Talin‑1 interaction network in cellular mechanotransduction (Review)
- Authors:
- Ye Zhao
- Nikita Lykov
- Chimeng Tzeng
-
Affiliations: School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211800, P.R. China, Translational Medicine Research Center‑Key Laboratory for Cancer T‑Cell Theragnostic and Clinical Translation, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361005, P.R. China - Published online on: March 9, 2022 https://doi.org/10.3892/ijmm.2022.5116
- Article Number: 60
-
Copyright: © Zhao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Edelman GM: Cell adhesion molecules in the regulation of animal form and tissue pattern. Ann Rev Cell Biol. 2:81–116. 1986. View Article : Google Scholar : PubMed/NCBI | |
Mammoto T and Ingber DE: Mechanical control of tissue and organ development. Development. 137:1407–1420. 2010. View Article : Google Scholar : PubMed/NCBI | |
Orr AW, Helmke BP, Blackman BR and Schwartz MA: Mechanisms of mechanotransduction. Dev Cell. 10:11–20. 2006. View Article : Google Scholar : PubMed/NCBI | |
Schwartz MA: Integrins and extracellular matrix in mechanotransduction. Cold Spring Harbor Perspectives Biol. 2:a0050662010. View Article : Google Scholar | |
Horwitz A, Duggan K, Buck C, Beckerle MC and Burridge K: Interaction of plasma membrane fibronectin receptor with talin-a transmembrane linkage. Nature. 320:531–533. 1986. View Article : Google Scholar : PubMed/NCBI | |
Burridge K and Mangeat P: An interaction between vinculin and talin. Nature. 308:744–746. 1984. View Article : Google Scholar : PubMed/NCBI | |
Humphries JD, Wang P, Streuli C, Geiger B, Humphries MJ and Ballestrem C: Vinculin controls focal adhesion formation by direct interactions with talin and actin. J Cell Biol. 179:1043–1057. 2007. View Article : Google Scholar : PubMed/NCBI | |
Attia Gaballah MS: The combined role of serum Talin-1 with traditional liver biomarkers in diagnosis of hepatocellular carcinoma. Adv Microb Res. 3:0082019. | |
Schwartz MA and DeSimone DW: Cell adhesion receptors in mechanotransduction. Curr Opin Cell Biol. 20:551–556. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rao RK and Wu Z: Chapter 7-Cell Adhesion and the Extracellular Matrix. Goodman's Medical Cell Biology. Goodman SR: 4th edition. Academic Press; pp. 203–247. 2021 | |
Dedden D, Schumacher S, Kelley CF, Zacharias M, Biertümpfel C, Fässler R and Mizuno N: The architecture of Talin1 reveals an autoinhibition mechanism. Cell. 179:120–131.e13. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kang N: Mechanotransduction in liver diseases. Seminars in liver disease. Thieme Medical Publishers; New York, NY: pp. 84–90. 2020 | |
Goult BT, Zacharchenko T, Bate N, Tsang R, Hey F, Gingras AR, Elliott PR, Roberts GCK, Ballestrem C, Critchley DR and Barsukov IL: RIAM and vinculin binding to talin are mutually exclusive and regulate adhesion assembly and turnover. J Biol Chem. 288:8238–8249. 2013. View Article : Google Scholar : PubMed/NCBI | |
Calderwood DA, Campbell ID and Critchley DR: Talins and kindlins: Partners in integrin-mediated adhesion. Nat Rev Mol Cell Biol. 14:503–517. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gingras AR, Bate N, Goult BT, Hazelwood L, Canestrelli I, Grossmann JG, Liu H, Putz NS, Roberts GC, Volkmann N, et al: The structure of the C-terminal actin-binding domain of talin. EMBO J. 27:458–469. 2008. View Article : Google Scholar | |
Liu J, Wang Y, Goh WI, Goh H, Baird MA, Ruehland S, Teo S, Bate N, Critchley DR, Davidson MW and Kanchanawong P: Talin determines the nanoscale architecture of focal adhesions. Proc Natl Acad Sci USA. 112:E4864–E4873. 2015. View Article : Google Scholar : PubMed/NCBI | |
Molony L, McCaslin D, Abernethy J, Paschal B and Burridge K: Properties of talin from chicken gizzard smooth muscle. J Biol Chem. 262:7790–7795. 1987. View Article : Google Scholar : PubMed/NCBI | |
Winkler J, Lünsdorf H and Jockusch BM: Energy-filtered electron microscopy reveals that talin is a highly flexible protein composed of a series of globular domains. Eur J Biochem. 243:430–436. 1997. View Article : Google Scholar : PubMed/NCBI | |
Goult BT, Yan J and Schwartz MA: Talin as a mechanosensitive signaling hub. J Cell Biol. 217:3776–3784. 2018. View Article : Google Scholar : PubMed/NCBI | |
Haining AWM, von Essen M, Attwood SJ, Hytönen VP and del Río Hernández A: All subdomains of the talin rod are mechanically vulnerable and may contribute to cellular mechanosensing. ACS Nano. 10:6648–6658. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yao M, Goult BT, Klapholz B, Hu X, Toseland CP, Guo Y, Cong P, Sheetz MP and Yan J: The mechanical response of talin. Nat Commun. 7:119662016. View Article : Google Scholar : PubMed/NCBI | |
Ye X, McLean MA and Sligar SG: Phosphatidylinositol 4,5-bisphosphate modulates the affinity of Talin-1 for phospholipid bilayers and activates its autoinhibited form. Biochemistry. 55:5038–5048. 2016. View Article : Google Scholar : PubMed/NCBI | |
