1
|
Chase A, Jackson CL, Angelini GL and
Suleiman MS: Coronary artery disease progression is associated with
increased resistance of hearts and myocytes to cardiac insults.
Crit Care Med. 35:2344–2351. 2007. View Article : Google Scholar
|
2
|
Barth AS, Merk S, Arnoldi E, Zwermann L,
Kloos P, Gebauer M, Steinmeyer K, Bleich M, Kääb S, Hinterseer M,
et al: Reprogramming of the human atrial transcriptome in permanent
atrial fibrillation: Expression of a ventricular-like genomic
signature. Circ Res. 96:1022–1029. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Barth AS, Merk S, Arnoldi E, Zwermann L,
Kloos P, Gebauer M, Steinmeyer K, Bleich M, Kääb S, Pfeufer A, et
al: Functional profiling of human atrial and ventricular gene
expression. Pflugers Arch. 450:201–208. 2005. View Article : Google Scholar
|
4
|
Ellinghaus P, Scheubel RJ, Dobrev D,
Ravens U, Holtz J, Huetter J, Nielsch U and Morawietz H: Comparing
the global mRNA expression profile of human atrial and ventricular
myocardium with high-density oligonucleotide arrays. J Thorac
Cardiovasc Surg. 129:1383–1390. 2005. View Article : Google Scholar
|
5
|
Kääb S, Barth AS, Margerie D, Dugas M,
Gebauer M, Zwermann L, Merk S, Pfeufer A, Steinmeyer K, Bleich M,
et al: Global gene expression in human myocardium-oligonucleotide
microarray analysis of regional diversity and transcriptional
regulation in heart failure. J Mol Med (Berl). 82:308–316. 2004.
View Article : Google Scholar
|
6
|
Asp J, Synnergren J, Jonsson M, Dellgren G
and Jeppsson A: Comparison of human cardiac gene expression
profiles in paired samples of right atrium and left ventricle
collected in vivo. Physiol Genomics. 44:89–98. 2012. View Article : Google Scholar
|
7
|
Borchert B, Tripathi S, Francino A,
Navarro-Lopez F and Kraft T: The left and right ventricle of a
patient with a R723G mutation of the beta-myosin heavy chain and
severe hypertrophic cardiomyopathy show no differences in the
expression of myosin mRNA. Cardiol J. 17:518–522. 2010.
|
8
|
Bond AR, Iacobazzi D, Abdul-Ghani S,
Ghorbel M, Heesom K, Wilson M, Gillett C, George SJ, Caputo M,
Suleiman S and Tulloh RMR: Changes in contractile protein
expression are linked to ventricular stiffness in infants with
pulmonary hypertension or right ventricular hypertrophy due to
congenital heart disease. Open Heart. 5:e0007162018. View Article : Google Scholar
|
9
|
Bond AR, Iacobazzi D, Abdul-Ghani S,
Ghorbel MT, Heesom KJ, George SJ, Caputo M, Suleiman MS and Tulloh
RM: The cardiac proteome in patients with congenital ventricular
septal defect: A comparative study between right atria and right
ventricles. J Proteomics. 191:107–113. 2019. View Article : Google Scholar
|
10
|
Iacobazzi D, Suleiman MS, Ghorbel M,
George SJ, Caputo M and Tulloh RM: Cellular and molecular basis of
RV hypertrophy in congenital heart disease. Heart. 102:12–17. 2016.
View Article : Google Scholar
|
11
|
Littlejohns B, Heesom K, Angelini GD and
Suleiman MS: The effect of disease on human cardiac protein
expression profiles in paired samples from right and left
ventricles. Clin Proteomics. 11:342014. View Article : Google Scholar
|
12
|
Fiorentino F, Angelini GD, Suleiman MS,
Rahman A, Anderson J, Bryan AJ, Culliford LA, Moscarelli M, Punjabi
PP and Reeves BC: Investigating the effect of remote ischaemic
preconditioning on biomarkers of stress and injury-related
signalling in patients having isolated coronary artery bypass
grafting or aortic valve replacement using cardiopulmonary bypass:
Study protocol for a randomized controlled trial. Trials.
16:1812015. View Article : Google Scholar
|
13
|
Moscarelli M, Fiorentino F, Suleiman MS,
Emanueli C, Reeves BC, Punjabi PP and Angelini GD: Remote ischaemic
preconditioning in isolated aortic valve and coronary artery bypass
surgery: A randomized trial†. Eur J Cardiothorac Surg. 55:905–912.
2019. View Article : Google Scholar
|
14
|
Välikangas T, Suomi T and Elo LL: A
comprehensive evaluation of popular proteomics software workflows
for label-free proteome quantification and imputation. Brief
Bioinform. 19:1344–1355. 2018.
|
15
|
She S, Jiang L, Zhang Z, Yang M, Hu H, Hu
P, Liao Y, Yang Y and Ren H: Identification of the C-reactive
protein interaction network using a bioinformatics approach
provides insights into the molecular pathogenesis of hepatocellular
carcinoma. Cell Physiol Biochem. 48:741–752. 2018. View Article : Google Scholar
|
16
|
Pascovici D, Handler DC, Wu JX and Haynes
PA: Multiple testing corrections in quantitative proteomics: A
useful but blunt tool. Proteomics. 16:2448–2453. 2016. View Article : Google Scholar
|
17
|
Israeli-Rosenberg S, Manso AM, Okada H and
Ross RS: Integrins and integrin-associated proteins in the cardiac
myocyte. Circ Res. 114:572–586. 2014. View Article : Google Scholar :
|
18
|
Sharp WW, Simpson DG, Borg TK, Samarel AM
and Terracio L: Mechanical forces regulate focal adhesion and
costamere assembly in cardiac myocytes. Am J Physiol.
273:H546–H556. 1997.
|
19
|
Balasubramanian S, Quinones L, Kasiganesan
H, Zhang Y, Pleasant DL, Sundararaj KP, Zile MR, Bradshaw AD and
Kuppuswamy D: β3 integrin in cardiac fibroblast is critical for
extracellular matrix accumulation during pressure overload
hypertrophy in mouse. PLoS One. 7:e450762012. View Article : Google Scholar
|
20
|
Johnston RK, Balasubramanian S,
Kasiganesan H, Baicu CF, Zile MR and Kuppuswamy D: Beta3
integrin-mediated ubiquitination activates survival signaling
during myocardial hypertrophy. FASEB J. 23:2759–2771. 2009.
View Article : Google Scholar
|
21
|
Suryakumar G, Kasiganesan H,
Balasubramanian S and Kuppuswamy D: Lack of beta3 integrin
signaling contributes to calpain-mediated myocardial cell loss in
pressure-overloaded myocardium. J Cardiovasc Pharmacol. 55:567–573.
2010. View Article : Google Scholar
|
22
|
Chen C, Li R, Ross RS and Manso AM:
Integrins and integrin-related proteins in cardiac fibrosis. J Mol
Cell Cardiol. 93:162–174. 2016. View Article : Google Scholar :
|
23
|
Jenkins WS, Vesey AT, Stirrat C, Connell
M, Lucatelli C, Neale A, Moles C, Vickers A, Fletcher A, Pawade T,
et al: Cardiac αV β3 integrin expression
following acute myocardial infarction in humans. Heart.
103:607–615. 2017. View Article : Google Scholar
|
24
|
Sun M, Opavsky MA, Stewart DJ, Rabinovitch
M, Dawood F, Wen WH and Liu PP: Temporal response and localization
of integrins beta1 and beta3 in the heart after myocardial
infarction: Regulation by cytokines. Circulation. 107:1046–1052.
2003. View Article : Google Scholar
|
25
|
Adorno-Cruz V and Liu H: Regulation and
functions of integrin α2 in cell adhesion and disease. Genes Dis.
6:16–24. 2018. View Article : Google Scholar
|
26
|
Wada T: Coagulofibrinolytic changes in
patients with post-cardiac arrest syndrome. Front Med (Lausanne).
4:1562017. View Article : Google Scholar
|
27
|
Pick R, Begandt D, Stocker TJ, Salvermoser
M, Thome S, Böttcher RT, Montanez E, Harrison U, Forné I, Khandoga
AG, et al: Coronin 1A, a novel player in integrin biology, controls
neutrophil trafficking in innate immunity. Blood. 130:847–858.
2017. View Article : Google Scholar
|
28
|
Mollenhauer M, Friedrichs K, Lange M,
Gesenberg J, Remane L, Kerkenpaß C, Krause J, Schneider J, Ravekes
T, Maass M, et al: Myeloperoxidase mediates postischemic
arrhythmogenic ventricular remodeling. Circ Res. 121:56–70. 2017.
View Article : Google Scholar
|
29
|
Di Nardo A, Vitiello A and Gallo RL:
Cutting edge: Mast cell antimicrobial activity is mediated by
expression of cathelicidin antimicrobial peptide. J Immunol.
170:2274–2278. 2003. View Article : Google Scholar
|
30
|
Bei Y, Pan LL, Zhou Q, Zhao C, Xie Y, Wu
C, Meng X, Gu H, Xu J, Zhou L, et al: Cathelicidin-related
antimicrobial peptide protects against myocardial
ischemia/reperfusion injury. BMC Med. 17:422019. View Article : Google Scholar
|
31
|
Zheng X, Peng M, Li Y, Wang X, Lu W, Wang
X, Shan Y, Li R, Gao L and Qiu C: Cathelicidin-related
antimicrobial peptide protects against cardiac fibrosis in diabetic
mice heart by regulating endothelialmesenchymal transition. Int J
Biol Sci. 15:2393–2407. 2019. View Article : Google Scholar
|
32
|
Paparella D, Yau TM and Young E:
Cardiopulmonary bypass induced inflammation: Pathophysiology and
treatment. An update Eur J Cardiothorac Surg. 21:232–244. 2002.
View Article : Google Scholar
|
33
|
Andres AM, Tucker KC, Thomas A, Taylor DJ,
Sengstock D, Jahania SM, Dabir R, Pourpirali S, Brown JA, Westbrook
DG, et al: Mitophagy and mitochondrial biogenesis in atrial tissue
of patients undergoing heart surgery with cardiopulmonary bypass.
JCI Insight. 2:e893032017. View Article : Google Scholar
|
34
|
Wirth C, Brandt U, Hunte C and Zickermann
V: Structure and function of mitochondrial complex I. Biochim
Biophys Acta. 1857:902–914. 2016. View Article : Google Scholar
|
35
|
Weiss AKH, Loeffler JR, Liedl KR, Gstach H
and Jansen-Dürr P: The fumarylacetoacetate hydrolase (FAH)
superfamily of enzymes: Multifunctional enzymes from microbes to
mitochondria. Biochem Soc Trans. 46:295–309. 2018. View Article : Google Scholar
|
36
|
Da Cruz S and Martinou JC: Purification
and proteomic analysis of the mouse liver mitochondrial inner
membrane. Methods Mol Biol. 432:101–116. 2008. View Article : Google Scholar
|
37
|
Davies VJ, Powell KA, White KE, Yip W,
Hogan V, Hollins AJ, Davies JR, Piechota M, Brownstein DG, Moat SJ,
et al: A missense mutation in the murine Opa3 gene models human
costeff syndrome. Brain. 131:368–380. 2008. View Article : Google Scholar
|
38
|
Stoll S, Xi J, Ma B, Leimena C, Behringer
EJ, Qin G and Qiu H: The valosin-containing protein protects the
heart against pathological Ca2+ overload by modulating
Ca2+ uptake proteins. Toxicol Sci. 171:473–484. 2019.
View Article : Google Scholar
|
39
|
Vrbacký M, Kovalčíková J, Chawengsaksophak
K, Beck IM, Mráček T, Nůsková H, Sedmera D, Papoušek F, Kolář F,
Sobol M, et al: Knockout of Tmem70 alters biogenesis of ATP
synthase and leads to embryonal lethality in mice. Hum Mol Genet.
25:4674–4685. 2016.
|
40
|
Yadav H, Unsworth B, Fontana M, Diller GP,
Kyriacou A, Baruah R, Mayet J and Francis DP: Selective right
ventricular impairment following coronary artery bypass graft
surgery. Eur J Cardiothorac Surg. 37:393–398. 2010.
|
41
|
Singh A, Huang X, Dai L, Wyler D,
Alfirevic A, Blackstone EH, Pettersson GB and Duncan AE: Right
ventricular function is reduced during cardiac surgery independent
of procedural characteristics, reoperative status, or
pericardiotomy. J Thorac Cardiovasc Surg. 159:1430–1438.e4. 2020.
View Article : Google Scholar
|
42
|
Rösner A, Avenarius D, Malm S, Iqbal A,
Schirmer H, Bijnens B and Myrmel T: Changes in right ventricular
shape and deformation following coronary artery bypass
surgery-insights from echocardiography with strain rate and
magnetic resonance imaging. Echocardiography. 32:1809–1820. 2015.
View Article : Google Scholar
|
43
|
Suleiman MS, Hancock M, Shukla R,
Rajakaruna C and Angelini GD: Cardioplegic strategies to protect
the hypertrophic heart during cardiac surgery. Perfusion. 26(Suppl
1): S48–S56. 2011. View Article : Google Scholar
|
44
|
Cotecchia S, Del Vescovo CD, Colella M,
Caso S and Diviani D: The alpha1-adrenergic receptors in cardiac
hypertrophy: Signaling mechanisms and functional implications. Cell
Signal. 27:1984–1993. 2015. View Article : Google Scholar
|
45
|
Dent MR, Dhalla NS and Tappia PS:
Phospholipase C gene expression, protein content, and activities in
cardiac hypertrophy and heart failure due to volume overload. Am J
Physiol Heart Circ Physiol. 287:H719–H727. 2004. View Article : Google Scholar
|
46
|
Khalilimeybodi A, Daneshmehr A and
Sharif-Kashani B: Investigating β-adrenergic-induced cardiac
hypertrophy through computational approach: Classical and
non-classical pathways. J Physiol Sci. 68:503–520. 2018. View Article : Google Scholar
|
47
|
Nakao K, Minobe W, Roden R, Bristow MR and
Leinwand LA: Myosin heavy chain gene expression in human heart
failure. J Clin Invest. 100:2362–2370. 1997. View Article : Google Scholar
|
48
|
Woo A, Rakowski H, Liew JC, Zhao MS, Liew
CC, Parker TG, Zeller M, Wigle ED and Sole MJ: Mutations of the
beta myosin heavy chain gene in hypertrophic cardiomyopathy:
Critical functional sites determine prognosis. Heart. 89:1179–1185.
2003. View Article : Google Scholar
|
49
|
Rudolph T, Schaps KP, Steven D, Koester R,
Rudolph V, Berger J, Terres W, Meinertz T and Kaehler J:
Interleukin-3 is elevated in patients with coronary artery disease
and predicts restenosis after percutaneous coronary intervention.
Int J Cardiol. 132:392–397. 2009. View Article : Google Scholar
|