1
|
Qin HJ, Xu T, Wu HT, Yao ZL, Hou YL, Xie
YH, Su JW, Cheng CY, Yang KF, Zhang XR, et al: SDF-1/CXCR4 axis
coordinates crosstalk between subchondral bone and articular
cartilage in osteoarthritis pathogenesis. Bone. 125:140–150. 2019.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Anderson-MacKenzie JM, Quasnichka HL,
Starr RL, Lewis EJ, Billingham ME and Bailey AJ: Fundamental
subchondral bone changes in spontaneous knee osteoarthritis. Int J
Biochem Cell Biol. 37:224–236. 2005. View Article : Google Scholar
|
3
|
Omoumi P, Babel H, Jolles BM and Favre J:
Relationships between cartilage thickness and subchondral bone
mineral density in non-osteoarthritic and severely osteoarthritic
knees: In vivo concomitant 3D analysis using CT arthrography.
Osteoarthritis Cartilage. 27:621–629. 2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Neve A, Corrado A and Cantatore FP:
Osteoblast physiology in normal and pathological conditions. Cell
Tissue Res. 343:289–302. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Maruotti N, Corrado A and Cantatore FP:
Osteoblast role in osteoarthritis pathogenesis. J Cell Physiol.
232:2957–2963. 2017. View Article : Google Scholar :
|
6
|
Di Pompo G, Errani C, Gillies R, Mercatali
L, Ibrahim T, Tamanti J, Baldini N and Avnet S: Acid-induced
inflammatory cytokines in osteoblasts: A guided path to osteolysis
in bone metastasis. Front Cell Dev Biol. 9:6785322021. View Article : Google Scholar :
|
7
|
Wang Y, Fan X, Xing L and Tian F: Wnt
signaling: A promising target for osteoarthritis therapy. Cell
Commun Signal. 17:972019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lories RJ and Monteagudo S: Review
article: Is Wnt signaling an attractive target for the treatment of
osteoarthritis? Rheumatol Ther. 7:259–270. 2020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Cherifi C, Monteagudo S and Lories RJ:
Promising targets for therapy of osteoarthritis: A review on the
Wnt and TGF-β signalling pathways. Ther Adv Musculoskel.
13:1759720X2110069592021.
|
10
|
Chen H, Tan XN, Hu S, Liu RQ, Peng LH, Li
YM and Wu P: Molecular mechanisms of chondrocyte proliferation and
differentiation. Front Cell Dev Biol. 9:6641682021. View Article : Google Scholar : PubMed/NCBI
|
11
|
Staines KA, Macrae VE and Farquharson C:
Cartilage development and degeneration: A Wnt Wnt situation. Cell
Biochem Funct. 30:633–642. 2012. View
Article : Google Scholar
|
12
|
Hill TP, Später D, Taketo MM, Birchmeier W
and Hartmann C: Canonical Wnt/beta-catenin signaling prevents
osteoblasts from differentiating into chondrocytes. Dev Cell.
8:727–738. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhu M, Tang D, Wu Q, Hao S, Chen M, Xie C,
Rosier RN, O'Keefe RJ, Zuscik M and Chen D: Activation of
beta-catenin signaling in articular chondrocytes leads to
osteoarthritis-like phenotype in adult beta-catenin conditional
activation mice. J Bone Miner Res. 24:12–21. 2009. View Article : Google Scholar
|
14
|
Fjeld K, Kettunen P, Furmanek T,
Kvinnsland IH and Luukko K: Dynamic expression of Wnt
signaling-related Dickkopf1, -2, and -3 mRNAs in the developing
mouse tooth. Dev Dyn. 233:161–166. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen J, Yang C, Yang Y, Liang Q, Xie K,
Liu J and Tang Y: Targeting DKK1 prevents development of
alcohol-induced osteonecrosis of the femoral head in rats. Am J
Transl Res. 13:2320–2330. 2021.PubMed/NCBI
|
16
|
Baetta R and Banfi C: Dkk (Dickkopf)
proteins. Arterioscler Thromb Vasc Biol. 39:1330–1342. 2019.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Lee EJ, Nguyen QTT and Lee M: Dickkopf-3
in human malignant tumours: A clinical viewpoint. Anticancer Res.
40:5969–5979. 2020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Pritzker KP, Gay S, Jimenez SA, Ostergaard
K, Pelletier JP, Revell PA, Salter D and van den Berg WB:
Osteoarthritis cartilage histopathology: Grading and staging.
Osteoarthritis Cartilage. 14:13–29. 2006. View Article : Google Scholar
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
20
|
Zhang L and Wen C: Osteocyte dysfunction
in joint homeostasis and osteoarthritis. Int J Mol Sci.
22:65222021. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tian J, Gao SG, Li YS, Cheng C, Deng ZH,
Luo W and Zhang FJ: The β-catenin/TCF-4 pathway regulates the
expression of OPN in human osteoarthritic chondrocytes. J Orthop
Surg Res. 15:3442020. View Article : Google Scholar
|
22
|
Li W, Xiong Y, Chen W and Wu L:
Wnt/β-catenin signaling may induce senescence of chondrocytes in
osteoarthritis. Exp Ther Med. 20:2631–2638. 2020.PubMed/NCBI
|
23
|
Xuan F, Yano F, Mori D, Chijimatsu R,
Maenohara Y, Nakamoto H, Mori Y, Makii Y, Oichi T, Taketo MM, et
al: Wnt/β-catenin signaling contributes to articular cartilage
homeostasis through lubricin induction in the superficial zone.
Arthritis Res Ther. 21:2472019. View Article : Google Scholar
|
24
|
Yu H, Liu Y, Yang X, He J, Zhang F, Zhong
Q and Guo X: Strontium ranelate promotes chondrogenesis through
inhibition of the Wnt/β-catenin pathway. Stem Cell Res Ther.
12:2962021. View Article : Google Scholar
|
25
|
Le NH, Franken P and Fodde R:
Tumour-stroma interactions in colorectal cancer: Converging on
beta-catenin activation and cancer stemness. Brit J Cancer.
98:1886–1893. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ren C, Gu X, Li H, Lei S, Wang Z, Wang J,
Yin P, Zhang C, Wang F and Liu C: The role of DKK1 in Alzheimer's
disease: A potential intervention point of brain damage prevention?
Pharmacol Res. 144:331–335. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Uribe D, Cardona A, Esposti DD, Cros MP,
Cuenin C, Herceg Z, Camargo M and Cortés-Mancera FM:
Antiproliferative effects of epigenetic modifier drugs through
E-cadherin up-regulation in liver cancer cell lines. Ann Hepatol.
17:444–460. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Suwa T, Chen M, Hawks CL and Hornsby PJ:
Zonal expression of dickkopf-3 and components of the Wnt signalling
pathways in the human adrenal cortex. J Endocrinol. 178:149–158.
2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Niehrs C: Function and biological roles of
the Dickkopf family of Wnt modulators. Oncogene. 25:7469–7481.
2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Aslan H, Ravid-Amir O, Clancy BM,
Rezvankhah S, Pittman D, Pelled G, Turgeman G, Zilberman Y, Gazit
Z, Hoffmann A, et al: Advanced molecular profiling in vivo detects
novel function of dickkopf-3 in the regulation of bone formation. J
Bone Miner Res. 21:1935–1945. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
De Palma A and Nalesso G: WNT signalling
in osteoarthritis and its pharmacological targeting. Handb Exp
Pharmacol. 269:337–356. 2021. View Article : Google Scholar : PubMed/NCBI
|
32
|
Funck-Brentano T, Bouaziz W, Marty C,
Geoffroy V, Hay E and Cohen-Solal M: Dkk-1-mediated inhibition of
Wnt signaling in bone ameliorates osteoarthritis in mice. Arthritis
Rheumatol. 66:3028–3039. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Jiang A, Xu P, Sun S, Zhao Z, Tan Q, Li W,
Song C and Leng H: Cellular alterations and crosstalk in the
osteochondral joint in osteoarthritis and promising therapeutic
strategies. Connect Tissue Res. 62:709–719. 2021. View Article : Google Scholar : PubMed/NCBI
|
34
|
Liao F, Hu X and Chen R: The effects of
omarigliptin on promoting osteoblastic differentiation.
Bioengineered. 12:11837–11846. 2021. View Article : Google Scholar : PubMed/NCBI
|
35
|
Miyamoto S, Yoshikawa H and Nakata K:
Axial mechanical loading to ex vivo mouse long bone regulates
endochondral ossification and endosteal mineralization through
activation of the BMP-Smad pathway during postnatal growth. Bone
Rep. 15:1010882021. View Article : Google Scholar
|
36
|
Vincent TL and Wann AKT:
Mechanoadaptation: Articular cartilage through thick and thin. J
Physiol. 597:1271–1281. 2019. View Article : Google Scholar :
|
37
|
Bhatla JL, Kroker A, Manske SL, Emery CA
and Boyd SK: Differences in subchondral bone plate and cartilage
thickness between women with anterior cruciate ligament
reconstructions and uninjured controls. Osteoarthritis Cartilage.
26:929–939. 2018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hu W, Chen Y, Dou C and Dong S:
Microenvironment in subchondral bone: Predominant regulator for the
treatment of osteoarthritis. Ann Rheum Dis. 80:413–422. 2020.
View Article : Google Scholar
|
39
|
Fell NLA, Lawless BM, Cox SC, Cooke ME,
Eisenstein NM, Shepherd DET and Espino DM: The role of subchondral
bone, and its histomorphology, on the dynamic viscoelasticity of
cartilage, bone and osteochondral cores. Osteoarthritis Cartilage.
27:535–543. 2019. View Article : Google Scholar :
|
40
|
Smieszek A, Marcinkowska K, Pielok A,
Sikora M, Valihrach L and Marycz K: The role of miR-21 in
osteoblasts-osteoclasts coupling in vitro. Cells. 9:4792020.
View Article : Google Scholar
|
41
|
Chu Y, Gao Y, Yang Y, Liu Y, Guo N, Wang
L, Huang W, Wu L, Sun D and Gu W: β-Catenin mediates
fluoride-induced aberrant osteoblasts activity and osteogenesis.
Environ Pollut. 265:1147342020. View Article : Google Scholar
|
42
|
Huang Y, Jiang L, Yang H, Wu L, Xu N, Zhou
X and Li J: Variations of Wnt/β-catenin pathway-related genes in
susceptibility to knee osteoarthritis: A three-centre case-control
study. J Cell Mol Med. 23:8246–8257. 2019. View Article : Google Scholar : PubMed/NCBI
|
43
|
Charlier E, Malaise O, Deroyer C, Zeddou
M, Neuville S, Cobraiville G, Gillet P, Kurth W, de Seny D, Relic B
and Malaise MG: Dickkopf 3 (DKK3) is increased along human hip OA
chondrocytes dedifferentiation and can modulate Wnt/B-catenin and
TGFβ Alk1/Smad1/5 signaling pathways, as well as leptin production.
Osteoarthritis Cartilage. 24(Suppl 1): S1822016. View Article : Google Scholar
|