Thrombocytopenia in COVID‑19 and vaccine‑induced thrombotic thrombocytopenia
- Authors:
- Styliani A. Geronikolou
- Işil Takan
- Athanasia Pavlopoulou
- Marina Mantzourani
- George P. Chrousos
-
Affiliations: Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece, Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey, First Department of Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece - Published online on: January 21, 2022 https://doi.org/10.3892/ijmm.2022.5090
- Article Number: 35
-
Copyright: © Geronikolou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
World Health Organization (WHO): Coronovirus disease (COVID-19): Vaccines safety. WHO; Geneva: 2021 | |
Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA and Eichinger S: Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N Engl J Med. 384:2092–2101. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mathieu E, Ritchie H, Ortiz-Ospina E, Roser M, Hasell J, Appel C, Giattino C and Rodés-Guirao L: A global database of COVID-19 vaccinations. Nat Hum Behav. 5:947–953. 2021. View Article : Google Scholar | |
Wei CH, Allot A, Leaman R and Lu Z: PubTator central: Automated concept annotation for biomedical full text articles. Nucleic Acids Res. 47(W1): W587–W593. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Allot A and Lu Z: LitCovid: An open database of COVID-19 literature. Nucleic Acids Res. 49(D1): D1534–D1540. 2021. View Article : Google Scholar : | |
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al: STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47(D1): D607–D613. 2019. View Article : Google Scholar | |
Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, et al: The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49(D1): D605–D612. 2021. View Article : Google Scholar | |
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hippocrates: Epidemics 2, 4-7. Smith Wesley D: Loeb Classical Library 477. Harvard University Press; Cambridge, MA: 1994 | |
Jouanna J: Hippocrates. John Hopkins University Press; Baltimore, MD: 1999 | |
Mammas IN and Spandidos DA: Paediatric virology in the Hippocratic corpus. Exp Ther Med. 12:541–549. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pappas G, Kiriaze IJ and Falagas ME: Insights into infectious disease in the era of Hippocrates. Int J Infect Dis. 12:347–350. 2008. View Article : Google Scholar | |
Misselbrook D: Aristotle, hume and the goals of medicine. J Eval Clin Pract. 22:544–549. 2016. View Article : Google Scholar | |
Wulff HR: The concept of disease: From Newton back to Aristotle. Lancet. 354(Suppl): SIV501999. View Article : Google Scholar | |
Wulff HR: The concept of disease: From Newton back to Aristotle. Lancet. 54:3541999. | |
Lorenz EN: Deterministic nonperiodic flow. J Atmos Sci. 20:130–141. 1963. View Article : Google Scholar | |
Barabási AL, Gulbahce N and Loscalzo J: Network medicine: A network-based approach to human disease. Nat Rev Genet. 12:56–68. 2011. View Article : Google Scholar : | |
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, et al: Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 382:1199–1207. 2020. View Article : Google Scholar : | |
Raoult D, Zumla A, Locatelli F, Ippolito G and Kroemer G: Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses. Cell Stress. 4:66–75. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mondal S, Quintili AL, Karamchandani K and Bose S: Thromboembolic disease in COVID-19 patients: A brief narrative review. J Intensive Care. 8:702020. View Article : Google Scholar : PubMed/NCBI | |
Xu P, Zhou Q and Xu J: Mechanism of thrombocytopenia in COVID-19 patients. Ann Hematol. 99:1205–1208. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, et al: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 426:450–454. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W, Peng C, et al: Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 503:535–538. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mazzoni A, Salvati L, Maggi L, Capone M, Vanni A, Spinicci M, Mencarini J, Caporale R, Peruzzi B, Antonelli A, et al: Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J Clin Invest. 130:4694–4703. 2020. View Article : Google Scholar : | |
Sama IE, Ravera A, Santema BT, van Goor H, Ter Maaten JM, Cleland JGF, Rienstra M, Friedrich AW, Samani NJ, Ng LL, et al: Circulating plasma concentrations of angiotensin-converting enzyme 2 in men and women with heart failure and effects of renin-angiotensin-aldosterone inhibitors. Eur Heart J. 41:1810–1817. 2020. View Article : Google Scholar : PubMed/NCBI | |
Diaz JH: Hypothesis: Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19. J Travel Med. 27:taaa0412020. View Article : Google Scholar : PubMed/NCBI | |
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 18:271–280.e8. 2020. View Article : Google Scholar | |
Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G and van Goor H: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 203:631–637. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gao T, Hu M, Zhang X, Li H, Zhu L, Liu H, Dong Q, Zhang Z, Wang Z, Hu Y, et al: Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. medRxiv. ppmedrxiv-20041962. 2020. | |
Cao X: COVID-19: Immunopathology and its implications for therapy. Nat Rev Immunol. 20:269–270. 2020. View Article : Google Scholar | |
Channappanavar R and Perlman S: Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 39:529–539. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Zhao J and Perlman S: T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. J Virol. 84:9318–9325. 2010. View Article : Google Scholar : PubMed/NCBI | |
Meduri GU, Kohler G, Headley S, Tolley E, Stentz F and Postlethwaite A: Inflammatory cytokines in the BAL of patients with ARDS. Persistent elevation over time predicts poor outcome. Chest. 108:1303–1314. 1995. View Article : Google Scholar : PubMed/NCBI | |
Tang N, Li D, Wang X and Sun Z: Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 18:844–847. 2020. View Article : Google Scholar : PubMed/NCBI | |
Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M, Delabranche X, Merdji H, Clere-Jehl R, Schenck M, Fagot Gandet F, et al: High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care Med. 46:1089–1098. 2020. View Article : Google Scholar : PubMed/NCBI | |
Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM, Kaptein FHJ, van Paassen J, Stals MAM, Huisman MV and Endeman H: Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 191:145–147. 2020. View Article : Google Scholar : | |
Chang JC: Hemostasis based on a novel 'two-path unifying theory' and classification of hemostatic disorders. Blood Coagul Fibrinolysis. 29:573–584. 2018. View Article : Google Scholar | |
Chang JC: Sepsis and septic shock: Endothelial molecular pathogenesis associated with vascular microthrombotic disease. Thromb J. 17:102019. View Article : Google Scholar : PubMed/NCBI | |
Seirafianpour F, Sodagar S, Pour Mohammad A, Panahi P, Mozafarpoor S, Almasi S and Goodarzi A: Cutaneous manifestations and considerations in COVID-19 pandemic: A systematic review. Dermatol Ther. 33:e139862020. View Article : Google Scholar : PubMed/NCBI | |
Vaughan DE: PAI-1 and atherothrombosis. J Thromb Haemost. 3:1879–1883. 2005. View Article : Google Scholar : PubMed/NCBI | |
Badary OA: Pharmacogenomics and COVID-19: Clinical implications of human genome interactions with repurposed drugs. Pharmacogenomics J. 21:275–284. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen MR, Kuo HC, Lee YJ, Chi H, Li SC, Lee HC and Yang KD: Phenotype, susceptibility, autoimmunity, and immunotherapy between Kawasaki disease and coronavirus disease-19 associated multisystem inflammatory syndrome in children. Front Immunol. 12:6328902021. View Article : Google Scholar : PubMed/NCBI | |
Romero-López JP, Carnalla-Cortés M, Pacheco-Olvera DL, Ocampo-Godínez JM, Oliva-Ramírez J, Moreno-Manjón J, Bernal-Alferes B, López-Olmedo N, García-Latorre E, Domínguez-López ML, et al: A bioinformatic prediction of antigen presentation from SARS-CoV-2 spike protein revealed a theoretical correlation of HLA-DRB1*01 with COVID-19 fatality in Mexican population: An ecological approach. J Med Virol. 93:2029–2038. 2021. View Article : Google Scholar | |
Anzurez A, Naka I, Miki S, Nakayama-Hosoya K, Isshiki M, Watanabe Y, Nakamura-Hoshi M, Seki S, Matsumura T, Takano T, et al: Association of HLA-DRB1*09:01 with severe COVID-19. HLA. 98:37–42. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rotondo JC, Bosi S, Bassi C, Ferracin M, Lanza G, Gafà R, Magri E, Selvatici R, Torresani S, Marci R, et al: Gene expression changes in progression of cervical neoplasia revealed by microarray analysis of cervical neoplastic keratinocytes. J Cell Physiol. 230:806–812. 2015. View Article : Google Scholar | |
Combs AP: Recent advances in the discovery of competitive protein tyrosine phosphatase 1B inhibitors for the treatment of diabetes, obesity, and cancer. J Med Chem. 53:2333–2344. 2010. View Article : Google Scholar | |
Finkel T and Holbrook NJ: Oxidants, oxidative stress and the biology of ageing. Nature. 408:239–247. 2000. View Article : Google Scholar : PubMed/NCBI | |
Choi YM, Kwon HS, Choi KM, Lee WY and Hong EG: Short-term effects of beraprost sodium on the markers for cardiovascular risk prediction in type 2 diabetic patients with microalbuminuria. Endocrinol Metab (Seoul). 34:398–405. 2019. View Article : Google Scholar | |
Nomura S, Taniura T, Shouzu A, Omoto S, Suzuki M, Okuda Y and Ito T: Effects of sarpogrelate, eicosapentaenoic acid and pitavastatin on arterioslcerosis obliterans-related biomarkers in patients with type 2 diabetes (SAREPITASO study). Vasc Health Risk Manag. 14:225–232. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Liu SQ, Sun Q, Xie JF, Xu JY, Li Q, Pan C, Liu L and Huang YZ: Plasma microRNAs levels are different between pulmonary and extrapulmonary ARDS patients: A clinical observational study. Ann Intensive Care. 8:232018. View Article : Google Scholar : PubMed/NCBI | |
Attia EF, Jolley SE, Crothers K, Schnapp LM and Liles WC: Soluble vascular cell adhesion molecule-1 (sVCAM-1) is elevated in bronchoalveolar lavage fluid of patients with acute respiratory distress syndrome. PLoS One. 11:e01496872016. View Article : Google Scholar : | |
Cines DB and Bussel JB: SARS-CoV-2 vaccine-induced immune thrombotic thrombocytopenia. N Engl J Med. 384:2254–2256. 2021. View Article : Google Scholar : PubMed/NCBI | |
Schultz NH, Sørvoll IH, Michelsen AE, Munthe LA, Lund-Johansen F, Ahlen MT, Wiedmann M, Aamodt AH, Skattør TH, Tjønnfjord GE and Holme PA: Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N Engl J Med. 384:2124–2130. 2021. View Article : Google Scholar : PubMed/NCBI | |
