognosis. J Neurooncol.
145:35–48. 2019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Terano T, Tanaka T, Tamura Y, Kitagawa M,
Higashi H, Saito Y and Hirai A: Eicosapentaenoic acid and
docosahexaenoic acid inhibit vascular smooth muscle cell
proliferation by inhibiting phosphorylation of Cdk2-cyclinE
complex. Biochem Biophys Res Commun. 254:502–506. 1999. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kang Y and Massague J:
Epithelial-mesenchymal transitions: Twist in development and
metastasis. Cell. 118:277–279. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang X, Lv QL, Huang YT, Zhang LH and
Zhou HH: Akt/FoxM1 signaling pathway-mediated upregulation of MYBL2
promotes progression of human glioma. J Exp Clin Cancer Res.
36:1052017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Tan Y, Hu X, Deng Y, Yuan P, Xie Y and
Wang J: TRA2A promotes proliferation, migration, invasion and
epithelial mesenchymal transition of glioma cells. Brain Res Bull.
143:138–144. 2018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhao C, Wang XB, Zhang YH, Zhou YM, Yin Q
and Yao WC: MicroRNA-424 inhibits cell migration, invasion and
epithelial-mesenchymal transition in human glioma by targeting
KIF23 and functions as a novel prognostic predictor. Eur Rev Med
Pharmacol Sci. 22:6369–6378. 2018.PubMed/NCBI
|
41
|
Chen Z, Wei X, Shen L, Zhu H and Zheng X:
20(S)-ginsenoside-Rg3 reverses temozolomide resistance and
restrains epithelial-mesenchymal transition progression in
glioblastoma. Cancer Sci. 110:389–400. 2019. View Article : Google Scholar
|
42
|
Sun B, Chu D, Li W, Chu X, Li Y, Wei D and
Li H: Decreased expression of NDRG1 in glioma is related to tumor
progression and survival of patients. J Neurooncol. 94:213–219.
2009. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zi Y, Zhang Y, Wu Y, Zhang L, Yang R and
Huang Y: Downregulation of microRNA-25-3p inhibits the
proliferation and promotes the apoptosis of multiple myeloma cells
via targeting the PTEN/PI3K/AKT signaling pathway. Int J Mol Med.
47:102021.
|
44
|
Ni J, Chen Y, Fei B, Zhu Y, Du Y, Liu L,
Guo L and Zhu W: MicroRNA-301a promotes cell proliferation and
resistance to apoptosis through PTEN/PI3K/akt signaling pathway in
human ovarian cancer. Gynecol Obstet Invest. 86:108–116. 2021.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhang XY and Mao L: Circular RNA
Circ_0000442 acts as a sponge of MiR-148b-3p to suppress breast
cancer via PTEN/PI3K/Akt signaling pathway. Gene. 766:1451132021.
View Article : Google Scholar
|
46
|
Liu CJ, Wu HB, Li YY, Shen L, Yu R, Yin H,
Sun T, Sun C, Zhou Y and Du Z: SALL4 suppresses PTEN expression to
promote glioma cell proliferation via PI3K/AKT signaling pathway. J
Neurooncol. 135:263–272. 2017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Moon SH, Kim DK, Cha Y, Jeon I, Song J and
Park KS: PI3K/Akt and stat3 signaling regulated by PTEN control of
the cancer stem cell population, proliferation and senescence in a
glioblastoma cell line. Int J Oncol. 42:921–928. 2013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Dasari VR, Kaur K, Velpula KK, Gujrati M,
Fassett D, Klopfenstein JD, Dinh DH and Rao JS: Upregulation of
PTEN in glioma cells by cord blood mesenchymal stem cells inhibits
migration via downregulation of the PI3K/Akt pathway. PLoS One.
5:122010. View Article : Google Scholar
|
49
|
Sun J, Zhang D, Bae DH, Sahni S, Jansson
P, Zheng Y, Zhao Q, Yue F, Zheng M, Kovacevic Z and Richardson DR:
Metastasis suppressor, NDRG1, mediates its activity through
signaling pathways and molecular motors. Carcinogenesis.
34:1943–1954. 2013. View Article : Google Scholar : PubMed/NCBI
|