2‑Cl‑IB‑MECA regulates the proliferative and drug resistance pathways, and facilitates chemosensitivity in pancreatic and liver cancer cell lines
- Authors:
- Jana Kotulova
- Katerina Lonova
- Agata Kubickova
- Jana Vrbkova
- Pavla Kourilova
- Marian Hajduch
- Petr Dzubak
-
Affiliations: Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic - Published online on: January 18, 2022 https://doi.org/10.3892/ijmm.2022.5086
- Article Number: 31
-
Copyright: © Kotulova et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I and Bray F: Global cancer observatory: Cancer today. Lyon, France: International Agency for Research on Cancer; 2020, Available from: https://gco.iarc.fr/today. Accessed November 24, 2021. | |
Rawla P, Sunkara T and Gaduputi V: Epidemiology of pancreatic cancer: Global trends, etiology and risk factors. World J Oncol. 10:10–27. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Marquardt JU, Gomez-Quiroz L, Arreguin Camacho LO, Pinna F, Lee YH, Kitade M, Domínguez MP, Castven D, Breuhahn K, Conner EA, et al: Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer. J Hepatol. 63:661–669. 2015. View Article : Google Scholar : | |
Zeng SY, Pottler M, Lan B, Grutzmann R, Pilarsky C and Yang H: Chemoresistance in pancreatic cancer. Int J Mol Sci. 20:45042019. View Article : Google Scholar | |
Adamska A and Falasca M: ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: What is the way forward? World J Gastroenterol. 24:3222–3238. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lohitesh K, Chowdhury R and Mukherjee S: Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: An insight. Cancer Cell Int. 18:442018. View Article : Google Scholar | |
Liu A, Wu Q, Peng D, Ares I, Anadón A, Lopez-Torres B, Martínez-Larrañaga MR, Wang X and Martínez MA: A novel strategy for the diagnosis, prognosis, treatment, and chemoresistance of hepatocellular carcinoma: DNA methylation. Med Res Rev. 40:1973–2018. 2020. View Article : Google Scholar : PubMed/NCBI | |
Man S, Lu Y, Yin L, Cheng X and Ma L: Potential and promising anticancer drugs from adenosine and its analogs. Drug Discov Today. 26:1490–1500. 2021. View Article : Google Scholar | |
Fredholm BB, IJzerman AP, Jacobson KA, Linden J and Müller CE: International union of basic and clinical pharmacology. LXXXI. Nomenclature and classification of adenosine receptors-an update. Pharmacol Rev. 63:1–34. 2011. View Article : Google Scholar : PubMed/NCBI | |
Madi L, Ochaion A, Rath-Wolfson L, Bar-Yehuda S, Erlanger A, Ohana G, Harish A, Merimski O, Barer F and Fishman P: The A3 adenosine receptor is highly expressed in tumor versus normal cells: Potential target for tumor growth inhibition. Clin Cancer Res. 10:4472–4479. 2004. View Article : Google Scholar | |
Morello S, Petrella A, Festa M, Popolo A, Monaco M, Vuttariello E, Chiappetta G, Parente L and Pinto A: Cl-IB-MECA inhibits human thyroid cancer cell proliferation independently of A3 adenosine receptor activation. Cancer Biol Ther. 7:278–284. 2008. View Article : Google Scholar | |
Bar-Yehuda S, Stemmer SM, Madi L, Castel D, Ochaion A, Cohen S, Barer F, Zabutti A, Perez-Liz G, Del Valle L and Fishman P: The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-kappaB signal transduction pathways. Int J Oncol. 33:287–295. 2008.PubMed/NCBI | |
Gessi S, Cattabriga E, Avitabile A, Gafa' R, Lanza G, Cavazzini L, Bianchi N, Gambari R, Feo C, Liboni A, et al: Elevated expression of A3 adenosine receptors in human colorectal cancer is reflected in peripheral blood cells. Clin Cancer Res. 10:5895–5901. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kim HO, Ji XD, Siddiqi SM, Olah ME, Stiles GL and Jacobson KA: 2-Substitution of N6-benzyladenosine-5′-uronamides enhances selectivity for A3 adenosine receptors. J Med Chem. 37:3614–3621. 1994. View Article : Google Scholar : PubMed/NCBI | |