European Medicines Agency (EMA): COVID-19 Vaccine AstraZeneca: PRAC investigating cases of thromboembolic events-vaccine's benefits currently still outweigh risks-update. 2021. | |
World Health Organization (WHO): Statement of the WHO global advisory committee on vaccine safety (GACVS) COVID-19 subcommittee on safety signals related to the AstraZeneca COVID-19 vaccine. WHO; Geneva: 2021 | |
Bussel JB, Connors JM, Cines DB, Dunbar CE, Michaelis LC, Kreuziger LB, Lee AYY and Pabinger-Fasching I: Thrombosis with thrombocytopenia syndrome (also termed vaccine-induced thrombotic thrombocytopenia). American Society of Haematology; Washington, DC: 2021 | |
Thaler J, Ay C, Gleixner KV, Hauswirth AW, Cacioppo F, Grafeneder J, Quehenberger P, Pabinger I and Knöbl P: Successful treatment of vaccine-induced prothrombotic immune thrombocytopenia (VIPIT). J Thromb Haemost. 19:1819–1822. 2021. View Article : Google Scholar : PubMed/NCBI | |
Smadja DM, Mentzer SJ, Fontenay M, Laffan MA, Ackermann M, Helms J, Jonigk D, Chocron R, Pier GB, Gendron N, et al: COVID-19 is a systemic vascular hemopathy: Insight for mechanistic and clinical aspects. Angiogenesis. 24:755–788. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kashir J, Ambia AR, Shafqat A, Sajid MR, AlKattan K and Yaqinuddin A: Scientific premise for the involvement of neutrophil extracellular traps (NETs) in vaccine-induced thrombotic thrombocytopenia (VITT). J Leukoc Biol. Sep 1–2021.Epub ahead of prin. View Article : Google Scholar : PubMed/NCBI | |
Gupta N, Sahu A, Prabhakar A, Chatterjee T, Tyagi T, Kumari B, Khan N, Nair V, Bajaj N, Sharma M and Ashraf MZ: Activation of NLRP3 inflammasome complex potentiates venous thrombosis in response to hypoxia. Proc Natl Acad Sci USA. 114:4763–4768. 2017. View Article : Google Scholar : PubMed/NCBI | |
Salaro E, Rambaldi A, Falzoni S, Amoroso FS, Franceschini A, Sarti AC, Bonora M, Cavazzini F, Rigolin GM, Ciccone M, et al: Involvement of the P2X7-NLRP3 axis in leukemic cell proliferation and death. Sci Rep. 6:262802016. View Article : Google Scholar : | |
Ribeiro DE, Oliveira-Giacomelli Á, Glaser T, Arnaud-Sampaio VF, Andrejew R, Dieckmann L, Baranova J, Lameu C, Ratajczak MZ and Ulrich H: Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Mol Psychiatry. 26:1044–1059. 2021. View Article : Google Scholar | |
Savio LEB, de Andrade Mello P, da Silva CG and Coutinho-Silva R: The P2X7 receptor in inflammatory diseases: Angel or demon. Front Pharmacol. 9:522018. View Article : Google Scholar | |
Pacheco PAF and Faria RX: The potential involvement of P2X7 receptor in COVID-19 pathogenesis: A new therapeutic target? Scand J Immunol. 93:e129602021. View Article : Google Scholar | |
Ortiz GG, Pacheco-Moisés FP, Macías-Islas M, Flores-Alvarado LJ, Mireles-Ramírez MA, González-Renovato ED and Her nández-Nava r ro VE: Role of the blood-brain barrier in multiple sclerosis. Arch Med Res. 45:687–697. 2014. View Article : Google Scholar : PubMed/NCBI | |
Di Virgilio F, Tang Y, Sarti AC and Rossato M: A rationale for targeting the P2X7 receptor in coronavirus disease 19. Br J Pharmacol. 177:4990–4994. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ferreira AC, Soares VC, de Azevedo-Quintanilha IG, Dias SDSG, Fintelman-Rodrigues N, Sacramento CQ, Mattos M, de Freitas CS, Temerozo JR, Teixeira L, et al: SARS-CoV-2 engages inflammasome and pyroptosis in human primary monocytes. Cell Death Discov. 7:432021. View Article : Google Scholar : PubMed/NCBI | |
Moss ML and Bartsch JW: Therapeutic benefits from targeting of ADAM family members. Biochemistry. 43:7227–7235. 2004. View Article : Google Scholar : PubMed/NCBI | |
Souza JSM, Lisboa ABP, Santos TM, Andrade MVS, Neves VBS, Teles-Souza J, Jesus HNR, Bezerra TG, Falcão VGO, Oliveira RC and Del-Bem LE: The evolution of ADAM gene family in eukaryotes. Genomics. 112:3108–3116. 2020. View Article : Google Scholar | |
Xu J, Xu X, Jiang L, Dua K, Hansbro PM and Liu G: SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis. Respir Res. 21:1822020. View Article : Google Scholar : PubMed/NCBI | |
Katneni UK, Alexaki A, Hunt RC, Schiller T, DiCuccio M, Buehler PW, Ibla JC and Kimchi-Sarfaty C: Coagulopathy and thrombosis as a result of severe COVID-19 infection: A microvascular focus. Thromb Haemost. 120:1668–1679. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tian J, Sun D, Xie Y, Liu K and Ma Y: Network pharmacology-based study of the molecular mechanisms of Qixuekang in treating COVID-19 during the recovery period. Int J Clin Exp Pathol. 13:2677–2690. 2020.PubMed/NCBI | |
Boron WF and Boulpaep EL: Medical physiology: A cellular and molecular approach. Saunders Elsevier; Philadelphia, PA: 2012 | |
Fitzpatrick D, Purves D and Augustine G: Neuroscience. 3rd edition. Sinauer Associates, Inc; Sunderland, MA: 2004 | |
Wang Q, Zhu W, Xiao G, Ding M, Chang J and Liao H: Effect of AGER on the biological behavior of non-small cell lung cancer H1299 cells. Mol Med Rep. 22:810–818. 2020. View Article : Google Scholar : PubMed/NCBI | |
Man SM, Karki R and Kanneganti TD: AIM2 inflammasome in infection, cancer, and autoimmunity: Role in DNA sensing, inflammation, and innate immunity. Eur J Immunol. 46:269–280. 2016. View Article : Google Scholar | |
