Multifaceted regulation and functions of 53BP1 in NHEJ‑mediated DSB repair (Review)
- Authors:
- Tiantian Lei
- Suya Du
- Zhe Peng
- Lin Chen
-
Affiliations: Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China, Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China - Published online on: May 16, 2022 https://doi.org/10.3892/ijmm.2022.5145
- Article Number: 90
-
Copyright: © Lei et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Aparicio T, Baer R and Gautier J: DNA double-strand break repair pathway choice and cancer. DNA Repair (Amst). 19:169–175. 2014. View Article : Google Scholar | |
Jackson SP and Bartek J: The DNA-damage response in human biology and disease. Nature. 461:1071–1078. 2009. View Article : Google Scholar : PubMed/NCBI | |
Alt FW and Schwer B: DNA double-strand breaks as drivers of neural genomic change, function, and disease. DNA Repair (Amst). 71:158–163. 2018. View Article : Google Scholar | |
Gorthi A and Bishop AJR: Ewing sarcoma fusion oncogene: At the crossroads of transcription and DNA damage response. Mol Cell Oncol. 5:e14650142018. View Article : Google Scholar : PubMed/NCBI | |
Daley JM, Niu H, Miller AS and Sung P: Biochemical mechanism of DSB end resection and its regulation. DNA Repair (Amst). 32:66–74. 2015. View Article : Google Scholar | |
Heyer WD, Ehmsen KT and Liu J: Regulation of homologous recombination in eukaryotes. Annu Rev Genet. 44:113–139. 2010. View Article : Google Scholar : PubMed/NCBI | |
Matos J and West SC: Holliday junction resolution: Regulation in space and time. DNA Repair (Amst). 19:176–181. 2014. View Article : Google Scholar | |
Ira G, Pellicioli A, Balijja A, Wang X, Fiorani S, Carotenuto W, Liberi G, Bressan D, Wan L, Hollingsworth NM, et al: DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature. 431:1011–1017. 2004. View Article : Google Scholar : PubMed/NCBI | |
Roerink SF, van Schendel R and Tijsterman M: Polymerase theta-mediated end joining of replication-associated DNA breaks in C. Elegans Genome Res. 24:954–962. 2014. View Article : Google Scholar | |
Zhang Y and Jasin M: An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat Struct Mol Biol. 18:80–84. 2011. View Article : Google Scholar | |
Paques F and Haber JE: Multiple pathways of recombination induced by double-strand breaks in saccharomyces cerevisiae. Microbiol Mol Biol Rev. 63:349–404. 1999. View Article : Google Scholar : PubMed/NCBI | |
Scully R, Panday A, Elango R and Willis NA: DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 20:698–714. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mimori T and Hardin JA: Mechanism of interaction between Ku protein and DNA. J Biol Chem. 261:10375–10379. 1986. View Article : Google Scholar : PubMed/NCBI | |
Ceccaldi R, Rondinelli B and D'Andrea AD: Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 26:52–64. 2016. View Article : Google Scholar : | |
Mao Z, Bozzella M, Seluanov A and Gorbunova V: Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair (Amst). 7:1765–1771. 2008. View Article : Google Scholar | |
Pannunzio NR, Watanabe G and Lieber MR: Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem. 293:10512–10523. 2018. View Article : Google Scholar : | |
Soutoglou E, Dorn JF, Sengupta K, Jasin M, Nussenzweig A, Ried T, Danuser G and Misteli T: Positional stability of single double-strand breaks in mammalian cells. Nat Cell Biol. 9:675–682. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tarsounas M and Sung P: The antitumorigenic roles of BRCA1-BARD1 in DNA repair and replication. Nat Rev Mol Cell Biol. 21:284–299. 2020. View Article : Google Scholar : PubMed/NCBI | |
Beucher A, Birraux J, Tchouandong L, Barton O, Shibata A, Conrad S, Goodarzi AA, Krempler A, Jeggo PA and Löbrich M: ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO J. 28:3413–3427. 2009. View Article : Google Scholar : PubMed/NCBI | |
Karanam K, Kafri R, Loewer A and Lahav G: Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Mol Cell. 47:320–329. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Rothenberg E, Ramsden DA and Lieber MR: The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol. 21:765–781. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hustedt N and Durocher D: The control of DNA repair by the cell cycle. Nat Cell Biol. 19:1–9. 2016. View Article : Google Scholar : PubMed/NCBI | |
Morales JC, Xia Z, Lu T, Aldrich MB, Wang B, Rosales C, Kellems RE, Hittelman WN, Elledge SJ and Carpenter PB: Role for the BRCA1 C-terminal repeats (BRCT) protein 53BP1 in maintaining genomic stability. J Biol Chem. 278:14971–14977. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rappold I, Iwabuchi K, Date T and Chen J: Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. J Cell Biol. 153:613–620. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ward IM, Minn K, van Deursen J and Chen J: p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol Cell Biol. 23:2556–2563. 2003. View Article : Google Scholar : PubMed/NCBI | |
