1
|
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu
Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients
infected with 2019 novel coronavirus in Wuhan, China. Lancet.
395:497–506. 2020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chen G, Wu D, Guo W, Cao Y, Huang D, Wang
H, Wang T, Zhang X, Chen H, Yu H, et al: Clinical and immunological
features of severe and moderate coronavirus disease 2019. J Clin
Invest. 130:2620–2629. 2020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Mahmudpour M, Roozbeh J, Keshavarz M,
Farrokhi S and Nabipour I: COVID-19 cytokine storm: The anger of
inflammation. Cytokine. 133:1551512020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Nicoli F, Solis-Soto MT, Paudel D, Marconi
P, Gavioli R, Appay V and Caputo A: Age-related decline of de novo
T cell responsiveness as a cause of COVID-19 severity. Geroscience.
42:1015–1019. 2020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Nikolich-Zugich J, Knox KS, Rios CT, Natt
B, Bhattacharya D and Fain MJ: SARS-CoV-2 and COVID-19 in older
adults: What we may expect regarding pathogenesis, immune
responses, and outcomes. Geroscience. 42:505–514. 2020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Genebat M, Tarancón-Díez L, de
Pablo-Bernal R, Calderón A, Muñoz-Fernández MÁ and Leal M:
Coronavirus disease (COVID-19): A Perspective from
Immunosenescence. Aging Dis. 12:3–6. 2021. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zafari M, Rad MTS, Mohseni F and Nikbakht
N: β-Thalassemia Major and Coronavirus-19, mortality and morbidity:
A systematic review study. Hemoglobin. 45:1–4. 2021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Farmakis D, Giakoumis A, Polymeropoulos E
and Aessopos A: Pathogenic aspects of immune deficiency associated
with beta-thalassemia. Med Sci Monit. 9:RA19–RA22. 2003.PubMed/NCBI
|
9
|
Ghaffari J, Abediankenari S and Nasehi M:
Thalassemia and immune system dysfunction-review article. Int J
Curr Res. 3:105–108. 2011.
|
10
|
Blagosklonny MV: From causes of aging to
death from COVID-19. Aging (Albany NY). 12:10004–10021. 2020.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Kaur SP and Gupta V: COVID-19 vaccine: A
comprehensive status report. Virus Res. 288:1981142020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chakraborty C, Sharma AR, Bhattacharya M,
Sharma G, Saha RP and Lee SS: Ongoing clinical trials of vaccines
to fight against COVID-19 pandemic. Immune Netw. 21:e52021.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Dorrington MG and Bowdish DM:
Immunosenescence and novel vaccination strategies for the elderly.
Front Immunol. 4:1712013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tsatsakis A, Vakonaki E, Tzatzarakis M,
Flamourakis M, Nikolouzakis TK, Poulas K, Papazoglou G, Hatzidaki
E, Papanikolaou NC, Drakoulis N, et al: Immune response (IgG)
following full inoculation with BNT162b2 COVID-19 mRNA among
healthcare professionals. Int J Mol Med. 48:2002021. View Article : Google Scholar : PubMed/NCBI
|
15
|
Mannick JB, Del Giudice G, Lattanzi M,
Valiante NM, Praestgaard J, Huang B, Lonetto MA, Maecker HT,
Kovarik J, Carson S, et al: mTOR inhibition improves immune
function in the elderly. Sci Transl Med. 6:268ra1792014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Mannick JB, Morris M, Hockey HP, Roma G,
Beibel M, Kulmatycki K, Watkins M, Shavlakadze T, Zhou W, Quinn D,
et al: TORC1 inhibition enhances immune function and reduces
infections in the elderly. Sci Transl Med. 10:eaaq15642018.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Mischiati C, Sereni A, Lampronti I,
Bianchi N, Borgatti M, Prus E, Fibach E and Gambari R:
Rapamycin-mediated induction of gamma-globin mRNA accumulation in
human erythroid cells. Br J Haematol. 126:612–621. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Fibach E, Bianchi N, Borgatti M, Zuccato
C, Finotti A, Lampronti I, Prus E, Mischiati C and Gambari R:
Effects of rapamycin on accumulation of alpha-, beta- and
gamma-globin mRNAs in erythroid precursor cells from
beta-thalassaemia patients. Eur J Haematol. 77:437–441. 2006.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Zuccato C, Bianchi N, Borgatti M,
Lampronti I, Massei F, Favre C and Gambari R: Everolimus is a
potent inducer of erythroid differentiation and gamma-globin gene
expression in human erythroid cells. Acta Haematol. 117:168–176.