Bafunno V, Firinu D, D'Apolito M, Cordisco G, Loffredo S, Leccese A, Bova M, Barca MP, Santacroce R, Cicardi M, et al: Mutation of the angiopoietin-1 gene (ANGPT1) associates with a new type of hereditary angioedema. J Allergy Clin Immunol. 141:1009–1017. 2018. View Article : Google Scholar | |
PubMed Gene database: ANGPT2 angiopoietin 2 [Homo sapiens (human)]. https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=ShowDetailView&TermToSearch=285 Accessed December 12, 2020. | |
Marumoto T, Honda S, Hara T, Nitta M, Hirota T, Kohmura E and Saya H: Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells. J Biol Chem. 278:51786–51795. 2003. View Article : Google Scholar : PubMed/NCBI | |
Li N, Zhang J, Liao D, Yang L, Wang Y and Hou S: Association between C4, C4A, and C4B copy number variations and susceptibility to autoimmune diseases: A meta-analysis. Sci Rep. 7:426282017. View Article : Google Scholar : PubMed/NCBI | |
Horiuchi T and Tsukamoto H: Complement-targeted therapy: Development of C5- and C5a-targeted inhibition. Inflamm Regen. 36:112016. View Article : Google Scholar : PubMed/NCBI | |
Hobart MJ, Fernie BA and DiScipio RG: Structure of the human C7 gene and comparison with the C6, C8A, C8B, and C9 genes. J Immunol. 154:5188–5194. 1995.PubMed/NCBI | |
Xia S, Zhang Z, Magupalli VG, Pablo JL, Dong Y, Vora SM, Wang L, Fu TM, Jacobson MP, Greka A, et al: Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature. 593:607–611. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cohen GM: Caspases: The executioners of apoptosis. Biochem J. 326:1–16. 1997. View Article : Google Scholar : PubMed/NCBI | |
Avrutsky MI and Troy CM: Caspase-9: A multimodal therapeutic target with diverse cellular expression in human disease. Front Pharmacol. 12:7013012021. View Article : Google Scholar : PubMed/NCBI | |
Singh S, Anshita D and Ravichandiran V: MCP-1: Function, regulation, and involvement in disease. Int Immunopharmacol. 101:1075982021. View Article : Google Scholar : PubMed/NCBI | |
Coperchini F, Chiovato L, Ricci G, Croce L, Magri F and Rotondi M: The cytokine storm in COVID-19: Further advances in our understanding the role of specific chemokines involved. Cytokine Growth Factor Rev. 58:82–91. 2021. View Article : Google Scholar : | |
Guan E, Wang J and Norcross MA: Identification of human macrophage inflammatory proteins 1alpha and 1beta as a native secreted heterodimer. J Biol Chem. 276:12404–12409. 2001. View Article : Google Scholar | |
Charrier A and Brigstock DR: Regulation of pancreatic function by connective tissue growth factor (CTGF, CCN2). Cytokine Growth Factor Rev. 24:59–68. 2013. View Article : Google Scholar | |
Garcillán B, Fuentes P, Marin AV, Megino RF, Chacon-Arguedas D, Mazariegos MS, Jiménez-Reinoso A, Muñoz-Ruiz M, Laborda RG, Cárdenas PP, et al: CD3G or CD3D knockdown in mature, but not immature, T lymphocytes similarly cripples the human TCRαβ complex. Front Cell Dev Biol. 9:6084902021. View Article : Google Scholar | |
Heritable gene regulation in the CD4:CD8 T cell lineage choice. Front Immunol. 8:2912017.PubMed/NCBI | |
Sharma P, Pandey AK and Bhattacharyya DK: Determining crucial genes associated with COVID-19 based on COPD findings✶,✶✶. Comput Biol Med. 128:1041262021. View Article : Google Scholar | |
Zou M, Su X, Wang L, Yi X, Qiu Y, Yin X, Zhou Z, Niu X, Wang L and Su M: The molecular mechanism of multiple organ dysfunction and targeted intervention of COVID-19 based on time-order transcriptomic analysis. Front Immunol. 12:7297762021. View Article : Google Scholar : PubMed/NCBI | |
Jing Y, Luo L, Chen Y, Westerberg LS, Zhou P, Xu Z, Herrada AA, Park CS, Kubo M, Mei H, et al: SARS-CoV-2 infection causes immunodeficiency in recovered patients by downregulating CD19 expression in B cells via enhancing B-cell metabolism. Signal Transduct Target Ther. 6:3452021. View Article : Google Scholar : | |
Badbaran A, Mailer RK, Dahlke C, Woens J, Fathi A, Mellinghoff SC, Renné T, Addo MM, Riecken K and Fehse B: Digital PCR to quantify ChAdOx1 nCoV-19 copies in blood and tissues. Mol Ther Methods Clin Dev. 23:418–423. 2021. View Article : Google Scholar : PubMed/NCBI | |
Grewal IS and Flavell RA: CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol. 16:111–135. 1998. View Article : Google Scholar : PubMed/NCBI | |
Riley-Vargas RC, Gill DB, Kemper C, Liszewski MK and Atkinson JP: CD46: Expanding beyond complement regulation. Trends Immunol. 25:496–503. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lundstrom K, Barh D, Uhal BD, Takayama K, Aljabali AAA, Abd El-Aziz TM, Lal A, Redwan EM, Adadi P, Chauhan G, et al: COVID-19 vaccines and thrombosis-roadblock or dead-end street? Biomolecules. 11:10202021. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Goyal N, Dai L, Lin Z, Del Valle L, Zabaleta J, Liu J, Post SR, Foroozesh M and Qin Z: Developing new ceramide analogs and identifying novel sphingolipid-controlled genes against a virus-associated lymphoma. Blood. 136:2175–2187. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dementyeva E, Kryukov F, Kubiczkova L, Nemec P, Sevcikova S, Ihnatova I, Jarkovsky J, Minarik J, Stefanikova Z, Kuglik P and Hajek R: Clinical implication of centrosome amplification and expression of centrosomal functional genes in multiple myeloma. J Transl Med. 11:772013. View Article : Google Scholar : | |
Martinez FO, Combes TW, Orsenigo F and Gordon S: Monocyte activation in systemic Covid-19 infection: Assay and rationale. EBioMedicine. 59:1029642020. View Article : Google Scholar : PubMed/NCBI | |
Root RK and Dale DC: Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor: Comparisons and potential for use in the treatment of infections in nonneutropenic patients. J Infect Dis. 179(Suppl 2): S342–S352. 1999. View Article : Google Scholar | |
Zhang N, Zhao YD and Wang XM: CXCL10 an important chemokine associated with cytokine storm in COVID-19 infected patients. Eur Rev Med Pharmacol Sci. 24:7497–7505. 2020.PubMed/NCBI | |
Bergamaschi C, Terpos E, Rosati M, Angel M, Bear J, Stellas D, Karaliota S, Apostolakou F, Bagratuni T, Patseas D, et al: Systemic IL-15, IFN-γ, and IP-10/CXCL10 signature associated with effective immune response to SARS-CoV-2 in BNT162b2 mRNA vaccine recipients. Cell Rep. 36:1095042021. View Article : Google Scholar | |
Du HX, Zhu JQ, Chen J, Zhou HF, Yang JH and Wan HT: Revealing the therapeutic targets and molecular mechanisms of emodin-treated coronavirus disease 2019 via a systematic study of network pharmacology. Aging (Albany NY). 13:14571–14589. 2021. View Article : Google Scholar | |
Lombardero M, Kovacs K and Scheithauer BW: Erythropoietin: A hormone with multiple functions. Pathobiology. 78:41–53. 2011. View Article : Google Scholar : PubMed/NCBI | |
Petrović J, Pešić V and Lauschke VM: Frequencies of clinically important CYP2C19 and CYP2D6 alleles are graded across Europe. Eur J Hum Genet. 28:88–94. 2020. View Article : Google Scholar | |
Kell AM and Gale M Jr: RIG-I in RNA virus recognition. Virology. 479-480:110–121. 2015. View Article : Google Scholar : PubMed/NCBI | |
Boron WF and Boulpaep EL: Medical physiology: A cellular and molecular approach. 2nd edition. Saunders Elsevier; Philadelphia, PA: 2009 | |
Devreese KMJ: COVID-19-related laboratory coagulation findings. Int J Lab Hematol. 43(Suppl 1): S36–S42. 2021. View Article : Google Scholar | |
Patel KR, Roberts JT and Barb AW: Multiple variables at the leukocyte cell surface impact Fc γ receptor-dependent mechanisms. Front Immunol. 10:2232019. View Article : Google Scholar | |
Kelton JG, Smith JW, Santos AV, Murphy WG and Horsewood P: Platelet IgG Fc receptor. Am J Hematol. 25:299–310. 1987. View Article : Google Scholar : PubMed/NCBI | |
Qiao J, Al-Tamimi M, Baker RI, Andrews RK and Gardiner EE: The platelet Fc receptor, FcγRIIa. Immunol Rev. 268:241–252. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fearon DT and Carroll MC: Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu Rev Immunol. 18:393–422. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hartwig JH, Barkalow K, Azim A and Italiano J: The elegant platelet: Signals controlling actin assembly. Thromb Haemost. 82:392–398. 1999. View Article : Google Scholar | |
Viertlboeck BC, Schweinsberg S, Hanczaruk MA, Schmitt R, Du Pasquier L, Herberg FW and Göbel TW: The chicken leukocyte receptor complex encodes a primordial, activating, high-affinity IgY Fc receptor. Proc Natl Acad Sci USA. 104:11718–11723. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tan Y and Tang F: SARS-CoV-2-mediated immune system activation and potential application in immunotherapy. Med Res Rev. 41:1167–1194. 2021. View Article : Google Scholar | |
Hotchkiss KM, Clark NM and Olivares-Navarrete R: Macrophage response to hydrophilic biomaterials regulates MSC recruitment and T-helper cell populations. Biomaterials. 182:202–215. 2018. View Article : Google Scholar : PubMed/NCBI | |
Springer S, Menzel LM and Zieger M: Google trends provides a tool to monitor population concerns and information needs during COVID-19 pandemic. Brain Behav Immun. 87:109–110. 2020. View Article : Google Scholar : PubMed/NCBI | |
Brockmeyer NH, Potthoff A, Kasper A, Nabring C, Jöckel KH and Siffert W: GNB3 C825T polymorphism and response to anti-retroviral combination therapy in HIV-1-infected patients-a pilot study. Eur J Med Res. 10:489–494. 2005.PubMed/NCBI | |
Uddin MN, Akter R, Li M and Abdelrahman Z: Expression of SARS-COV-2 cell receptor gene ACE2 is associated with immunosuppression and metabolic reprogramming in lung adenocarcinoma based on bioinformatics analyses of gene expression profiles. Chem Biol Interact. 335:1093702021. View Article : Google Scholar | |
Bieberich F, Vazquez-Lombardi R, Yermanos A, Ehling RA, Mason DM, Wagner B, Kapetanovic E, Di Roberto RB, Weber CR, Savic M, et al: A single-cell atlas of lymphocyte adaptive immune repertoires and transcriptomes reveals age-related differences in convalescent COVID-19 patients. Front Immunol. 12:7010852021. View Article : Google Scholar : PubMed/NCBI | |
Fricke-Galindo I and Falfán-Valencia R: Genetics insight for COVID-19 susceptibility and severity: A review. Front Immunol. 12:6221762021. View Article : Google Scholar : PubMed/NCBI | |
Jiang Z, Wei F, Zhang Y, Wang T, Gao W, Yu S, Sun H, Pu J, Sun Y, Wang M, et al: IFI16 directly senses viral RNA and enhances RIG-I transcription and activation to restrict influenza virus infection. Nat Microbiol. 6:932–945. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kennedy RB, Poland GA, Ovsyannikova IG, Oberg AL, Asmann YW, Grill DE, Vierkant RA and Jacobson RM: Impaired innate, humoral, and cellular immunity despite a take in smallpox vaccine recipients. Vaccine. 34:3283–3290. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kotenko SV: IFN-λs. Curr Opin Immunol. 23:583–590. 2011. View Article : Google Scholar : | |
Wu UI and Holland SM: Host susceptibility to non-tuberculous mycobacterial infections. Lancet Infect Dis. 15:968–980. 2015. View Article : Google Scholar : PubMed/NCBI | |
Voloudakis G, Hoffman G, Venkatesh S, Lee KM, Dobrindt K, Vicari JM, Zhang W, Beckmann ND, Jiang S, Hoagland D, et al: IL10RB as a key regulator of COVID-19 host susceptibility and severity. medRxiv. View Article : Google Scholar | |
Vecchié A, Bonaventura A, Toldo S, Dagna L, Dinarello CA and Abbate A: IL-18 and infections: Is there a role for targeted therapies. J Cell Physiol. 236:1638–1657. 2021. View Article : Google Scholar | |
Peters VA, Joesting JJ and Freund GG: IL-1 receptor 2 (IL-1R2) and its role in immune regulation. Brain Behav Immun. 32:1–8. 2013. View Article : Google Scholar : | |
Bénard A, Jacobsen A, Brunner M, Krautz C, Klösch B, Swierzy I, Naschberger E, Podolska MJ, Kouhestani D, David P, et al: Interleukin-3 is a predictive marker for severity and outcome during SARS-CoV-2 infections. Nat Commun. 12:11122021. View Article : Google Scholar : | |
Zizzo G and Cohen PL: Imperfect storm: Is interleukin-33 the Achilles heel of COVID-19? Lancet Rheumatol. 12:e779–e790. 2020. View Article : Google Scholar | |
Walsh PT and Fallon PG: The emergence of the IL-36 cytokine family as novel targets for inflammatory diseases. Ann NY Acad Sci. 1417:23–34. 2018. View Article : Google Scholar | |
Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A, Molofsky AB, Thornton EE, Krummel MF, Chawla A, Liang HE and Locksley RM: Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 502:245–248. 2013. View Article : Google Scholar : PubMed/NCBI | |
Coomes EA and Haghbayan H: Interleukin-6 in Covid-19: A systematic review and meta-analysis. Rev Med Virol. 30:1–9. 2020. View Article : Google Scholar : PubMed/NCBI | |
Das UN: Bioactive lipids in COVID-19-further evidence. Arch Med Res. 52:107–120. 2021. View Article : Google Scholar | |
Islam ABMMK, Khan MA, Ahmed R, Hossain MS, Kabir SMT, Islam MS and Siddiki AMAMZ: Transcriptome of nasopharyngeal samples from COVID-19 patients and a comparative analysis with other SARS-CoV-2 infection models reveal disparate host responses against SARS-CoV-2. J Transl Med. 19:322021. View Article : Google Scholar : PubMed/NCBI | |
O'Brien JR: Shear-induced platelet aggregation. Lancet. 335:711–713. 1990. View Article : Google Scholar : PubMed/NCBI | |
Langmuir P, Yeleswaram S, Smith P, Knorr B and Squier P: Design of clinical trials evaluating ruxolitinib, a JAK1/JAK2 inhibitor, for treatment of COVID-19-associated cytokine storm. Dela J Public Health. 6:50–54. 2020. View Article : Google Scholar : PubMed/NCBI | |
Melman YF, Krummerman A and McDonald TV: KCNE regulation of KvLQT1 channels: Structure-function correlates. Trends Cardiovasc Med. 12:182–187. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gouas L, Nicaud V, Berthet M, Forhan A, Tiret L, Balkau B and Guicheney P; D.E.S.I.R. Study Group: Association of KCNQ1, KCNE1, KCNH2 and SCN5A polymorphisms with QTc interval length in a healthy population. Eur J Hum Genet. 13:1213–1222. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lazzerini PE, Acampa M, Laghi-Pasini F, Bertolozzi I, Finizola F, Vanni F, Natale M, Bisogno S, Cevenini G, Cartocci A, et al: Cardiac arrest risk during acute infections: Systemic inflammation directly prolongs QTc interval via cytokine-mediated effects on potassium channel expression. Circ Arrhythm Electrophysiol. 13:e0086272020. View Article : Google Scholar : PubMed/NCBI | |
Szendrey M, Guo J, Li W, Yang T and Zhang S: COVID-19 drugs chloroquine and hydroxychloroquine, but not azithromycin and remdesivir, block hERG potassium channels. J Pharmacol Exp Ther. 377:265–272. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dahl SL, Woodworth JS, Lerche CJ, Cramer EP, Nielsen PR, Moser C, Thomsen AR, Borregaard N and Cowland JB: Lipocalin-2 functions as inhibitor of innate resistance to mycobacterium tuberculosis. Front Immunol. 9:27172018. View Article : Google Scholar : | |
Vincenti MP and Brinckerhoff CE: Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: Integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res. 4:157–164. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jabłońska-Trypuć A, Matejczyk M and Rosochacki S: Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem. 31(Suppl 1): S177–S183. 2016. View Article : Google Scholar | |
Pisano TJ, Hakkinen I and Rybinnik I: Large vessel occlusion secondary to COVID-19 hypercoagulability in a young patient: A case report and literature review. J Stroke Cerebrovasc Dis. 29:1053072020. View Article : Google Scholar : PubMed/NCBI | |
Apostolidis SA, Kakara M, Painter MM, Goel RR, Mathew D, Lenzi K, Rezk A, Patterson KR, Espinoza DA, Kadri JC, et al: Cellular and humoral immune responses following SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis on anti-CD20 therapy. Nat Med. 27:1990–2001. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lu W, Liu X, Wang T, Liu F, Zhu A, Lin Y, Luo J, Ye F, He J, Zhao J, et al: Elevated MUC1 and MUC5AC mucin protein levels in airway mucus of critical ill COVID-19 patients. J Med Virol. 93:582–584. 2021. View Article : Google Scholar | |
Conti P, Ronconi G, Caraffa A, Gallenga CE, Ross R, Frydas I and Kritas SK: Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): Anti-inflammatory strategies. J Biol Regul Homeost Agents. 34:327–331. 2020.PubMed/NCBI | |
Morsy S: NCAM protein and SARS-COV-2 surface proteins: In-silico hypothetical evidence for the immunopathogenesis of Guillain-Barré syndrome. Med Hypotheses. 145:1103422020. View Article : Google Scholar | |
Root-Bernstein R: Innate receptor activation patterns involving TLR and NLR synergisms in COVID-19, ALI/ARDS and sepsis cytokine storms: A review and model making novel predictions and therapeutic suggestions. Int J Mol Sci. 22:21082021. View Article : Google Scholar : | |
Watanabe T, Kitani A, Murray PJ and Strober W: NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol. 5:800–808. 2004. View Article : Google Scholar : PubMed/NCBI | |
Esposito E and Cuzzocrea S: The role of nitric oxide synthases in lung inflammation. Curr Opin Investig Drugs. 8:899–909. 2007.PubMed/NCBI | |
Gamkrelidze M, Intskirveli N, Vardosanidze K, Goliadze L, Chikhladze KH and Ratiani L: Myocardial dysfunction during septic shock (review). Georgian Med News. 237:40–46. 2014. | |
Zang X, Li S, Zhao Y, Chen K, Wang X, Song W, Ma J, Tu X, Xia Y, Zhang S and Gao C: Systematic meta-analysis of the association between a common NOS1AP genetic polymorphism, the QTc interval, and sudden death. Int Heart J. 60:1083–1090. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guan SP, Seet RCS and Kennedy BK: Does eNOS derived nitric oxide protect the young from severe COVID-19 complications. Ageing Res Rev. 64:1012012020. View Article : Google Scholar | |
Thom SR, Fisher D, Xu YA, Garner S and Ischiropoulos H: Role of nitric oxide-derived oxidants in vascular injury from carbon monoxide in the rat. Am J Physiol. 276:H984–H992. 1999. | |
Valent A, Danglot G and Bernheim A: Mapping of the tyrosine kinase receptors trkA (NTRK1), trkB (NTRK2) and trkC(NTRK3) to human chromosomes 1q22, 9q22 and 15q25 by fluorescence in situ hybridization. Eur J Hum Genet. 5:102–104. 1997. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Chen L, Zhu J and Rodgers GP: The glycoprotein hGC-1 binds to cadherin and lectins. Exp Cell Res. 312:1785–1797. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hennigs JK, Lüneburg N, Stage A, Schmitz M, Körbelin J, Harbaum L, Matuszcak C, Mienert J, Bokemeyer C, Böger RH, et al: The P2-receptor-mediated Ca2+ signalosome of the human pulmonary endothelium-implications for pulmonary arterial hypertension. Purinergic Signal. 15:299–311. 2019. View Article : Google Scholar : PubMed/NCBI | |
Russo MV and McGavern DB: Immune surveillance of the CNS following infection and injury. Trends Immunol. 36:637–650. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tuuminen R, Nykänen A, Keränen MA, Krebs R, Alitalo K, Koskinen PK and Lemström KB: The effect of platelet-derived growth factor ligands in rat cardiac allograft vasculopathy and fibrosis. Transplant Proc. 38:3271–3273. 2006. View Article : Google Scholar : PubMed/NCBI | |
Blum E, Margalit R, Levy L, Getter T, Lahav R, Zilber S, Bradfield P, Imhof BA, Alpert E and Gruzman A: A Potent leukocyte transmigration blocker: GT-73 showed a protective effect against LPS-induced ARDS in mice. Molecules. 26:45832021. View Article : Google Scholar : PubMed/NCBI | |
Rovina N, Akinosoglou K, Eugen-Olsen J, Hayek S, Reiser J and Giamarellos-Bourboulis EJ: Soluble urokinase plasminogen activator receptor (suPAR) as an early predictor of severe respiratory failure in patients with COVID-19 pneumonia. Crit Care. 24:1872020. View Article : Google Scholar | |
Kumar S, Jain A, Choi SW, da Silva GPD, Allers L, Mudd MH, Peters RS, Anonsen JH, Rusten TE, Lazarou M and Deretic V: Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens. Nat Cell Biol. 22:973–985. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hoxha M: What about COVID-19 and arachidonic acid pathway. Eur J Clin Pharmacol. 76:1501–1504. 2020. View Article : Google Scholar : PubMed/NCBI | |
Keikha M, Ghazvini K, Eslami M, Yousefi B, Casseb J, Yousefi M and Karbalaei M: Molecular targeting of PD-1 signaling pathway as a novel therapeutic approach in HTLV-1 infection. Microb Pathog. 144:1041982020. View Article : Google Scholar : PubMed/NCBI | |
Coggeshall KM: Negative signaling in health and disease. Immunol Res. 19:47–64. 1999. View Article : Google Scholar : PubMed/NCBI | |
de Souza JG, Starobinas N and Ibañez O: Unknown/enigmatic functions of extracellular ASC. Immunology. 163:377–388. 2021. View Article : Google Scholar | |
Larabi A, Barnich N and Nguyen HTT: New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy. 16:38–51. 2020. View Article : Google Scholar : | |
Brown MJ: Renin: Friend or foe? Heart. 93:1026–1033. 2007. View Article : Google Scholar | |
Amraei R and Rahimi N: COVID-19, renin-angiotensin system and endothelial dysfunction. Cells. 9:16522020. View Article : Google Scholar : | |
Yanatori I, Yasui Y, Noguchi Y and Kishi F: Inhibition of iron uptake by ferristatin II is exerted through internalization of DMT1 at the plasma membrane. Cell Biol Int. 39:427–434. 2015. View Article : Google Scholar | |
Denham NC, Pearman CM, Ding WY, Waktare J, Gupta D, Snowdon R, Hall M, Cooper R, Modi S, Todd D and Mahida S: Systematic re-evaluation of SCN5A variants associated with Brugada syndrome. J Cardiovasc Electrophysiol. 30:118–127. 2019. View Article : Google Scholar | |
