1
|
Fuchs Y and Steller H: Programmed cell
death in animal development and disease. Cell. 147:742–758. 2011.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Angeli JPF, Shah R, Pratt DA and Conrad M:
Ferroptosis inhibition: Mechanisms and opportunities. Trends
Pharmacol Sci. 38:489–498. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Fang X, Wang H, Han D, Xie E, Yang X, Wei
J, Gu S, Gao F, Zhu N, Yin X, et al: Ferroptosis as a target for
protection against cardiomyopathy. Proc Natl Acad Sci USA.
116:2672–2680. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Linkermann A, Skouta R, Himmerkus N, Mulay
SR, Dewitz C, De Zen F, Prokai A, Zuchtriegel G, Krombach F, Welz
PS, et al: Synchronized renal tubular cell death involves
ferroptosis. Proc Natl Acad Sci USA. 111:16836–16841. 2014.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Yang WS and Stockwell BR: Ferroptosis:
Death by lipid peroxidation. Trends Cell Biol. 26:165–176. 2016.
View Article : Google Scholar :
|
7
|
Loibl S and Gianni L: HER2-positive breast
cancer. Lancet. 389:2415–2429. 2017. View Article : Google Scholar
|
8
|
Slamon D, Eiermann W, Robert N, Pienkowski
T, Martin M, Press M, Mackey J, Glaspy J, Chan A, Pawlicki M, et
al: Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J
Med. 365:1273–1283. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Jerusalem G, Lancellotti P and Kim SB:
HER2+ breast cancer treatment and cardiotoxicity:
Monitoring and management. Breast Cancer Res Treat. 177:237–250.
2019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Barish R, Gates E and Barac A:
Trastuzumab-induced cardiomyopathy. Cardiol Clin. 37:407–418. 2019.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Whelan RS, Kaplinskiy V and Kitsis RN:
Cell death in the pathogenesis of heart disease: Mechanisms and
significance. Annu Rev Physiol. 72:19–44. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Pantopoulos K, Porwal SK, Tartakoff A and
Devireddy L: Mechanisms of mammalian iron homeostasis.
Biochemistry. 51:5705–5724. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ward RJ, Zucca FA, Duyn JH, Crichton RR
and Zecca L: The role of iron in brain ageing and neurodegenerative
disorders. Lancet Neurol. 13:1045–1060. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Rouault TA: Iron metabolism in the CNS:
Implications for neurodegenerative diseases. Nat Rev Neurosci.
14:551–564. 2013. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Reichert CO, de Freitas FA, Sampaio-Silva
J, Rokita-Rosa L, Barros PL, Levy D and Bydlowski SP: Ferroptosis
mechanisms involved in neurodegenerative diseases. Int J Mol Sci.
21:87652020. View Article : Google Scholar :
|
16
|
Torti SV and Torti FM: Iron and cancer:
More ore to be mined. Nat Rev Cancer. 13:342–355. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chen Y, Fan Z, Yang Y and Gu C: Iron
metabolism and its contribution to cancer (Review). Int J Oncol.
54:1143–1154. 2019.PubMed/NCBI
|
18
|
Lapice E, Masulli M and Vaccaro O: Iron
deficiency and cardiovascular disease: An updated review of the
evidence. Curr Atheroscler Rep. 15:3582013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kobayashi M, Suhara T, Baba Y, Kawasaki
NK, Higa JK and Matsui T: Pathological roles of iron in
cardiovascular disease. Curr Drug Targets. 19:1068–1076. 2018.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Wood JC: History and current impact of
cardiac magnetic resonance imaging on the management of iron
overload. Circulation. 120:1937–1939. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Valko M, Jomova K, Rhodes CJ, Kuča K and
Musílek K: Redox- and non-redox-metal-induced formation of free
radicals and their role in human disease. Arch Toxicol. 90:1–37.
2016. View Article : Google Scholar
|
22
|
Ichikawa Y, Ghanefar M, Bayeva M, Wu R,
Khechaduri A, Naga Prasad SV, Mutharasan RK, Naik TJ and Ardehali
H: Cardiotoxicity of doxorubicin is mediated through mitochondrial
iron accumulation. J Clin Invest. 124:617–630. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gujja P, Rosing DR, Tripodi DJ and
Shizukuda Y: Iron overload cardiomyopathy: Better understanding of
an increasing disorder. J Am Coll Cardiol. 56:1001–1012. 2010.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Kurokawa YK, Shang MR, Yin RT and George
SC: Modeling trastuzumab-related cardiotoxicity in vitro using
human stem cell-derived cardiomyocytes. Toxicol Lett. 285:74–80.
2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Baba Y, Higa JK, Shimada BK, Horiuchi KM,
Suhara T, Kobayashi M, Woo JD, Aoyagi H, Marh KS, Kitaoka H and
Matsui T: Protective effects of the mechanistic target of rapamycin
against excess iron and ferroptosis in cardiomyocytes. Am J Physiol
Heart Circ Physiol. 314:H659–H668. 2018. View Article : Google Scholar :
|
26
|
Wu C, Zhao W, Yu J, Li S, Lin L and Chen
X: Induction of ferroptosis and mitochondrial dysfunction by
oxidative stress in PC12 cells. Sci Rep. 8:5742018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W and
Wang J: Oxidative stress in cell death and cardiovascular diseases.
Oxid Med Cell Longev. 2019:90305632019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chen S, Zhang Z, Qing T, Ren Z, Yu D,
Couch L, Ning B, Mei N, Shi L, Tolleson WH and Guo L: Activation of
the Nrf2 signaling pathway in usnic acid-induced toxicity in HepG2
cells. Arch Toxicol. 91:1293–1307. 2017. View Article : Google Scholar :
|
29
|
Mohan N, Jiang J and Wu WJ: Implication of
autophagy and oxidative stress in trastuzumab-mediated cardiac
toxicities. Austin Pharmacol Pharm. 2:10052017.
|
30
|
Lee H, Ki J, Lee SY, Park JH and Hwang GS:
Processed panax ginseng, sun ginseng, decreases oxidative damage
induced by tert-butyl hydroperoxide via regulation of antioxidant
enzyme and anti-apoptotic molecules in HepG2 cells. J Ginseng Res.
3:248–255. 2012. View Article : Google Scholar
|
31
|
Anderson ME: Glutathione: An overview of
biosynthesis and modulation. Chem Biol Interact. 111-112:1–14.
1998. View Article : Google Scholar : PubMed/NCBI
|
32
|
Townsend DM, Tew KD and Tapiero H: The
importance of glutathione in human disease. Biomed Pharmacother.
57:145–155. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ma W, Wei S, Zhang B and Li W: Molecular
mechanisms of cardiomyocyte death in drug-induced cardiotoxicity.
Front Cell Dev Biol. 8:4342020. View Article : Google Scholar : PubMed/NCBI
|
34
|
Oudit GY, Sun H, Trivieri MG, Koch SE,
Dawood F, Ackerley C, Yazdanpanah M, Wilson GJ, Schwartz A, Liu PP
and Backx PH: L-type Ca2+ channels provide a major
pathway for iron entry into cardiomyocytes in iron-overload
cardiomyopathy. Nat Med. 9:1187–1194. 2003. View Article : Google Scholar : PubMed/NCBI
|
35
|
Pennell DJ, Udelson JE, Arai AE, Bozkurt
B, Cohen AR, Galanello R, Hoffman TM, Kiernan MS, Lerakis S, Piga
A, et al: Cardiovascular function and treatment in beta-thalassemia
major: A consensus statement from the American heart association.
Circulation. 128:281–308. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Munzel T, Gori T, Keaney JF Jr, Maack C
and Daiber A: Pathophysiological role of oxidative stress in
systolic and diastolic heart failure and its therapeutic
implications. Eur Heart J. 36:2555–2564. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lei G, Zhang Y, Koppula P, Liu X, Zhang J,
Lin SH, Ajani JA, Xiao Q, Liao Z, Wang H and Gan B: The role of
ferroptosis in ionizing radiation-induced cell death and tumor
suppression. Cell Res. 30:146–162. 2020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Seibt TM, Proneth B and Conrad M: Role of
GPX4 in ferroptosis and its pharmacological implication. Free Radic
Biol Med. 133:144–152. 2019. View Article : Google Scholar
|
39
|
Koppula P, Zhang Y, Zhuang L and Gan B:
Amino acid transporter SLC7A11/xCT at the crossroads of regulating
redox homeostasis and nutrient dependency of cancer. Cancer Commun
(Lond). 38:122018. View Article : Google Scholar
|
40
|
Cheng J, Fan YQ, Liu BH, Zhou H, Wang JM
and Chen QX: ACSL4 suppresses glioma cells proliferation via
activating ferroptosis. Oncol Rep. 43:147–158. 2020.
|
41
|
Yuan H, Li X, Zhang X, Kang R and Tang D:
Identification of ACSL4 as a biomarker and contributor of
ferroptosis. Biochem Biophys Res Commun. 478:1338–1343. 2016.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Aon MA, Bhatt N and Cortassa SC:
Mitochondrial and cellular mechanisms for managing lipid excess.
Front Physiol. 5:2822014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Kadenbach B, Ramzan R, Moosdorf R and Vogt
S: The role of mitochondrial membrane potential in ischemic heart
failure. Mitochondrion. 11:700–706. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Opie LH: Metabolism of the heart in health
and disease. I Am Heart J. 76:685–698. 1968. View Article : Google Scholar
|
45
|
Ventura-Clapier R, Garnier A and Veksler
V: Energy metabolism in heart failure. J Physiol. 555:1–13. 2004.
View Article : Google Scholar
|
46
|
Chen H and Chan DC: Mitochondrial
dynamics-fusion, fission, movement, and mitophagy-in
neurodegenerative diseases. Hum Mol Genet. 18:R169–R176. 2009.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Nguyen D, Alavi MV, Kim KY, Kang T, Scott
RT, Noh YH, Lindsey JD, Wissinger B, Ellisman MH, Weinreb RN, et
al: A new vicious cycle involving glutamate excitotoxicity,
oxidative stress and mitochondrial dynamics. Cell Death Dis.
2:e2402011. View Article : Google Scholar : PubMed/NCBI
|
48
|
Varikmaa M, Bagur R, Kaambre T, Grichine
A, Timohhina N, Tepp K, Shevchuk I, Chekulayev V, Metsis M, Boucher
F, et al: Role of mitochondria-cytoskeleton interactions in
respiration regulation and mitochondrial organization in striated
muscles. Biochim Biophys Acta. 1837:232–245. 2014. View Article : Google Scholar
|
49
|
Hara Y, Yanatori I, Tanaka A, Kishi F,
Lemasters JJ, Nishina S, Sasaki K and Hino K: Iron loss triggers
mitophagy through induction of mitochondrial ferritin. EMBO Rep.
21:e502022020. View Article : Google Scholar : PubMed/NCBI
|
50
|
Wang H, Zhang W, Yu J, Wu C, Gao Q, Li X,
Li Y, Zhang J, Tian Y, Tan T, et al: Genetic screening and
multipotency in rhesus monkey haploid neural progenitor cells.
Development. 145:dev1605312018. View Article : Google Scholar : PubMed/NCBI
|