2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Pecoraro A, Troia A, Calzolari R, Scazzone
C, Rigano P, Martorana A, Sacco M, Maggio A and Di Marzo R:
Efficacy of rapamycin as inducer of HbF in primary erythroid
cultures from sickle cell disease and beta-thalassemia patients.
Hemoglobin. 39:225–229. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Gaudre N, Cougoul P, Bartolucci P, Dörr G,
Bura-Riviere A, Kamar N and Del Bello A: Improved fetal hemoglobin
with mTOR inhibitor-based immunosuppression in a kidney transplant
recipient with sickle cell disease. Am J Transplant. 17:2212–2214.
2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Al-Khatti AA and Alkhunaizi AM: Additive
effect of Sirolimus and hydroxycarbamide on fetal haemoglobin level
in kidney transplant patients with sickle cell disease. Br J
Haematol. 185:959–961. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kahan BD: Sirolimus: A new agent for
clinical renal transplantation. Transplant Proc. 29:48–50. 1997.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Hernández D, Martínez D, Gutiérrez E,
López V, Gutiérrez C, García P, Cobelo C, Cabello M, Burgos D, Sola
E and González-Molina M: Clinical evidence on the use of anti-mTOR
drugs in renal transplantation. Nefrologia. 31:27–34.
2011.PubMed/NCBI
|
25
|
Schaffer SA and Ross HJ: Everolimus:
Efficacy and safety in cardiac transplantation. Expert Opin Drug
Saf. 9:843–854. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tang CY, Shen A, Wei XF, Li QD, Liu R,
Deng HJ, Wu YZ and Wu ZJ: Everolimus in de novo liver transplant
recipients: A systematic review. Hepatobiliary Pancreat Dis Int.
14:461–469. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ji L, Xie W and Zhang Z: Efficacy and
safety of Sirolimus in patients with systemic lupus erythematosus:
A systematic review and meta-analysis. Semin Arthritis Rheum.
50:1073–1080. 2020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang Q, Luo M, Xiang B, Chen S and Ji Y:
The efficacy and safety of pharmacological treatments for
lymphangioleiomyomatosis. Respir Res. 21:552020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sasongko TH, Ismail NF and Zabidi-Hussin
Z: Rapamycin and rapalogs for tuberous sclerosis complex. Cochrane
Database Syst Rev. 7:CD0112722016.PubMed/NCBI
|
30
|
Graillon T, Sanson M, Campello C, Idbaih
A, Peyre M, Peyrière H, Basset N, Autran D, Roche C, Kalamarides M,
et al: Everolimus and octreotide for patients with recurrent
meningioma: Results from the phase II CEVOREM trial. Clin Cancer
Res. 26:552–557. 2020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gallo M, Malandrino P, Fanciulli G, Rota
F, Faggiano A and Colao A; NIKE Group, : Everolimus as first line
therapy for pancreatic neuroendocrine tumours: Current knowledge
and future perspectives. J Cancer Res Clin Oncol. 143:1209–1224.
2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Manohar PM, Beesley LJ, Taylor JM,
Hesseltine E, Haymart MR, Esfandiari NH, Hanauer DA and Worden FP:
Retrospective study of sirolimus and cyclophosphamide in patients
with advanced differentiated thyroid cancers. J Thyroid Disord
Ther. 4:1882015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hortobagyi GN: Everolimus plus exemestane
for the treatment of advanced breast cancer: A review of
subanalyses from BOLERO-2. Neoplasia. 17:279–288. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Merli M, Ferrario A, Maffioli M, Arcaini L
and Passamonti F: Everolimus in diffuse large B-cell lymphomas.
Future Oncol. 11:373–383. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Motzer RJ, Escudier B, Oudard S, Hutson
TE, Porta C, Bracarda S, Grünwald V, Thompson JA, Figlin RA,
Hollaender N, et al: Phase 3 trial of Everolimus for metastatic
renal cell carcinoma: Final results and analysis of prognostic
factors. Cancer. 116:4256–4265. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kaech SM and Cui W: Transcriptional
control of effector and memory CD8+ T cell
differentiation. Nat Rev Immunol. 12:749–761. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Nicoli F, Paul S and Appay V: Harnessing
the induction of CD8+T-cell responses through metabolic
regulation by pathogen-recognition-receptor triggering in antigen
presenting cells. Front Immunol. 9:23722018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Amiel E, Everts B, Freitas TC, King IL,
Curtis JD, Pearce EL and Pearce EJ: Inhibition of mechanistic
target of Rapamycin promotes dendritic cell activation and enhances
therapeutic autologous vaccination in mice. J Immunol.