Smadja DM, Guerin CL, Chocron R, Yatim N, Boussier J, Gendron N, Khider L, Hadjadj J, Goudot G, Debuc B, et al: Angiopoietin-2 as a marker of endothelial activation is a good predictor factor for intensive care unit admission of COVID-19 patients. Angiogenesis. 23:611–620. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bongiovanni D, Klug M, Lazareva O, Weidlich S, Biasi M, Ursu S, Warth S, Buske C, Lukas M, Spinner CD, et al: SARS-CoV-2 infection is associated with a pro-thrombotic platelet phenotype. Cell Death Dis. 12:502021. View Article : Google Scholar : PubMed/NCBI | |
Wu D and Yang XO: Dysregulation of pulmonary responses in severe COVID-19. Viruses. 13:9572021. View Article : Google Scholar : | |
Katzen J and Beers MF: Contributions of alveolar epithelial cell quality control to pulmonary fibrosis. J Clin Invest. 130:5088–5099. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nandy D, Sharma N and Senapati S: Systematic review and meta-analysis confirms significant contribution of surfactant protein D in chronic obstructive pulmonary disease. Front Genet. 10:3392019. View Article : Google Scholar : PubMed/NCBI | |
Di Lisa F, Kaludercic N, Carpi A, Menabò R and Giorgio M: Mitochondria and vascular pathology. Pharmacol Rep. 61:123–130. 2009. View Article : Google Scholar | |
Dinarello CA, Nold-Petry C, Nold M, Fujita M, Li S, Kim S and Bufler P: Suppression of innate inflammation and immunity by interleukin-37. Eur J Immunol. 46:1067–1081. 2016. View Article : Google Scholar : PubMed/NCBI | |
Montalbetti N, Simonin A, Kovacs G and Hediger MA: Mammalian iron transporters: families SLC11 and SLC40. Mol Aspects Med. 34:270–287. 2013. View Article : Google Scholar | |
Schulert GS, Blum SA and Cron RQ: Host genetics of pediatric SARS-CoV-2 COVID-19 and multisystem inflammatory syndrome in children. Curr Opin Pediatr. 33:549–555. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pachlopnik Schmid J and de Saint Basile G: Angeborene hämophagozytische lymphohistiozytose (HLH). Klin Padiatr. 222:345–350. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shi JH, Xie X and Sun SC: TBK1 as a regulator of autoimmunity and antitumor immunity. Cell Mol Immunol. 15:743–745. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zimecki M, Actor JK and Kruzel ML: The potential for Lactoferrin to reduce SARS-CoV-2 induced cytokine storm. Int Immunopharmacol. 95:1075712021. View Article : Google Scholar : | |
Chabot PR, Raiola L, Lussier-Price M, Morse T, Arseneault G, Archambault J and Omichinski JG: Structural and functional characterization of a complex between the acidic transactivation domain of EBNA2 and the Tfb1/p62 subunit of TFIIH. PLoS Pathog. 10:e10040422014. View Article : Google Scholar : PubMed/NCBI | |
Speeckaert MM, Speeckaert R and Delanghe JR: Biological and clinical aspects of soluble transferrin receptor. Crit Rev Clin Lab Sci. 47:213–228. 2010. View Article : Google Scholar | |
Bg S, Gosavi S, Ananda Rao A, Shastry S, Raj SC, Sharma A, Suresh A and Noubade R: Neutrophil-to-lymphocyte, lymphocyte-to-monocyte, and platelet-to-lymphocyte ratios: Prognostic significance in COVID-19. Cureus. 13:e126222021.PubMed/NCBI | |
Campbell GR, To RK, Hanna J and Spector SA: SARS-CoV-2, SARS-CoV-1, and HIV-1 derived ssRNA sequences activate the NLRP3 inflammasome in human macrophages through a non-classical pathway. iScience. 24:1022952021. View Article : Google Scholar : | |
Borrello S, Nicolò C, Delogu G, Pandolfi F and Ria F: TLR2: a crossroads between infections and autoimmunity. Int J Immunopathol Pharmacol. 24:549–556. 2011. View Article : Google Scholar | |
Zheng M, Karki R, Williams EP, Yang D, Fitzpatrick E, Vogel P, Jonsson CB and Kanneganti TD: TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat Immunol. 22:829–838. 2021. View Article : Google Scholar : PubMed/NCBI | |
Khan S, Shafiei M, Longoria C, Schoggins JW, Savani R and Zaki H: SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. Elife. 10:e685632021. View Article : Google Scholar | |
Sohn KM, Lee SG, Kim HJ, Cheon S, Jeong H, Lee J, Kim IS, Silwal P, Kim YJ, Paik S, et al: COVID-19 patients upregulate toll-like receptor 4-mediated inflammatory signaling that mimics bacterial sepsis. J Korean Med Sci. 35:e3432020. View Article : Google Scholar : PubMed/NCBI | |
Guven-Maiorov E, Keskin O, Gursoy A, VanWaes C, Chen Z, Tsai CJ and Nussinov R: TRAF3 signaling: Competitive binding and evolvability of adaptive viral molecular mimicry. Biochim Biophys Acta. 1860:2646–2655. 2016. View Article : Google Scholar | |
Callaway E: The quest to find genes that drive severe COVID. Nature. 595:346–348. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kaur S, Tripathi DM and Yadav A: The enigma of endothelium in COVID-19. Front Physiol. 11:9892020. View Article : Google Scholar : | |
Rovas A, Osiaevi I, Buscher K, Sackarnd J, Tepasse PR, Fobker M, Kühn J, Braune S, Göbel U, Thölking G, et al: Microvascular dysfunction in COVID-19: The MYSTIC study. Angiogenesis. 24:145–157. 2021. View Article : Google Scholar | |
Holcomb D, Alexaki A, Hernandez N, Hunt R, Laurie K, Kames J, Hamasaki-Katagiri N, Komar AA, DiCuccio M and Kimchi-Sarfaty C: Gene variants of coagulation related proteins that interact with SARS-CoV-2. PLoS Comput Biol. 17:e10088052021. View Article : Google Scholar : PubMed/NCBI | |
Shahidi M: Thrombosis and von Willebrand factor. Adv Exp Med Biol. 906:285–306. 2017. View Article : Google Scholar |