Atherton P, Lausecker F, Carisey A, Gilmore A, Critchley D, Barsukov IL and Ballestrem C: Force-independent interactions of talin and vinculin govern integrin-mediated mechanotransduction. bioRxiv. https://doi.org/10.1101/629683. | |
Vigouroux C, Henriot V and Le Clainche C: Talin dissociates from RIAM and associates to vinculin sequentially in response to the actomyosin force. Nat Commun. 11:31162020. View Article : Google Scholar : PubMed/NCBI | |
Fillingham I, Gingras AR, Papagrigoriou E, Patel B, Emsley J, Critchley DR, Roberts GC and Barsukov IL: A vinculin binding domain from the talin rod unfolds to form a complex with the vinculin head. Structure. 13:65–74. 2005. View Article : Google Scholar : PubMed/NCBI | |
Elosegui-Artola A, Oria R, Chen Y, Kosmalska A, Pérez-González C, Castro N, Zhu C, Trepat X and Roca-Cusachs P: Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat Cell Biol. 18:540–548. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lagarrigue F, Gingras AR, Paul DS, Valadez AJ, Cuevas MN, Sun H, Lopez-Ramirez MA, Goult BT, Shattil SJ, Bergmeier W and Ginsberg MH: Rap1 binding to the talin 1 F0 domain makes a minimal contribution to murine platelet GPIIb-IIIa activation. Blood Adv. 2:2358–2368. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Watanabe T, Matsuzawa K, Katsumi A, Kakeno M, Matsui T, Ye F, Sato K, Murase K, Sugiyama I, et al: Tiam1 interaction with the PAR complex promotes talin-mediated Rac1 activation during polarized cell migration. J Cell Biol. 199:331–345. 2012. View Article : Google Scholar : PubMed/NCBI | |
Haining AWM, Rahikainen R, Cortes E, Lachowski D, Rice A, von Essen M, Hytönen VP and Del Río Hernández A: Mechanotransduction in talin through the interaction of the R8 domain with DLC1. PLoS Biol. 16:e20055992018. View Article : Google Scholar : PubMed/NCBI | |
Zacharchenko T, Qian X, Goult BT, Jethwa D, Almeida TB, Ballestrem C, Critchley DR, Lowy DR and Barsukov IL: LD motif recognition by talin: Structure of the talin-DLC1 complex. Structure. 24:1130–1141. 2016. View Article : Google Scholar : PubMed/NCBI | |
Elosegui-Artola A, Andreu I, Beedle AEM, Lezamiz A, Uroz M, Kosmalska AJ, Oria R, Kechagia JZ, Rico-Lastres P, Le Roux AL, et al: Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell. 171:1397–1410.e14. 2017. View Article : Google Scholar : PubMed/NCBI | |
Desiniotis A and Kyprianou N: Significance of talin in cancer progression and metastasis. Int Rev Cell Mol Biol. 289:117–147. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fang KP, Dai W, Ren YH, Xu YC, Zhang SM and Qian YB: Both Talin-1 and Talin-2 correlate with malignancy potential of the human hepatocellular carcinoma MHCC-97 L cell. BMC Cancer. 16:452016. View Article : Google Scholar : PubMed/NCBI | |
Haining AW, Lieberthal TJ and Hernández AdR: Talin: A mechanosensitive molecule in health and disease. FASEB J. 30:2073–2085. 2016. View Article : Google Scholar : PubMed/NCBI | |
Humph rey JD, Dufresne ER and Schwar tz MA: Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol. 15:802–812. 2014. View Article : Google Scholar | |
Martino F, Perestrelo AR, Vinarský V, Pagliari S and Forte G: Cellular mechanotransduction: From tension to function. Front Physiol. 9:8242018. View Article : Google Scholar : PubMed/NCBI | |
Maruthamuthu V, Aratyn-Schaus Y and Gardel ML: Conserved F-actin dynamics and force transmission at cell adhesions. Curr Opin Cell Biol. 22:583–588. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yan J and Goult BT: Force-dependent binding constants. Biochemistry. 58:4696–4709. 2019. View Article : Google Scholar : PubMed/NCBI | |
Geiger B, Bershadsky A, Pankov R and Yamada KM: Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol. 2:793–805. 2001. View Article : Google Scholar : PubMed/NCBI | |
Geiger B and Bershadsky A: Exploring the neighborhood: Adhesion-coupled cell mechanosensors. Cell. 110:139–142. 2002. View Article : Google Scholar : PubMed/NCBI | |
DeMali KA, Wennerberg K and Burridge K: Integrin signaling to the actin cytoskeleton. Curr Opin Cell Biol. 15:572–582. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wozniak MA, Modzelewska K, Kwong L and Keely PJ: Focal adhesion regulation of cell behavior. Biochim Biophys Acta. 1692:103–119. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kim SH, Turnbull J and Guimond S: Extracellular matrix and cell signalling: The dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol. 209:139–151. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yue B: Biology of the extracellular matrix: An overview. J Glaucoma. 23(8 Suppl 1): S20–S23. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tadokoro S, Shattil SJ, Eto K, Tai V, Liddington RC, de Pereda JM, Ginsberg MH and Calderwood DA: Talin binding to integrin beta tails: A final common step in integrin activation. Science. 302:103–106. 2003. View Article : Google Scholar : PubMed/NCBI | |
Moser M, Nieswandt B, Ussar S, Pozgajova M and Fässler R: Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med. 14:325–330. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ma YQ, Qin J, Wu C and Plow EF: Kindlin-2 (Mig-2): A co-activator of beta3 integrins. J Cell Biol. 181:439–446. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kim C, Ye F and Ginsberg MH: Regulation of integrin activation. Ann Rev Cell Dev Biol. 27:321–345. 2011. View Article : Google Scholar | |
Ginsberg MH, Partridge A and Shattil SJ: Integrin regulation. Curr Opin Cell Biol. 17:509–516. 2005. View Article : Google Scholar : PubMed/NCBI | |
Legate KR, Wickström SA and Fässler R: Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev. 23:397–418. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yao M, Goult BT, Chen H, Cong P, Sheetz MP and Yan J: Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci Rep. 4:46102014. View Article : Google Scholar : PubMed/NCBI | |
Kerstein PC: Mechanochemical regulation of growth cone motility and axon guidance. The University of Wisconsin-Madison; 2015 | |
Calderwood DA, Zent R, Grant R, Rees DJG, Hynes RO and Ginsberg MH: The Talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation. J Biol Chem. 274:28071–28074. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kumar A, Ouyang M, Van den Dries K, McGhee EJ, Tanaka K, Anderson MD, Groisman A, Goult BT, Anderson KI and Schwartz MA: Talin tension sensor reveals novel features of focal adhesion force transmission and mechanosensitivity. J Cell Biol. 213:371–383. 2016. View Article : Google Scholar : PubMed/NCBI | |
Calderwood DA, Yan B, de Pereda JM, Alvarez BG, Fujioka Y, Liddington RC and Ginsberg MH: The phosphotyrosine binding-like domain of talin activates integrins. J Biol Chem. 277:21749–21758. 2002. View Article : Google Scholar : PubMed/NCBI | |
Austen K, Ringer P, Mehlich A, Chrostek-Grashoff A, Kluger C, Klingner C, Sabass B, Zent R, Rief M and Grashoff C: Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nat Cell Biol. 17:1597–1606. 2015. View Article : Google Scholar : PubMed/NCBI | |
Karthik L, Kumar G, Keswani T, Bhattacharyya A, Chandar SS and Bhaskara Rao K: Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS One. 9:e909722014. View Article : Google Scholar : PubMed/NCBI | |
Jiang G, Giannone G, Critchley DR, Fukumoto E and Sheetz MP: Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature. 424:334–337. 2003. View Article : Google Scholar : PubMed/NCBI | |
Giannone G, Jiang G, Sutton DH, Critchley DR and Sheetz MP: Talin1 is critical for force-dependent reinforcement of initial integrin-cytoskeleton bonds but not tyrosine kinase activation. J Cell Biol. 163:409–419. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lagarrigue F, Paul DS, Gingras AR, Valadez AJ, Sun H, Lin J, Cuevas MN, Ablack JN, Lopez-Ramirez MA, Bergmeier W and Ginsberg MH: Talin-1 is the principal platelet Rap1 effector of integrin activation. Blood. 136:1180–1190. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gloerich M and Bos JL: Regulating Rap small G-proteins in time and space. Trends Cell Biol. 21:615–623. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chrzanowska-Wodnicka M: Rap1 in endothelial biology. Curr Opin Hematol. 24:2482017. View Article : Google Scholar : PubMed/NCBI | |
White GC, Crawford N and Fischer TH: Cytoskeletal interactions of Raplb in platelets. Adv Exp Med Biol. 344:187–194. 1993. View Article : Google Scholar | |
Hancock JF: Ras proteins: Different signals from different locations. Nat Rev Mol Cell Biol. 4:373–385. 2003. View Article : Google Scholar : PubMed/NCBI | |
Branham MT, Bustos MA, De Blas GA, Rehmann H, Zarelli VE, Treviño CL, Darszon A, Mayorga LS and Tomes CN: Epac activates the small G proteins Rap1 and Rab3A to achieve exocytosis. J Biol Chem. 284:24825–24839. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kooistra MR, Dubé N and Bos JL: Rap1: A key regulator in cell-cell junction formation. J Cell Sci. 120:17–22. 2007. View Article : Google Scholar | |
Pannekoek WJ, Kooistra MR, Zwartkruis FJ and Bos JL: Cell-cell junction formation: The role of Rap1 and Rap1 guanine nucleotide exchange factors. Biochim Biophys Acta. 1788:790–796. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hogan C, Serpente N, Cogram P, Hosking CR, Bialucha CU, Feller SM, Braga VM, Birchmeier W and Fujita Y: Rap1 regulates the formation of E-cadherin-based cell-cell contacts. Mol Cell Biol. 24:6690–6700. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ohba Y, Ikuta K, Ogura A, Matsuda J, Mochizuki N, Nagashima K, Kurokawa K, Mayer BJ, Maki K, Miyazaki J and Matsuda M: Requirement for C3G-dependent Rap1 activation for cell adhesion and embryogenesis. EMBO J. 20:3333–3341. 2001. View Article : Google Scholar : PubMed/NCBI | |
Katagiri K, Maeda A, Shimonaka M and Kinashi T: RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat Immunol. 4:741–748. 2003. View Article : Google Scholar : PubMed/NCBI | |
Priego N, Arechederra M, Sequera C, Bragado P, Vázquez-Carballo A, Gutiérrez-Uzquiza Á, Martín-Granado V, Ventura JJ, Kazanietz MG, Guerrero C and Porras A: C3G knock-down enhances migration and invasion by increasing Rap1-mediated p38α activation, while it impairs tumor growth through p38α-independent mechanisms. Oncotarget. 7:450602016. View Article : Google Scholar : PubMed/NCBI | |
Altschuler DL and Ribeiro-Neto F: Mitogenic and oncogenic properties of the small G protein Rap1b. Proc Natl Acad Sci USA. 95:7475–7479. 1998. View Article : Google Scholar : PubMed/NCBI | |
Maia V, Sanz M, Gutierrez-Berzal J, de Luis A, Gutierrez-Uzquiza A, Porras A and Guerrero C: C3G silencing enhances STI-571-induced apoptosis in CML cells through p38 MAPK activation, but it antagonizes STI-571 inhibitory effect on survival. Cell Signal. 21:1229–1235. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shimonaka M, Katagiri K, Nakayama T, Fujita N, Tsuruo T, Yoshie O and Kinashi T: Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J Cell Biol. 161:417–427. 2003. View Article : Google Scholar : PubMed/NCBI | |
Schwamborn JC and Püschel AW: The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. Nat Neurosci. 7:923–929. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jeyaraj SC, Unger NT and Chotani MA: Rap1 GTPases: An emerging role in the cardiovasculature. Life Sci. 88:645–652. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen CH, Chuang HC, Huang CC, Fang FM, Huang HY, Tsai HT, Su LJ, Shiu LY, Leu S and Chien CY: Overexpression of Rap-1A indicates a poor prognosis for oral cavity squamous cell carcinoma and promotes tumor cell invasion via Aurora-A modulation. Am J Pathol. 182:516–528. 2013. View Article : Google Scholar | |
Minato N: Rap G protein signal in normal and disordered lymphohematopoiesis. Exp Cell Res. 319:2323–2328. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kumari S, Arora M, Singh J, Kadian LK, Yadav R, Chauhan SS and Chopra A: Molecular associations and clinical significance of RAPs in hepatocellular carcinoma. Front Mol Biosci. 8:6779792021. View Article : Google Scholar : PubMed/NCBI | |
Lee HS, Lim CJ, Puzon-McLaughlin W, Shattil SJ and Ginsberg MH: RIAM activates integrins by linking talin to ras GTPase membrane-targeting sequences. J Biol Chem. 284:5119–5127. 2009. View Article : Google Scholar : | |
Yang J, Zhu L, Zhang H, Hirbawi J, Fukuda K, Dwivedi P, Liu J, Byzova T, Plow EF, Wu J and Qin J: Conformational activation of talin by RIAM triggers integrin-mediated cell adhesion. Nat Commun. 5:58802014. View Article : Google Scholar : PubMed/NCBI | |
Stritt S, Wolf K, Lorenz V, Vögtle T, Gupta S, Bösl MR and Nieswandt B: Rap1-GTP-interacting adaptor molecule (RIAM) is dispensable for platelet integrin activation and function in mice. Blood. 125:219–222. 2015. View Article : Google Scholar : | |
Klapproth S, Sperandio M, Pinheiro EM, Prünster M, Soehnlein O, Gertler FB, Fässler R and Moser M: Loss of the Rap1 effector RIAM results in leukocyte adhesion deficiency due to impaired β2 integrin function in mice. Blood. 126:2704–2712. 2015. View Article : Google Scholar : PubMed/NCBI | |
Su W, Wynne J, Pinheiro EM, Strazza M, Mor A, Montenont E, Berger J, Paul DS, Bergmeier W, Gertler FB and Philips MR: Rap1 and its effector RIAM are required for lymphocyte trafficking. Blood. 126:2695–2703. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Yang J, Bromberger T, Holly A, Lu F, Liu H, Sun K, Klapproth S, Hirbawi J, Byzova TV, et al: Structure of Rap1b bound to talin reveals a pathway for triggering integrin activation. Nat Commun. 8:17442017. View Article : Google Scholar : PubMed/NCBI | |
Bromberger T, Klapproth S, Rohwedder I, Zhu L, Mittmann L, Reichel CA, Sperandio M, Qin J and Moser M: Direct Rap1/Talin1 interaction regulates platelet and neutrophil integrin activity in mice. Blood. 132:2754–2762. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gingras AR, Lagarrigue F, Cuevas MN, Valadez AJ, Zorovich M, McLaughlin W, Lopez-Ramirez MA, Seban N, Ley K, Kiosses WB and Ginsberg MH: Rap1 binding and a lipid-dependent helix in talin F1 domain promote integrin activation in tandem. J Cell Biol. 218:1799–1809. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bromberger T, Zhu L, Klapproth S, Qin J and Moser M: Rap1 and membrane lipids cooperatively recruit talin to trigger integrin activation. J Cell Sci. 132:jcs2355312019. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Plow EF and Qin J: Initiation of focal adhesion assembly by talin and kindlin: A dynamic view. Protein Sci. 30:531–542. 2021. View Article : Google Scholar : | |
Raucher D, Stauffer T, Chen W, Shen K, Guo S, York JD, Sheetz MP and Meyer T: Phosphatidylinositol 4, 5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell. 100:221–228. 2000. View Article : Google Scholar : PubMed/NCBI | |
Toker A: The synthesis and cellular roles of phosphatidylinositol 4, 5-bisphosphate. Curr Opin Cell Biol. 10:254–261. 1998. View Article : Google Scholar : PubMed/NCBI | |
Czech MP: PIP2 and PIP3: Complex roles at the cell surface. Cell. 100:603–606. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yin HL and Janmey PA: Phosphoinositide regulation of the actin cytoskeleton. Ann Rev Physiol. 65:761–789. 2003. View Article : Google Scholar | |
Nayal A, Webb DJ and Horwitz AF: Talin: An emerging focal point of adhesion dynamics. Curr Opin Cell Biol. 16:94–98. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kong X, Wang X, Misra S and Qin J: Structural basis for the phosphorylation-regulated focal adhesion targeting of type Igamma phosphatidylinositol phosphate kinase (PIPKIgamma) by talin. J Mol Biol. 359:47–54. 2006. View Article : Google Scholar : PubMed/NCBI | |
McNamee HP, Ingber DE and Schwartz MA: Adhesion to fibronectin stimulates inositol lipid synthesis and enhances PDGF-induced inositol lipid breakdown. J Cell Biol. 121:673–678. 1993. View Article : Google Scholar : PubMed/NCBI | |
Chong LD, Traynor-Kaplan A, Bokoch GM and Schwartz MA: The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell. 79:507–513. 1994. View Article : Google Scholar : PubMed/NCBI | |
Gilmore AP and Burridge K: Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4-5-bisphosphate. Nature. 381:531–535. 1996. View Article : Google Scholar : PubMed/NCBI | |
Han J, Luby-Phelps K, Das B, Shu X, Xia Y, Mosteller RD, Krishna UM, Falck JR, White MA and Broek D: Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science. 279:558–560. 1998. View Article : Google Scholar : PubMed/NCBI | |
Martel V, Racaud-Sultan C, Dupe S, Marie C, Paulhe F, Galmiche A, Block MR and Albiges-Rizo C: Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides. J Biol Chem. 276:21217–21227. 2001. View Article : Google Scholar : PubMed/NCBI | |
de Pereda JM, Wegener KL, Santelli E, Bate N, Ginsberg MH, Critchley DR, Campbell ID and Liddington RC: Structural basis for phosphatidylinositol phosphate kinase type Igamma binding to talin at focal adhesions. J Biol Chem. 280:8381–8386. 2005. View Article : Google Scholar | |
Wu Z, Li X, Sunkara M, Spearman H, Morris AJ and Huang C: PIPKIγ regulates focal adhesion dynamics and colon cancer cell invasion. PLoS One. 6:e247752011. View Article : Google Scholar | |
Nader GPF, Ezratty EJ and Gundersen GG: FAK, talin and PIPKIγ regulate endocytosed integrin activation to polarize focal adhesion assembly. Nat Cell Biol. 18:491–503. 2016. View Article : Google Scholar : PubMed/NCBI | |
Karaköse E, Schiller HB and Fässler R: The kindlins at a glance. J Cell Sci. 123:2353–2356. 2010. View Article : Google Scholar : PubMed/NCBI | |
Plow EF, Qin J and Byzova T: Kindling the flame of integrin activation and function with kindlins. Curr Opin Hematol. 16:3232009. View Article : Google Scholar : PubMed/NCBI | |
Bledzka K, Liu J, Xu Z, Perera HD, Yadav SP, Bialkowska K, Qin J, Ma YQ and Plow EF: Spatial coordination of kindlin-2 with talin head domain in interaction with integrin β cytoplasmic tails. J Biol Chem. 287:24585–24594. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yates LA, Füzéry AK, Bonet R, Campbell ID and Gilbert RJ: Biophysical analysis of Kindlin-3 reveals an elongated conformation and maps integrin binding to the membrane-distal β-subunit NPXY motif. J Biol Chem. 287:37715–37731. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kahner BN, Kato H, Banno A, Ginsberg MH, Shattil SJ and Ye F: Kindlins, integrin activation and the regulation of talin recruitment to αIIbβ3. PLoS One. 7:e340562012. View Article : Google Scholar | |
Perera HD, Ma YQ, Yang J, Hirbawi J, Plow EF and Qin J: Membrane binding of the N-terminal ubiquitin-like domain of kindlin-2 is crucial for its regulation of integrin activation. Structure. 19:1664–1671. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ye F, Hu G, Taylor D, Ratnikov B, Bobkov AA, McLean MA, Sligar SG, Taylor KA and Ginsberg MH: Recreation of the terminal events in physiological integrin activation. J Cell Biol. 188:157–173. 2010. View Article : Google Scholar : PubMed/NCBI | |
Theodosiou M, Widmaier M, Böttcher RT, Rognoni E, Veelders M, Bharadwaj M, Lambacher A, Austen K, Müller DJ, Zent R and Fässler R: Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. Elife. 5:e101302016. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Liu H, Lu F, Yang J, Byzova TV and Qin J: Structural basis of paxillin recruitment by kindlin-2 in regulating cell adhesion. Structure. 27:1686–1697.e5. 2019. View Article : Google Scholar : PubMed/NCBI | |
Böttcher RT, Veelders M, Rombaut P, Faix J, Theodosiou M, Stradal TE, Rottner K, Zent R, Herzog F and Fässler R: Kindlin-2 recruits paxillin and Arp2/3 to promote membrane protrusions during initial cell spreading. J Cell Biol. 216:3785–3798. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fujita H, Kamiguchi K, Cho D, Shibanuma M, Morimoto C and Tachibana K: Interaction of Hic-5, a senescence-related protein, with focal adhesion kinase. J Biol Chem. 273:26516–26521. 1998. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Huang M, Lai J, Mao K, Sun P, Cao Z, Hu Y, Zhang Y, Schulte ML, Jin C, et al: Kindlin supports platelet integrin αIIbβ3 activation by interacting with paxillin. J Cell Sci. 130:3764–3775. 2017.PubMed/NCBI | |
Hanks SK, Ryzhova L, Shin NY and Brábek J: Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Front Biosci. 8:d982–d996. 2003. View Article : Google Scholar : PubMed/NCBI | |
Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT and Horwitz AF: FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol. 6:154–161. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lipinski CA and Loftus JC: Targeting Pyk2 for therapeutic intervention. Expert Opin Ther Targets. 14:95–108. 2010. View Article : Google Scholar : | |
Lee BY, Timpson P, Horvath LG and Daly RJ: FAK signaling in human cancer as a target for therapeutics. Pharmacol Ther. 146:132–149. 2015. View Article : Google Scholar | |
Sulzmaier FJ, Jean C and Schlaepfer DD: FAK in cancer: Mechanistic findings and clinical applications. Nat Rev Cancer. 14:598–610. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dawson JC, Serrels A, Stupack DG, Schlaepfer DD and Frame MC: Targeting FAK in anticancer combination therapies. Nat Rev Cancer. 21:313–324. 2021. View Article : Google Scholar : PubMed/NCBI | |
Frame MC, Patel H, Serrels B, Lietha D and Eck MJ: The FERM domain: Organizing the structure and function of FAK. Nat Rev Mol Cell Biol. 11:802–814. 2010. View Article : Google Scholar : PubMed/NCBI | |
Acebró I, Righetto RD, Schoenherr C, de Buhr S, Redondo P, Culley J, Rodríguez CF, Daday C, Biyani N, Llorca O, et al: Structural basis of Focal Adhesion Kinase activation on lipid membranes. EMBO J. 39:e1047432020. | |
Serrels A, Lund T, Serrels B, Byron A, McPherson RC, von Kriegsheim A, Gómez-Cuadrado L, Canel M, Muir M, Ring JE, et al: Nuclear FAK controls chemokine transcription, Tregs, and evasion of anti-tumor immunity. Cell. 163:160–173. 2015. View Article : Google Scholar : PubMed/NCBI | |
Canel M, Taggart D, Sims AH, Lonergan DW, Waizenegger IC and Serrels A: T-cell co-stimulation in combination with targeting FAK drives enhanced anti-tumor immunity. Elife. 9:e480922020. View Article : Google Scholar : PubMed/NCBI | |
Osiak AE, Zenner G and Linder S: Subconfluent endothelial cells form podosomes downstream of cytokine and RhoGTPase signaling. Exp Cell Res. 307:342–353. 2005. View Article : Google Scholar | |
Chen CS, Alonso JL, Ostuni E, Whitesides GM and Ingber DE: Cell shape provides global control of focal adhesion assembly. Biochem Biophys Res Commun. 307:355–361. 2003. View Article : Google Scholar : PubMed/NCBI | |
Van Aelst L and D'Souza-Schorey C: Rho GTPases and signaling networks. Genes Dev. 11:2295–2322. 1997. View Article : Google Scholar | |
Ridley AJ: Rho family proteins: Coordinating cell responses. Trends Cell Biol. 11:471–477. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jaffe AB and Hall A: Rho GTPases: Biochemistry and biology. Annu Rev Cell Dev Biol. 21:247–269. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sahai E and Marshall CJ: RHO-GTPases and cancer. Nat Rev Cancer. 2:133–142. 2002. View Article : Google Scholar | |
Del Pulgar TG, Benitah SA, Valerón PF, Espina C and Lacal JC: Rho GTPase expression in tumourigenesis: Evidence for a significant link. Bioessays. 27:602–613. 2005. View Article : Google Scholar | |
Hodge RG and Ridley AJ: Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol. 17:496–510. 2016. View Article : Google Scholar : PubMed/NCBI | |
Berken A, Thomas C and Wittinghofer A: A new family of RhoGEFs activates the Rop molecular switch in plants. Nature. 436:1176–1180. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bos JL, Rehmann H and Wittinghofer A: GEFs and GAPs: Critical elements in the control of small G proteins. Cell. 129:865–877. 2007. View Article : Google Scholar : PubMed/NCBI | |
Marinissen MJ and Gutkind JS: Scaffold proteins dictate Rho GTPase-signaling specificity. Trends Biochemical Sci. 30:423–426. 2005. View Article : Google Scholar | |
García-Mata R and Burridge K: Catching a GEF by its tail. Trends Cell Biol. 17:36–43. 2007. View Article : Google Scholar | |
Tcherkezian J and Lamarche-Vane N: Current knowledge of the large RhoGAP family of proteins. Biol Cell. 99:67–86. 2007. View Article : Google Scholar : PubMed/NCBI | |
Durkin ME, Yuan BZ, Zhou X, Zimonjic DB, Lowy DR, Thorgeirsson SS and Popescu NC: DLC-1: A Rho GTPase-activating protein and tumour suppressor. J Cell Mol Med. 11:1185–1207. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kim TY, Jong HS, Song SH, Dimtchev A, Jeong SJ, Lee JW, Kim TY, Kim NK, Jung M and Bang YJ: Transcriptional silencing of the DLC-1 tumor suppressor gene by epigenetic mechanism in gastric cancer cells. Oncogene. 22:3943–3951. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ullmannova V and Popescu NC: Expression profile of the tumor suppressor genes DLC-1 and DLC-2 in solid tumors. Int J Oncol. 29:1127–1132. 2006.PubMed/NCBI | |
Zhang X, Feng J, Cheng Y, Yao Y, Ye X, Fu T and Cheng H: Characterization of differentially expressed genes in ovarian cancer by cDNA microarrays. Int J Gynecol Cancer. 15:50–57. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yuan BZ, Jefferson AM, Baldwin KT, Thorgeirsson SS, Popescu NC and Reynolds SH: DLC-1 operates as a tumor suppressor gene in human non-small cell lung carcinomas. Oncogene. 23:1405–1411. 2004. View Article : Google Scholar | |
Healy KD, Kim TY, Shutes AT, Bang YJ, Juliano RL and Der CJ: RhoGAP DLC-1 tumor suppression and aberrant Rho GTPase activation in lung cancer. Proc Am Assoc Cancer Res. 47:9702006. | |
Nakamura T, Furukawa Y, Nakagawa H, Tsunoda T, Ohigashi H, Murata K, Ishikawa O, Ohgaki K, Kashimura N, Miyamoto M, et al: Genome-wide cDNA microarray analysis of gene expression profiles in pancreatic cancers using populations of tumor cells and normal ductal epithelial cells selected for purity by laser microdissection. Oncogene. 23:2385–2400. 2004. View Article : Google Scholar : PubMed/NCBI | |
Guan M, Zhou X, Soulitzis N, Spandidos DA and Popescu NC: Aberrant methylation and deacetylation of deleted in liver cancer-1 gene in prostate cancer: Potential clinical applications. Clin Cancer Res. 12:1412–1419. 2006. View Article : Google Scholar : PubMed/NCBI | |
Plaumann M, Seitz S, Frege R, Estevez-Schwarz L and Scherneck S: Analysis of DLC-1 expression in human breast cancer. J Cancer Res Clin Oncol. 129:349–354. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gatalica Z, Velagaleti G, Kuivaniemi H, Tromp G, Palazzo J, Graves KM, Guigneaux M, Wood T, Sinha M and Luxon B: Gene expression profile of an adenomyoepithelioma of the breast with a reciprocal translocation involving chromosomes 8-16. Cancer Genet Cytogenet. 156:14–22. 2005. View Article : Google Scholar | |
Ng IO, Liang ZD, Cao L and Lee TK: DLC-1 is deleted in primary hepatocellular carcinoma and exerts inhibitory effects on the proliferation of hepatoma cell lines with deleted DLC-1. Cancer Res. 60:6581–6584. 2000.PubMed/NCBI | |
Wong CM, Lee JMF, Ching YP, Jin DY and Ng IO: Genetic and epigenetic alterations of DLC-1 gene in hepatocellular carcinoma. Cancer Res. 63:7646–7651. 2003.PubMed/NCBI | |
Yuan BZ, Miller MJ, Keck CL, Zimonjic DB, Thorgeirsson SS and Popescu NC: Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP. Cancer Res. 58:2196–2199. 1998.PubMed/NCBI | |
Li G, Du X, Vass WC, Papageorge AG, Lowy DR and Qian X: Full activity of the deleted in liver cancer 1 (DLC1) tumor suppressor depends on an LD-like motif that binds talin and focal adhesion kinase (FAK). Proc Natl Acad Sci USA. 108:17129–17134. 2011. View Article : Google Scholar : PubMed/NCBI | |
Beningo KA, Dembo M, Kaverina I, Small JV and Wang YL: Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol. 153:881–888. 2001. View Article : Google Scholar : PubMed/NCBI | |
Goldmann WH: Role of vinculin in cellular mechanotransduction. Cell Biol Int. 40:241–256. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang DY, Melero C, Albaraky A, Atherton P, Jansen KA, Dimitracopoulos A, Dajas-Bailador F, Reid A, Franze K and Ballestrem C: Vinculin is required for neuronal mechanosensing but not for axon outgrowth. Exp Cell Res. 407:1128052021. View Article : Google Scholar : PubMed/NCBI | |
Margadant F, Chew LL, Hu X, Yu H, Bate N, Zhang X and Sheetz M: Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin. PLoS Biol. 9:e10012232011. View Article : Google Scholar : PubMed/NCBI | |
Bakolitsa C, Cohen DM, Bankston LA, Bobkov AA, Cadwell GW, Jennings L, Critchley DR, Craig SW and Liddington RC: Structural basis for vinculin activation at sites of cell adhesion. Nature. 430:583–586. 2004. View Article : Google Scholar : PubMed/NCBI | |
Borgon RA, Vonrhein C, Bricogne G, Bois PR and Izard T: Crystal structure of human vinculin. Structure. 12:1189–1197. 2004. View Article : Google Scholar : PubMed/NCBI | |
DeMali KA, Barlow CA and Burridge K: Recruitment of the Arp2/3 complex to vinculin: Coupling membrane protrusion to matrix adhesion. J Cell Biol. 159:881–891. 2002. View Article : Google Scholar : PubMed/NCBI | |
Brindle NP, Holt MR, Davies JE, Price CJ and Critchley DR: The focal-adhesion vasodilator-stimulated phosphoprotein (VASP) binds to the proline-rich domain in vinculin. Biochemical J. 318:753–757. 1996. View Article : Google Scholar | |
Del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM and Sheetz MP: Stretching single talin rod molecules activates vinculin binding. Science. 323:638–641. 2009. View Article : Google Scholar : PubMed/NCBI | |
Goldmann W, Niggli V, Kaufmann S and Isenberg G: Probing actin and liposome interaction of talin and talin-vinculin complexes: A kinetic, thermodynamic and lipid labeling study. Biochemistry. 31:7665–7671. 1992. View Article : Google Scholar : PubMed/NCBI | |
Ling K, Schill NJ, Wagoner MP, Sun Y and Anderson RA: Movin'on up: The role of PtdIns(4,5)P(2) in cell migration. Trends Cell Biol. 16:276–284. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kelley CF, Litschel T, Schumacher S, Dedden D, Schwille P and Mizuno N: Phosphoinositides regulate force-independent interactions between talin, vinculin, and actin. Elife. 9:e561102020. View Article : Google Scholar : PubMed/NCBI | |
Wen KK, Rubenstein PA and DeMali KA: Vinculin nucleates actin polymerization and modifies actin filament structure. J Biol Chem. 284:30463–30473. 2009. View Article : Google Scholar : PubMed/NCBI | |
Atherton P, Lausecker F, Carisey A, Gilmore A, Critchley D, Barsukov I and Ballestrem C: Relief of talin autoinhibition triggers a force-independent association with vinculin. J Cell Biol. 219. pp. e2019031342020, View Article : Google Scholar | |
Bays JL and DeMali KA: Vinculin in cell-cell and cell-matrix adhesions. Cell Mol Life Sci. 74:2999–3009. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Chan SW, Zhang X, Walsh M, Lim CJ, Hong W and Song H: Structural basis of YAP recognition by TEAD4 in the hippo pathway. Genes Dev. 24:290–300. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nardone G, Oliver-De La Cruz J, Vrbsky J, Martini C, Pribyl J, Skládal P, Pešl M, Caluori G, Pagliari S, Martino F, et al: YAP regulates cell mechanics by controlling focal adhesion assembly. Nat Commun. 8:153212017. View Article : Google Scholar : PubMed/NCBI | |
Chen YA, Lu CY, Cheng TY, Pan SH, Chen HF and Chang NS: WW domain-containing proteins YAP and TAZ in the hippo pathway as key regulators in stemness maintenance, tissue homeostasis, and tumorigenesis. Front Oncol. 9:602019. View Article : Google Scholar : PubMed/NCBI | |
Dupont S: Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res. 343:42–53. 2016. View Article : Google Scholar | |
Seetharaman S and Etienne-Manneville S: Integrin diversity brings specificity in mechanotransduction. Biol Cell. 110:49–64. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kurotsu S, Sadahiro T, Fujita R, Tani H, Yamakawa H, Tamura F, Isomi M, Kojima H, Yamada Y, Abe Y, et al: Soft matrix promotes cardiac reprogramming via inhibition of YAP/TAZ and suppression of fibroblast signatures. Stem Cell Rep. 15:612–628. 2020. View Article : Google Scholar | |
Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, et al: Tensional homeostasis and the malignant phenotype. Cancer Cell. 8:241–254. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lai MT, Hua CH, Tsai MH, Wan L, Lin YJ, Chen CM, Chiu IW, Chan C, Tsai FJ and Jinn-Chyuan Sheu J: Talin-1 overexpression defines high risk for aggressive oral squamous cell carcinoma and promotes cancer metastasis. J Pathol. 224:367–376. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bostanci O, Kemik O, Kemik A, Battal M, Demir U, Purisa S and Mihmanli M: A novel screening test for colon cancer: Talin-1. Eur Rev Med Pharmacol Sci. 18:2533–2537. 2014.PubMed/NCBI | |
Sakamoto S, McCann RO, Dhir R and Kyprianou N: Talin1 promotes tumor invasion and metastasis via focal adhesion signaling and anoikis resistance. Cancer Res. 70:1885–1895. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang JL, Qian YB, Zhu LX and Xiong QR: Talin1, a valuable marker for diagnosis and prognostic assessment of human hepatocelluar carcinomas. Asian Pac J Cancer Prev. 12:3265–3269. 2011.PubMed/NCBI | |
Fang KP, Zhang JL, Ren YH and Qian YB: Talin-1 correlates with reduced invasion and migration in human hepatocellular carcinoma cells. Asian Pac J Cancer Prev. 15:2655–2661. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Xiao J, Zhang B, Shelite TR, Su Z, Chang Q, Judy B, Li X, Drelich A, Bei J, et al: Increased talin-vinculin spatial proximities in livers in response to spotted fever group rickettsial and Ebola virus infections. Lab Invest. 100:1030–1041. 2020. View Article : Google Scholar : PubMed/NCBI | |
Murata K, Tsukuda S, Suizu F, Kimura A, Sugiyama M, Watashi K, Noguchi M and Mizokami M: Immunomodulatory mechanism of acyclic nucleoside phosphates in treatment of hepatitis B virus infection. Hepatology. 71:1533–1545. 2020. View Article : Google Scholar | |
Van de Klundert MA, Van den Biggelaar M, Kootstra NA and Zaaijer HL: Hepatitis B virus protein X induces degradation of Talin-1. Viruses. 8:2812016. View Article : Google Scholar : | |
Ji L, Jiang F, Cui X and Qin C: Talin1 knockdown prohibits the proliferation and migration of colorectal cancer cells via the EMT signaling pathway. Oncol Lett. 18:5408–5416. 2019.PubMed/NCBI | |
Azizi L, Cowell AR, Mykuliak VV, Goult BT, Turkki P and Hytönen VP: Cancer associated talin point mutations disorganise cell adhesion and migration. Sci Rep. 11:3472021. View Article : Google Scholar : PubMed/NCBI | |
Aboelfotoh AO, Foda EM, Elghandour AM, Teama NM, Abouzein RA and Mohamed GA: Talin-1; other than a potential marker for hepatocellular carcinoma diagnosis. Arab J Gastroenterol. 21:80–84. 2020. View Article : Google Scholar : PubMed/NCBI |