189:2151–2158. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Araki K, Youngblood B and Ahmed R: The
role of mTOR in memory CD8 T-cell differentiation. Immunol Rev.
235:234–243. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Nicoli F, Papagno L, Frere JJ,
Cabral-Piccin MP, Clave E, Gostick E, Toubert A, Price DA, Caputo A
and Appay V: Naïve CD8+ T-cells engage a versatile
metabolic program upon activation in humans and differ
energetically from memory CD8+ T-Cells. Front Immunol.
9:27362018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhang S, Pruitt M, Tran D, Du Bois W,
Zhang K, Patel R, Hoover S, Simpson RM, Simmons J, Gary J, et al: B
cell-specific deficiencies in mTOR limit humoral immune responses.
J Immunol. 191:1692–1703. 2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Nicoli F: Angry, Hungry T-Cells: How Are
T-Cell responses induced in low nutrient conditions?
Immunometabolism. 2:e2000042020.
|
43
|
Grifoni A, Weiskopf D, Ramirez SI, Mateus
J, Dan JM, Moderbacher CR, Rawlings SA, Sutherland A, Premkumar L,
Jadi RS, et al: Targets of T cell responses to SARS-CoV-2
coronavirus in humans with COVID-19 disease and unexposed
individuals. Cell. 181:1489–1501, e15. 2020. View Article : Google Scholar : PubMed/NCBI
|
44
|
Schulien I, Kemming J, Oberhardt V, Wild
K, Seidel LM, Sagar Killmer S, Daul F, Salvat Lago M, Decker A, et
al: Characterization of pre-existing and induced
SARS-CoV-2-specific CD8+ T cells. Nat Med. 27:78–85.
2021. View Article : Google Scholar : PubMed/NCBI
|
45
|
Gallerani E, Proietto D, Dallan B,
Campagnaro M, Pacifico S, Albanese V, Marzola E, Marconi P, Caputo
A, Appay V, et al: Impaired Priming of SARS-CoV-2-specific naive
CD8+ T cells in older subjects. Front Immunol.
12:6930542021. View Article : Google Scholar : PubMed/NCBI
|
46
|
Frasca D and Blomberg BB: Inflammaging
decreases adaptive and innate immune responses in mice and humans.
Biogerontology. 17:7–19. 2016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Keating R, Hertz T, Wehenkel M, Harris TL,
Edwards BA, McClaren JL, Brown SA, Surman S, Wilson ZS, Bradley P,
et al: The kinase mTOR modulates the antibody response to provide
cross-protective immunity to lethal infection with influenza virus.
Nat Immunol. 14:1266–1276. 2013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Cohen J: Infectious disease. Immune
suppressant unexpectedly boosts flu vaccine. Science. 342:4132013.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Blasi F, Gramegna A, Sotgiu G, Saderi L,
Voza A, Aliberti S and Amati F: SARS-CoV-2 vaccines: A critical
perspective through efficacy data and barriers to herd immunity.
Respir Med. 180:1063552021. View Article : Google Scholar : PubMed/NCBI
|
50
|
Cunningham AL, McIntyre P, Subbarao K,
Booy R and Levin MJ: Vaccines for older adults. BMJ. 372:n1882021.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Nitulescu GM, Paunescu H, Moschos SA,
Petrakis D, Nitulescu G, Ion GND, Spandidos DA, Nikolouzakis TK,
Drakoulis N and Tsatsakis A: Comprehensive analysis of drugs to
treat SARS-CoV-2 infection: Mechanistic insights into current
COVID-19 therapies (Review). Int J Mol Med. 46:467–488. 2020.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Gassen NC, Papies J, Bajaj T, Emanuel J,
Dethloff F, Chua RL, Trimpert J, Heinemann N, Niemeyer C, Weege F,
et al: SARS-CoV-2-mediated dysregulation of metabolism and
autophagy uncovers host-targeting antivirals. Nat Commun.
12:38182021. View Article : Google Scholar : PubMed/NCBI
|
53
|
Patocka J, Kuca K, Oleksak P, Nepovimova
E, Valis M, Novotny M and Klimova B: Rapamycin: Drug repurposing in
SARS-CoV-2 infection. Pharmaceuticals (Basel). 14:2172021.
View Article : Google Scholar : PubMed/NCBI
|