Van Schaick EA, Jacobson KA, Kim HO, Ijzerman AP and Danhof M: Hemodynamic effects and histamine release elicited by the selective adenosine A3 receptor agonist 2-Cl-IB-MECA in conscious rats. Eur J Pharmacol. 308:311–314. 1996. View Article : Google Scholar | |
Wittendorp MC, Biber K and Boddeke HWGM: CL-IB-MECA induced release of CCL2 by astrocytes: Possible role for the adenosine A3 receptor? Naunyn-Schmiedeb Arch Pharmacol. 369:R1782004. | |
Ge ZD, Peart JN, Kreckler LM, Wan TC, Jacobson MA, Gross GJ and Auchampach JA: Cl-IB-MECA [2-chloro-N6-(3-iodobenzyl) adenosine-5′-N-methylcarboxamide] reduces ischemia/reperfusion injury in mice by activating the A3 adenosine receptor. J Pharmacol Exp Ther. 319:1200–1210. 2006. View Article : Google Scholar : PubMed/NCBI | |
Coppi E, Cherchi F, Fusco I, Failli P, Vona A, Dettori I, Gaviano L, Lucarini E, Jacobson KA, Tosh DK, et al: Adenosine A3 receptor activation inhibits pronociceptive N-type Ca2+ currents and cell excitability in dorsal root ganglion neurons. Pain. 160:1103–1118. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cohen S, Stemmer SM, Zozulya G, Ochaion A, Patoka R, Barer F, Bar-Yehuda S, Rath-Wolfson L, Jacobson KA and Fishman P: CF102 an A3 adenosine receptor agonist mediates anti-tumor and anti-inflammatory effects in the liver. J Cell Physiol. 226:2438–2447. 2011. View Article : Google Scholar | |
Morello S, Sorrentino R, Montinaro A, Luciano A, Maiolino P, Ngkelo A, Arra C, Adcock IM and Pinto A: NK1.1 cells and CD8 T cells mediate the antitumor activity of Cl-IB-MECA in a mouse melanoma model. Neoplasia. 13:365–373. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bar Yehuda S, Stemmer SM, Madi L, Castel D, Ochaion A, Cohen S, Barer F, Perez-Liz G, Del Valle L and Fishman P: Effect of CF102 on growth suppression and apoptosis in an orthotopic model of hepatocellular carcinoma. J Clin Oncol. 26(Suppl 15): S221132008. View Article : Google Scholar | |
Safadi R, Braun M, Francis A, Milgrom Y, Massarwa M, Hakimian D, Hazou W, Issachar A, Harpaz Z, Farbstein M, et al: Randomised clinical trial: A phase 2 double-blind study of namodenoson in non-alcoholic fatty liver disease and steatohepatitis. Aliment Pharmacol Ther. 54:1405–1415. 2021. View Article : Google Scholar : PubMed/NCBI | |
Stemmer SM, Manojlovic NS, Marinca MV, Petrov P, Cherciu N, Ganea D, Ciuleanu TE, Puscas IA, Beg MS, Purcell WT, et al: A phase II, randomized, double-blind, placebo-controlled trial evaluating efficacy and safety of namodenoson (CF102), an A3 adenosine receptor agonist (A3AR), as a second-line treatment in patients with Child-Pugh B (CPB) advanced hepatocellular carcinoma (HCC). J Clin Oncol. 37(Suppl 15): S25032019. View Article : Google Scholar | |
Stemmer SM, Manojlovic NS, Marinca MV, Petrov P, Cherciu N, Ganea D, Ciuleanu TE, Pusca IA, Beg MS, Purcell WT, et al: Namodenoson in advanced hepatocellular carcinoma and Child-Pugh B cirrhosis: Randomized placebo-controlled clinical trial. Cancers (Basel). 13:1872021. View Article : Google Scholar | |
Ohana G, Cohen S, Rath-Wolfson L and Fishman P: A3 adenosine receptor agonist, CF102, protects against hepatic ischemia/reperfusion injury following partial hepatectomy. Mol Med Rep. 14:4335–4341. 2016. View Article : Google Scholar : PubMed/NCBI | |
David M, Gospodinov DK, Gheorghe N, Mateev GS, Rusinova MV, Hristakieva E, Solovastru LG, Patel RV, Giurcaneanu C, Hitova MC, et al: Treatment of plaque-type psoriasis with oral CF101: Data from a phase II/III multicenter, randomized, controlled trial. J Drugs Dermatol. 15:931–938. 2016.PubMed/NCBI | |
Storme J, Tosh DK, Gao ZG, Jacobson KA and Stove CP: Probing structure-activity relationship in β-arrestin2 recruitment of diversely substituted adenosine derivatives. Biochem Pharmacol. 158:103–113. 2018. View Article : Google Scholar : PubMed/NCBI | |
Suresh RR, Jain S, Chen Z, Tosh DK, Ma Y, Podszun MC, Rotman Y, Salvemini D and Jacobson KA: Design and in vivo activity of A3 adenosine receptor agonist prodrugs. Purinergic Signal. 16:367–377. 2020. View Article : Google Scholar : | |