Adams MM and Carpenter PB: Tying the loose ends together in DNA double strand break repair with 53BP1. Cell Div. 1:192006. View Article : Google Scholar : PubMed/NCBI | |
Panier S and Boulton SJ: Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol. 15:7–18. 2014. View Article : Google Scholar | |
von Morgen P, Lidak T, Horejsi Z and Macurek L: Nuclear localisation of 53BP1 is regulated by phosphorylation of the nuclear localisation signal. Biol Cell. 110:137–146. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mirman Z and de Lange T: 53BP1: A DSB escort. Genes Dev. 34:7–23. 2020. View Article : Google Scholar : PubMed/NCBI | |
He YJ, Meghani K, Caron MC, Yang C, Ronato DA, Bian J, Sharma A, Moore J, Niraj J, Detappe A, et al: DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells. Nature. 563:522–526. 2018. View Article : Google Scholar : PubMed/NCBI | |
Becker JR, Cuella-Martin R, Barazas M, Liu R, Oliveira C, Oliver AW, Bilham K, Holt AB, Blackford AN, Heierhorst J, et al: The ASCIZ-DYNLL1 axis promotes 53BP1-dependent non-homologous end joining and PARP inhibitor sensitivity. Nat Commun. 9:54062018. View Article : Google Scholar : PubMed/NCBI | |
West KL, Kelliher JL, Xu Z, An L, Reed MR, Eoff RL, Wang J, Huen MSY and Leung JWC: LC8/DYNLL1 is a 53BP1 effector and regulates checkpoint activation. Nucleic Acids Res. 47:6236–6249. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zgheib O, Pataky K, Brugger J and Halazonetis TD: An oligomerized 53BP1 Tudor domain suffices for recognition of DNA double-strand breaks. Mol Cell Biol. 29:1050–1058. 2009. View Article : Google Scholar : | |
Adams MM, Wang B, Xia Z, Morales JC, Lu X, Donehower LA, Bochar DA, Elledge SJ and Carpenter PB: 53BP1 oligomerization is independent of its methylation by PRMT1. Cell Cycle. 4:1854–1861. 2005. View Article : Google Scholar : PubMed/NCBI | |
Boisvert FM, Rhie A, Richard S and Doherty AJ: The GAR motif of 53BP1 is arginine methylated by PRMT1 and is necessary for 53BP1 DNA binding activity. Cell Cycle. 4:1834–1841. 2005. View Article : Google Scholar : PubMed/NCBI | |
Botuyan MV, Lee J, Ward IM, Kim JE, Thompson JR, Chen J and Mer G: Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell. 127:1361–1373. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pellegrino S, Michelena J, Teloni F, Imhof R and Altmeyer M: Replication-coupled dilution of H4K20me2 guides 53BP1 to pre-replicative chromatin. Cell Rep. 19:1819–1831. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fradet-Turcotte A, Canny MD, Escribano-Diaz C, Orthwein A, Leung CC, Huang H, Landry MC, Kitevski-LeBlanc J, Noordermeer SM, Sicheri F and Durocher D: 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature. 499:50–54. 2013. View Article : Google Scholar : PubMed/NCBI | |
Derbyshire DJ, Basu BP, Serpell LC, Joo WS, Date T, Iwabuchi K and Doherty AJ: Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor. EMBO J. 21:3863–3872. 2002. View Article : Google Scholar : PubMed/NCBI | |
Cuella-Martin R, Oliveira C, Lockstone HE, Snellenberg S, Grolmusova N and Chapman JR: 53BP1 Integrates DNA repair and p53-dependent cell fate decisions via distinct mechanisms. Mol Cell. 64:51–64. 2016. View Article : Google Scholar : PubMed/NCBI | |
Riballo E, Kühne M, Rief N, Doherty A, Smith GC, Recio MJ, Reis C, Dahm K, Fricke A, Krempler A, et al: A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell. 16:715–724. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chang HHY, Pannunzio NR, Adachi N and Lieber MR: Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 18:495–506. 2017. View Article : Google Scholar : PubMed/NCBI | |
Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L and Shiloh Y: Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 22:5612–5621. 2003. View Article : Google Scholar : PubMed/NCBI | |
Panier S and Durocher D: Push back to respond better: Regulatory inhibition of the DNA double-strand break response. Nat Rev Mol Cell Biol. 14:661–672. 2013. View Article : Google Scholar : PubMed/NCBI | |
Stewart GS, Panier S, Townsend K, Al-Hakim AK, Kolas NK, Miller ES, Nakada S, Ylanko J, Olivarius S, Mendez M, et al: The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell. 136:420–434. 2009. View Article : Google Scholar : PubMed/NCBI | |
Stewart GS, Wang B, Bignell CR, Taylor AM and Elledge SJ: MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature. 421:961–966. 2003. View Article : Google Scholar : PubMed/NCBI | |
Mattiroli F, Vissers JH, van Dijk WJ, Ikpa P, Citterio E, Vermeulen W, Marteijn JA and Sixma TK: RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell. 150:1182–1195. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gudjonsson T, Altmeyer M, Savic V, Toledo L, Dinant C, Grøfte M, Bartkova J, Poulsen M, Oka Y, Bekker-Jensen S, et al: TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes. Cell. 150:697–709. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bekker-Jensen S, Rendtlew Danielsen J, Fugger K, Gromova I, Nerstedt A, Lukas C, