1
|
Bignell GR, Warren W, Seal S, Takahashi M,
Rapley E, Barfoot R, Green H, Brown C, Biggs PJ, Lakhani SR, et al:
Identification of the familial cylindromatosis tumour-suppressor
gene. Nat Genet. 25:160–165. 2000. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Hellerbrand C and Massoumi R:
Cylindromatosis-a protective molecule against liver diseases. Med
Res Rev. 36:342–359. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Orfanidou T, Xanthopoulos K, Dafou D,
Pseftogas A, Hadweh P, Psyllaki C, Hatzivassiliou E and Mosialos G:
Down-regulation of the tumor suppressor CYLD enhances the
transformed phenotype of human breast cancer cells. Anticancer Res.
37:3493–3503. 2017.PubMed/NCBI
|
4
|
Xie S, Wu Y, Hao H, Li J, Guo S, Xie W, Li
D, Zhou J, Gao J and Liu M: CYLD deficiency promotes pancreatic
cancer development by causing mitotic defects. J Cell Physiol.
234:9723–9732. 2019. View Article : Google Scholar
|
5
|
Massoumi R, Chmielarska K, Hennecke K,
Pfeifer A and Fassler R: Cyld inhibits tumor cell proliferation by
blocking Bcl-3-dependent NF-kappaB signaling. Cell. 125:665–677.
2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Massoumi R, Kuphal S, Hellerbrand C, Haas
B, Wild P, Spruss T, Pfeifer A, Fässler R and Bosserhoff AK:
Down-regulation of CYLD expression by Snail promotes tumor
progression in malignant melanoma. J Exp Med. 206:221–232. 2009.
View Article : Google Scholar : PubMed/NCBI
|
7
|
de Jel MM, Schott M, Lamm S, Neuhuber W,
Kuphal S and Bosserhoff AK: Loss of CYLD accelerates melanoma
development and progression in the Tg(Grm1) melanoma mouse model.
Oncogenesis. 8:562019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Strub T, Ballotti R and Bertolotto C: The
'ART' of epigenetics in melanoma: From histone 'alterations, to
resistance and therapies'. Theranostics. 10:1777–1797. 2020.
View Article : Google Scholar :
|
9
|
Nebbioso A, Tambaro FP, Dell'Aversana C
and Altucci L: Cancer epigenetics: Moving forward. PLoS Genet.
14:e10073622018. View Article : Google Scholar :
|
10
|
Putiri EL and Robertson KD: Epigenetic
mechanisms and genome stability. Clin Epigenetics. 2:299–314. 2011.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Roesch A, Vultur A, Bogeski I, Wang H,
Zimmermann KM, Speicher D, Körbel C, Laschke MW, Gimotty PA,
Philipp SE, et al: Overcoming intrinsic multidrug resistance in
melanoma by blocking the mitochondrial respiratory chain of
slow-cycling JARID1B(high) cells. Cancer Cell. 23:811–825. 2013.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Strub T, Ghiraldini FG, Carcamo S, Li M,
Wroblewska A, Singh R, Goldberg MS, Hasson D, Wang Z, Gallagher SJ,
et al: SIRT6 haploinsufficiency induces BRAFV600E
melanoma cell resistance to MAPK inhibitors via IGF signalling. Nat
Commun. 9:34402018. View Article : Google Scholar
|
13
|
Schiffner S, Braunger BM, de Jel MM,
Coupland SE, Tamm ER and Bosserhoff AK: Tg(Grm1) transgenic mice: A
murine model that mimics spontaneous uveal melanoma in humans? Exp
Eye Res. 127:59–68. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
San José-Enériz E, Agirre X, Rabal O,
Vilas-Zornoza A, Sanchez-Arias JA, Miranda E, Ugarte A, Roa S,
Paiva B, Estella-Hermoso de Mendoza A, et al: Discovery of
first-in-class reversible dual small molecule inhibitors against
G9a and DNMTs in hematological malignancies. Nat Commun.
8:154242017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Dietrich P, Koch A, Fritz V, Hartmann A,
Bosserhoff AK and Hellerbrand C: Wild type Kirsten rat sarcoma is a
novel microRNA-622-regulated therapeutic target for hepatocellular
carcinoma and contributes to sorafenib resistance. Gut.
67:1328–1341. 2018. View Article : Google Scholar
|
16
|
Langmead B: Aligning short sequencing
reads with Bowtie. Curr Protoc Bioinformatics Chapter 11. Unit
11.7. 2010.
|
17
|
Frankish A, Diekhans M, Ferreira AM,
Johnson R, Jungreis I, Loveland J, Mudge JM, Sisu C, Wright J,
Armstrong J, et al: GENCODE reference annotation for the human and
mouse genomes. Nucleic Acids Res. 47(D1): D766–D773. 2019.
View Article : Google Scholar :
|
18
|
Boeva V, Popova T, Bleakley K, Chiche P,
Cappo J, Schleiermacher G, Janoueix-Lerosey I, Delattre O and
Barillot E: Control-FREEC: A tool for assessing copy number and
allelic content using next-generation sequencing data.
Bioinformatics. 28:423–425. 2012. View Article : Google Scholar :
|
19
|
Dobin A, Davis CA, Schlesinger F, Drenkow
J, Zaleski C, Jha S, Batut P, Chaisson M and Gingeras TR: STAR:
Ultrafast universal RNA-seq aligner. Bioinformatics. 29:15–21.
2013. View Article : Google Scholar
|
20
|
Van der Auwera GA, Carneiro MO, Hartl C,
Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen
D, Thibault J, et al: From FastQ data to high confidence variant
calls: The genome analysis toolkit best practices pipeline. Curr
Protoc Bioinformatics. 43:11.10.1–11.10.33. 2013.
|
21
|
Cingolani P, Platts A, Wang le L, Coon M,
Nguyen T, Wang L, Land SJ, Lu X and Ruden DM: A program for
annotating and predicting the effects of single nucleotide
polymorphisms, SnpEff: SNPs in the genome of Drosophila
melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 6:80–92.
2012. View Article : Google Scholar
|
22
|
Farkas C, Fuentes-Villalobos F,
Rebolledo-Jaramillo B, Benavides F, Castro AF and Pincheira R:
Streamlined computational pipeline for genetic background
characterization of genetically engineered mice based on next
generation sequencing data. BMC Genomics. 20:1312019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cancer Genome Atlas Network: Genomic
classification of cutaneous melanoma. Cell. 161:1681–1696. 2015.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Schinke C, Mo Y, Yu Y, Amiri K, Sosman J,
Greally J and Verma A: Aberrant DNA methylation in malignant
melanoma. Melanoma Res. 20:253–265. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Micevic G, Theodosakis N and Bosenberg M:
Aberrant DNA methylation in melanoma: Biomarker and therapeutic
opportunities. Clin Epigenetics. 9:342017. View Article : Google Scholar :
|
26
|
Morgan MA and Shilatifard A: Chromatin
signatures of cancer. Genes Dev. 29:238–249. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Sharakhov IV and Sharakhova MV:
Heterochromatin, histone modifications, and nuclear architecture in
disease vectors. Curr Opin Insect Sci. 10:110–117. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Vardabasso C, Hake SB and Bernstein E:
Histone variant H2A.Z.2: A novel driver of melanoma progression.
Mol Cell Oncol. 3:e10734172016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Greiner D, Bonaldi T, Eskeland R, Roemer E
and Imhof A: Identification of a specific inhibitor of the histone
methyltransferase SU(VAR) 3-9. Nat Chem Biol. 1:143–145. 2005.
View Article : Google Scholar
|
30
|
Rea S, Eisenhaber F, O'Carroll D, Strahl
BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD
and Jenuwein T: Regulation of chromatin structure by site-specific
histone H3 methyltransferases. Nature. 406:593–599. 2000.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Han X, Han Y, Zheng Y, Sun Q, Ma T, Zhang
J and Xu L: Chaetocin induces apoptosis in human melanoma cells
through the generation of reactive oxygen species and the intrinsic
mitochondrial pathway, and exerts its anti-tumor activity in vivo.
PLoS One. 12:e01759502017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Cloos PA, Christensen J, Agger K and Helin
K: Erasing the methyl mark: Histone demethylases at the center of
cellular differentiation and disease. Genes Dev. 22:1115–1140.
2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kim MS, Cho HI, Yoon HJ, Ahn YH, Park EJ,
Jin YH and Jang YK: JIB-04, a small molecule histone demethylase
inhibitor, selectively targets colorectal cancer stem cells by
inhibiting the Wnt/β-catenin signaling pathway. Sci Rep.
8:66112018. View Article : Google Scholar
|
34
|
Zylicz JJ, Dietmann S, Gunesdogan U,
Hackett JA, Cougot D, Lee C and Surani MA: Chromatin dynamics and
the role of G9a in gene regulation and enhancer silencing during
early mouse development. Elife. 4:e095712015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hellerbrand C, Bumes E, Bataille F,
Dietmaier W, Massoumi R and Bosserhoff AK: Reduced expression of
CYLD in human colon and hepatocellular carcinomas. Carcinogenesis.
28:21–27. 2007. View Article : Google Scholar
|
36
|
Hayashi M, Jono H, Shinriki S, Nakamura T,
Guo J, Sueta A, Tomiguchi M, Fujiwara S, Yamamoto-Ibusuki M,
Murakami K, et al: Clinical significance of CYLD downregulation in
breast cancer. Breast Cancer Res Treat. 143:447–457. 2014.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Bauer M, Kantelhardt EJ, Stiewe T, Nist A,
Mernberger M, Politt K, Hanf V, Lantzsch T, Uleer C, Peschel S, et
al: Specific allelic variants of SNPs in the MDM2 and MDMX genes
are associated with earlier tumor onset and progression in
Caucasian breast cancer patients. Oncotarget. 10:1975–1992. 2019.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Elefanti L, Sacco G, Stagni C, Rastrelli
M, Menin C, Russo I and Alaibac M: TLR7 Gln11Leu single nucleotide
polymorphism and susceptibility to cutaneous melanoma. Oncol Lett.
12:275–280. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Jenner MW, Leone PE, Walker BA, Ross FM,
Johnson DC, Gonzalez D, Chiecchio L, Dachs Cabanas E, Dagrada GP,
Nightingale M, et al: Gene mapping and expression analysis of 16q
loss of heterozygosity identifies WWOX and CYLD as being important
in determining clinical outcome in multiple myeloma. Blood.
110:3291–3300. 2007. View Article : Google Scholar : PubMed/NCBI
|
40
|
Fernández-Majada V, Welz PS, Ermolaeva MA,
Schell M, Adam A, Dietlein F, Komander D, Büttner R, Thomas RK,
Schumacher B and Pasparakis M: The tumour suppressor CYLD regulates
the p53 DNA damage response. Nat Commun. 7:125082016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ghadami E, Nikbakhsh N, Fattahi S,
Kosari-Monfared M, Ranaee M, Taheri H, Amjadi-Moheb F, Godazandeh
G, Shafaei S, Nosrati A, et al: Epigenetic alterations of CYLD
promoter modulate its expression in gastric adenocarcinoma: A
footprint of infections. J Cell Physiol. 234:4115–4124. 2019.
View Article : Google Scholar
|
42
|
Zhong S, Fields CR, Su N, Pan YX and
Robertson KD: Pharmacologic inhibition of epigenetic modifications,
coupled with gene expression profiling, reveals novel targets of
aberrant DNA methylation and histone deacetylation in lung cancer.
Oncogene. 26:2621–2634. 2007. View Article : Google Scholar
|
43
|
Pannem RR, Dorn C, Hellerbrand C and
Massoumi R: Cylindromatosis gene CYLD regulates hepatocyte growth
factor expression in hepatic stellate cells through interaction
with histone deacetylase 7. Hepatology. 60:1066–1081. 2014.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Wickström SA, Masoumi KC, Khochbin S,
Fässler R and Massoumi R: CYLD negatively regulates cell-cycle
progression by inactivating HDAC6 and increasing the levels of
acetylated tubulin. EMBO J. 29:131–144. 2010. View Article : Google Scholar
|
45
|
Chi P, Allis CD and Wang GG: Covalent
histone modifications-miswritten, misinterpreted and mis-erased in
human cancers. Nat Rev Cancer. 10:457–469. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Kampranis SC and Tsichlis PN: Histone
demethylases and cancer. Adv Cancer Res. 102:103–169. 2009.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Wang L, Chang J, Varghese D, Dellinger M,
Kumar S, Best AM, Ruiz J, Bruick R, Peña-Llopis S, Xu J, et al: A
small molecule modulates Jumonji histone demethylase activity and
selectively inhibits cancer growth. Nat Commun. 4:20352013.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Rabal O, San José-Enériz E, Agirre X,
Sánchez-Arias JA, Vilas-Zornoza A, Ugarte A, de Miguel I, Miranda
E, Garate L, Fraga M, et al: Discovery of reversible DNA
methyltransferase and lysine methyltransferase G9a inhibitors with
antitumoral in vivo efficacy. J Med Chem. 61:6518–6545. 2018.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Fernández-Barrena MG, Arechederra M, Colyn
L, Berasain C and Avila MA: Epigenetics in hepatocellular carcinoma
development and therapy: The tip of the iceberg. JHEP Rep.
2:1001672020. View Article : Google Scholar : PubMed/NCBI
|
50
|
Barcena-Varela M, Caruso S, Llerena S,
Aacute;lvarez-Sola G, Uriarte I, Latasa MU, Urtasun R, Rebouissou
S, Alvarez L, Jimenez M, et al: Dual targeting of histone
methyltransferase G9a and DNA-methyltransferase 1 for the treatment
of experimental hepatocellular carcinoma. Hepatology. 69:587–603.
2019. View Article : Google Scholar
|
51
|
Colyn L, Bárcena-Varela M,
Aacute;lvarez-Sola G, Latasa MU, Uriarte I, Santamaría E, Herranz
JM, Santos-Laso A, Arechederra M, Ruiz de Gauna M, et al: Dual
targeting of G9a and DNA methyltransferase-1 for the treatment of
experimental cholangiocarcinoma. Hepatology. 73:2380–2396. 2021.
View Article : Google Scholar
|
52
|
De Beck L, Prosper F, Maes K, Vanderkerken
K and Breckpot K: Can CM272, a dual G9a/DNMT1 inhibitor, be used as
an immunomodulating agent to enhance the efficacy of existing
immunotherapies in melanoma? In: Presented at BACR: Novel
combination strategies for cancer treatment (poster session);
Antwerp. 2019
|
53
|
Ke H, Augustine CK, Gandham VD, Jin JY,
Tyler DS, Akiyama SK, Hall RP and Zhang JY: CYLD inhibits melanoma
growth and progression through suppression of the JNK/AP-1 and
β1-integrin signaling pathways. J Invest Dermatol. 133:221–229.
2013. View Article : Google Scholar
|
54
|
La T, Jin L, Liu XY, Song ZH, Farrelly M,
Feng YC, Yan XG, Zhang YY, Thorne RF, Zhang XD and Teng L:
Cylindromatosis is required for survival of a subset of melanoma
cells. Oncol Res. 28:385–398. 2020. View Article : Google Scholar : PubMed/NCBI
|
55
|
Rodriguez-Madoz JR, San Jose-Eneriz E,
Rabal O, Zapata-Linares N, Miranda E, Rodriguez S, Porciuncula A,
Vilas-Zornoza A, Garate L, Segura V, et al: Reversible dual
inhibitor against G9a and DNMT1 improves human iPSC derivation
enhancing MET and facilitating transcription factor engagement to
the genome. PLoS One. 12:e01902752017. View Article : Google Scholar : PubMed/NCBI
|
56
|
Dang NN, Jiao J, Meng X, An Y, Han C and
Huang S: Abnormal overexpression of G9a in melanoma cells promotes
cancer progression via upregulation of the Notch1 signaling
pathway. Aging (Albany NY). 12:2393–2407. 2020. View Article : Google Scholar
|
57
|
Kato S, Weng QY, Insco ML, Chen KY,
Muralidhar S, Pozniak J, Diaz JMS, Drier Y, Nguyen N, Lo JA, et al:
Gain-of-function genetic alterations of G9a drive oncogenesis.
Cancer Discov. 10:980–997. 2020. View Article : Google Scholar : PubMed/NCBI
|
58
|
Pan MR, Hsu MC, Chen LT and Hung WC: G9a
orchestrates PCL3 and KDM7A to promote histone H3K27 methylation.
Sci Rep. 5:187092015. View Article : Google Scholar : PubMed/NCBI
|
59
|
Ceol CJ, Houvras Y, Jane-Valbuena J,
Bilodeau S, Orlando DA, Battisti V, Fritsch L, Lin WM, Hollmann TJ,
Ferré F, et al: The histone methyltransferase SETDB1 is recurrently
amplified in melanoma and accelerates its onset. Nature.
471:513–517. 2011. View Article : Google Scholar : PubMed/NCBI
|
60
|
Fritsch L, Robin P, Mathieu JR, Souidi M,
Hinaux H, Rougeulle C, Harel-Bellan A, Ameyar-Zazoua M and
Ait-Si-Ali S: A subset of the histone H3 lysine 9
methyltransferases Suv39h1, G9a, GLP, and SETDB1 participate in a
multimeric complex. Mol Cell. 37:46–56. 2010. View Article : Google Scholar : PubMed/NCBI
|
61
|
Pinto-Fernandez A and Kessler BM: DUBbing
cancer: Deubiquitylating enzymes involved in epigenetics, DNA
damage and the cell cycle as therapeutic targets. Front Genet.
7:1332016. View Article : Google Scholar : PubMed/NCBI
|
62
|
Wu Y, Wang Y, Yang XH, Kang T, Zhao Y,
Wang C, Evers BM and Zhou BP: The deubiquitinase USP28 stabilizes
LSD1 and confers stem-cell-like traits to breast cancer cells. Cell
Rep. 5:224–236. 2013. View Article : Google Scholar : PubMed/NCBI
|
63
|
Wang YC, Wang SA, Chen PH, Hsu TI, Yang
WB, Chuang YP, Su WC, Liaw HJ, Chang WC and Hung JJ: Variants of
ubiquitin-specific peptidase 24 play a crucial role in lung cancer
malignancy. Oncogene. 35:3669–3680. 2016. View Article : Google Scholar
|
64
|
Li G, Ji T, Chen J, Fu Y, Hou L, Feng Y,
Zhang T, Song T, Zhao J, Endo Y, et al: CRL4DCAF8
ubiquitin ligase targets histone H3K79 and promotes H3K9
methylation in the liver. Cell Rep. 18:1499–1511. 2017. View Article : Google Scholar : PubMed/NCBI
|