Pottie E, Tosh DK, Gao ZG, Jacobson KA and Stove CP: Assessment of biased agonism at the A3 adenosine receptor using β-arrestin and miniGαi recruitment assays. Biochem Pharmacol. 177:1139342020. View Article : Google Scholar | |
Kim SJ, Min HY, Chung HJ, Park EJ, Hong JY, Kang YJ, Shin DH, Jeong LS and Lee SK: Inhibition of cell proliferation through cell cycle arrest and apoptosis by thio-Cl-IB-MECA, a novel A3 adenosine receptor agonist, in human lung cancer cells. Cancer Lett. 264:309–315. 2008. View Article : Google Scholar | |
Baltos JA, Paoletta S, Nguyen AT, Gregory KJ, Tosh DK, Christopoulos A, Jacobson KA and May LT: Structure-activity analysis of biased agonism at the human adenosine A3 receptor. Mol Pharmacol. 90:12–22. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vecchio EA, Baltos JA, Nguyen ATN, Christopoulos A, White PJ and May LT: New paradigms in adenosine receptor pharmacology: Allostery, oligomerization and biased agonism. Br J Pharmacol. 175:4036–4046. 2018. View Article : Google Scholar : | |
Fredebohm J, Boettcher M, Eisen C, Gaidaμ M, Heller A, Keleg S, Tost J, Greulich-Bode KM, Hotz-Wagenblatt A, Lathrop M, et al: Establishment and characterization of a highly tumourigenic and cancer stem cell enriched pancreatic cancer cell line as a well defined model system. PLoS One. 7:e485032012. View Article : Google Scholar | |
Novak I, Yu H, Magni L and Deshar G: Purinergic signaling in pancreas-from physiology to therapeutic strategies in pancreatic cancer. Int J Mol Sci. 21:87812020. View Article : Google Scholar | |
Qiu GH, Xie X, Xu F, Shi XH, Wang Y and Deng L: Distinctive pharmacological differences between liver cancer cell lines HepG2 and Hep3B. Cytotechnology. 67:1–12. 2015. View Article : Google Scholar : | |
Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar-Onfray F, López MN, Melo R, Oyarzún C, San Martín R and Quezada C: Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 7:67373–67386. 2016. View Article : Google Scholar | |
Torres Á, Erices JI, Sanchez F, Ehrenfeld P, Turchi L, Virolle T, Uribe D, Niechi I, Spichiger C, Rocha JD, et al: Extracellular adenosine promotes cell migration/invasion of glioblastoma stem-like cells through A3 Adenosine Receptor activation under hypoxia. Cancer Lett. 446:112–122. 2019. View Article : Google Scholar : PubMed/NCBI | |
Montraveta A, Xargay-Torrent S, López-Guerra M, Rosich L, Pérez-Galán P, Salaverria I, Beà S, Kalko SG, de Frias M, Campàs C, et al: Synergistic anti-tumor activity of acadesine (AICAR) in combination with the anti-CD20 monoclonal antibody rituximab in in vivo and in vitro models of mantle cell lymphoma. Oncotarget. 5:726–739. 2014. View Article : Google Scholar : | |
Fishman P, Bar-Yehuda S, Barer F, Madi L, Multani AS and Pathak S: The A3 adenosine receptor as a new target for cancer therapy and chemoprotection. Exp Cell Res. 269:230–236. 2001. View Article : Google Scholar | |
Soares AS, Costa VM, Diniz C and Fresco P: The combination of Cl-IB-MECA with paclitaxel: A new anti-metastatic therapeutic strategy for melanoma. Cancer Chemother Pharmacol. 74:847–860. 2014. View Article : Google Scholar : PubMed/NCBI | |
Soares AS, Costa VM, Diniz C and Fresco P: Potentiation of cytotoxicity of paclitaxel in combination with Cl-IB-MECA in human C32 metastatic melanoma cells: A new possible therapeutic strategy for melanoma. Biomed Pharmacother. 67:777–789. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mlejnek P, Dolezel P and Kosztyu P: P-glycoprotein mediates resistance to A3 adenosine receptor agonist 2-chloro-N6-(3-io dobenzyl)-adenosine-5′-n-methyluronamide in human leukemia cells. J Cell Physiol. 227:676–685. 2012. View Article : Google Scholar | |
Abel B, Tosh DK, Durell SR, Murakami M, Vahedi S, Jacobson KA and Ambudkar SV: Evidence for the interaction of A3 adenosine receptor agonists at the drug-binding site(s) of human P-glycoprotein (ABCB1). Mol Pharmacol. 96:180–192. 2019. View Article : Google Scholar : PubMed/NCBI | |
Noskova V, Dzubak P, Kuzmina G, Ludkova A, Stehlik D, Trojanec R, Janostakova A, Korinkova G, Mihal V and Hajduch M: In vitro chemoresistance profile and expression/function of MDR associated proteins in resistant cell lines derived from CCRF-CEM, K562, A549 and MDA MB 231 parental cells. Neoplasma. 49:418–425. 2002. | |
Le Poul E, Hisada S, Mizuguchi Y, Dupriez VJ, Burgeon E and Detheux M: Adaptation of aequorin functional assay to high throughput screening. J Biomol Screen. 7:57–65. 2002. View Article : Google Scholar : PubMed/NCBI | |
Borková L, Frydrych I, Jakubcová N, Adámek R, Lišková B, Gurská S, Medvedíková M, Hajdúch M and Urban M: Synthesis and biological evaluation of triterpenoid thiazoles derived from betulonic acid, dihydrobetulonic acid, and ursonic acid. Eur J Med Chem. 185:1118062020. View Article : Google Scholar | |
Chou TC: Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 58:621–681. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chou TC and Talalay P: Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 22:27–55. 1984. View Article : Google Scholar | |
Bourderioux A, Naus P, Perlíková P, Pohl R, Pichová I, Votruba I, Dzubák P, Konecný P, Hajdúch M, Stray KM, et al: Synthesis and significant cytostatic activity of 7-hetaryl-7-deazaadenosines. J Med Chem. 54:5498–5507. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schneider CA, Rasband WS and Eliceiri KW: NIH image to imageJ: 25 Years of image analysis. Nat Methods. 9:671–675. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dzubák P, Hajdúch M, Gazák R, Svobodová A, Psotová J, Walterová D, Sedmera P and Kren V: New derivatives of silybin and 2,3-dehydrosilybin and their cytotoxic and P-glycoprotein modulatory activity. Bioorg Med Chem. 14:3793–3810. 2006. View Article : Google Scholar | |
Borea PA, Varani K, Vincenzi F, Baraldi PG, Tabrizi MA, Merighi S and Gessi S: The A3 adenosine receptor: History and perspectives. Pharmacol Rev. 67:74–102. 2015. View Article : Google Scholar | |
Laudadio MA and Psarropoulou C: The A3 adenosine receptor agonist 2-Cl-IB-MECA facilitates epileptiform discharges in the CA3 area of immature rat hippocampal slices. Epilepsy Res. 59:83–94. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jafari SM, Panjehpour M, Aghaei M, Joshaghani HR and Enderami SE: A3 adenosine receptor agonist inhibited survival of breast cancer stem cells via GLI-1 and ERK1/2 pathway. J Cell Biochem. 118:2909–2920. 2017. View Article : Google Scholar : PubMed/NCBI | |
Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, Maclennan S and Borea PA: A3 adenosine receptor activation inhibits cell proliferation via phosphatidylinositol 3-kinase/Akt-dependent inhibition of the extracellular signal-regulated kinase 1/2 phosphorylation in A375 human melanoma cells. J Biol Chem. 280:19516–19526. 2005. View Article : Google Scholar | |
Borea PA, Gessi S, Merighi S, Vincenzi F and Varani K: Pharmacology of adenosine receptors: The state of the art. Physiol Rev. 98:1591–1625. 2018. View Article : Google Scholar : PubMed/NCBI | |
Haines K, Sarabia SF, Alvarez KR, Tomlinson G, Vasudevan SA, Heczey AA, Roy A, Finegold MJ, Parsons DW, Plon SE, et al: Characterization of pediatric hepatocellular carcinoma reveals genomic heterogeneity and diverse signaling pathway activation. Pediatr Blood Cancer. 66:e277452019. View Article : Google Scholar : PubMed/NCBI | |
Jones S, Zhang XS, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, et al: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 321:1801–1806. 2008. View Article : Google Scholar : PubMed/NCBI | |
Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, et al: Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 324:1457–1461. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ding J, Zhou XT, Zou HY and Wu J: Hedgehog signaling pathway affects the sensitivity of hepatoma cells to drug therapy through the ABCC1 transporter. Lab Invest. 97:819–832. 2017. View Article : Google Scholar | |
He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B and Kinzler KW: Identification of c-MYC as a target of the APC pathway. Science. 281:1509–1512. 1998. View Article : Google Scholar : PubMed/NCBI | |
Tetsu O and McCormick F: Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 398:422–426. 1999. View Article : Google Scholar : PubMed/NCBI | |
Spoelstra EC, Westerhoff HV, Pinedo HM, Dekker H and Lankelma J: The multidrug-resistance-reverser verapamil interferes with cellular P-glycoprotein-mediated pumping of daunorubicin as a non-competing substrate. Eur J Biochem. 221:363–373. 1994. View Article : Google Scholar : PubMed/NCBI | |
Queiroz KCS, Ruela-de-Sousa RR, Fuhler GM, Aberson HL, Ferreira CV, Peppelenbosch MP and Spek CA: Hedgehog signaling maintains chemoresistance in myeloid leukemic cells. Oncogene. 29:6314–6322. 2010. View Article : Google Scholar | |
Jacobson KA: Adenosine A3 receptors: Novel ligands and paradoxical effects. Trends Pharmacol Sci. 19:184–191. 1998. View Article : Google Scholar : PubMed/NCBI | |
Aghaei M, Panjehpour M, Karami-Tehrani F and Salami S: Molecular mechanisms of A3 adenosine receptor-induced G1 cell cycle arrest and apoptosis in androgen-dependent and independent prostate cancer cell lines: Involvement of intrinsic pathway. J Cancer Res Clin Oncol. 137:1511–1523. 2011. View Article : Google Scholar | |
Gao ZG and Jacobson KA: Translocation of arrestin induced by human A3 adenosine receptor ligands in an engineered cell line: Comparison with G protein-dependent pathways. Purinergic Signal. 4:S78–S79. 2008. | |
Mundell S and Kelly E: Adenosine receptor desensitization and trafficking. Biochim Biophys Acta. 1808:1319–1328. 2011. View Article : Google Scholar | |
Hu J, Nakano H, Sakurai H and Colburn NH: Insufficient p65 phosphorylation at S536 specifically contributes to the lack of NF-kappaB activation and transformation in resistant JB6 cells. Carcinogenesis. 25:1991–2003. 2004. View Article : Google Scholar : PubMed/NCBI | |
De Luca A, Maiello MR, D'Alessio A, Pergameno M and Normanno N: The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: Role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets. 16(Suppl 2): S17–S27. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hasnain SZ, Lourie R, Das I, Chen AC and McGuckin MA: The interplay between endoplasmic reticulum stress and inflammation. Immunol Cell Biol. 90:260–270. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tam AB, Mercado EL, Hoffmann A and Niwa M: ER stress activates NF-κB by integrating functions of basal IKK activity, IRE1 and PERK. PLoS One. 7:e450782012. View Article : Google Scholar | |
Makhov P, Naito S, Haifler M, Kutikov A, Boumber Y, Uzzo RG and Kolenko VM: The convergent roles of NF-κB and ER stress in sunitinib-mediated expression of pro-tumorigenic cytokines and refractory phenotype in renal cell carcinoma. Cell Death Dis. 9:3742018. View Article : Google Scholar | |
Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P and Hemmings BA: Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 15:6541–6551. 1996. View Article : Google Scholar | |
Vincent EE, Elder DJ, Thomas EC, Phillips L, Morgan C, Pawade J, Sohail M, May MT, Hetzel MR and Tavaré JM: Akt phosphorylation on Thr308 but not on Ser473 correlates with Akt protein kinase activity in human non-small cell lung cancer. Br J Cancer. 104:1755–1761. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yung HW, Charnock-Jones DS and Burton GJ: Regulation of AKT phosphorylation at Ser473 and Thr308 by endoplasmic reticulum stress modulates substrate specificity in a severity dependent manner. PLoS One. 6:e178942011. View Article : Google Scholar : | |
Wu LF, Wei BL, Guo YT, Ye YQ, Li GP, Pu ZJ and Feng JL: Apoptosis induced by adenosine involves endoplasmic reticulum stress in EC109 cells. Int J Mol Med. 30:797–804. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nie J, Liu A, Tan Q, Zhao K, Hu K, Li Y, Yan B and Zhou L: AICAR activates ER stress-dependent apoptosis in gallbladder cancer cells. Biochem Biophys Res Commun. 482:246–252. 2017. View Article : Google Scholar | |
Ding L and Billadeau DD: Glycogen synthase kinase-3β: A novel therapeutic target for pancreatic cancer. Expert Opin Ther Targets. 24:417–426. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fishman P, Bar Yehuda S, Stemmer SM and Madi L: CF101 enhances the apoptotic effect of chemotherapy on colon and pancreatic carcinoma cell lines: Molecular mechanisms involved. J Clin Oncol. 22(Suppl 14): S31732004. View Article : Google Scholar | |
Kwee SA and Tiirikainen M: Beta-catenin activation and immunotherapy resistance in hepatocellular carcinoma: Mechanisms and biomarkers. Hepatoma Res. 7:82021.PubMed/NCBI | |
Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C and Strauss M: NF-kappaB function in growth control: Regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol. 19:2690–2698. 1999. View Article : Google Scholar | |
Bar-Yehuda S, Madi L, Silberman D, Gery S, Shkapenuk M and Fishman P: CF101, an agonist to the A3 adenosine receptor, enhances the chemotherapeutic effect of 5-fluorouracil in a colon carcinoma murine model. Neoplasia. 7:85–90. 2005. View Article : Google Scholar : PubMed/NCBI | |
Varani K, Vincenzi F, Targa M, Paradiso B, Parrilli A, Fini M, Lanza G and Borea PA: The stimulation of A(3) adenosine receptors reduces bone-residing breast cancer in a rat preclinical model. Eur J Cancer. 49:482–491. 2013. View Article : Google Scholar | |
Frydrych I, Dolezel P and Mlejnek P: P-glycoprotein overexpression confers resistance to A3 adenosine receptor agonists 2-chloro-N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide (Cl-IB-MECA) in human leukemia cells. Purinergic Signal. 4(Suppl 1): S1–S210. 2008. | |
Lim JC, Kania KD, Wijesuriya H, Chawla S, Sethi JK, Pulaski L, Romero IA, Couraud PO, Weksler BB, Hladky SB and Barrand MA: Activation of beta-catenin signalling by GSK-3 inhibition increases p-glycoprotein expression in brain endothelial cells. J Neurochem. 106:1855–1865. 2008.PubMed/NCBI | |
Buschauer S, Koch A, Wiggermann P, Müller M and Hellerbrand C: Hepatocellular carcinoma cells surviving doxorubicin treatment exhibit increased migratory potential and resistance to doxorubicin re-treatment in vitro. Oncol Lett. 15:4635–4640. 2018. | |
Yin W, Xiang D, Wang T, Zhang Y, Pham CV, Zhou S, Jiang G, Hou Y, Zhu Y, Han Y, et al: The inhibition of ABCB1/MDR1 or ABCG2/BCRP enables doxorubicin to eliminate liver cancer stem cells. Sci Rep. 11:107912021. View Article : Google Scholar : | |
Hoare SRJ: The problems of applying classical pharmacology analysis to modern in vitro drug discovery assays: Slow binding kinetics and high target concentration. SLAS Discov. 26:835–850. 2021.PubMed/NCBI | |
Fredholm BB: Adenosine receptors as drug targets. Exp Cell Res. 316:1284–1288. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim SG, Ravi G, Hoffmann C, Jung YJ, Kim M, Chen A and Jacobson KA: p53-Independent induction of Fas and apoptosis in leukemic cells by an adenosine derivative, Cl-IB-MECA. Biochem Pharmacol. 63:871–880. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mlejnek P, Dolezel P and Frydrych I: Effects of synthetic A3 adenosine receptor agonists on cell proliferation and viability are receptor independent at micromolar concentrations. J Physiol Biochem. 69:405–417. 2013. View Article : Google Scholar | |
Jajoo S, Mukherjea D, Watabe K and Ramkumar V: Adenosine A(3) receptor suppresses prostate cancer metastasis by inhibiting NADPH oxidase activity. Neoplasia. 11:1132–1145. 2009. View Article : Google Scholar : |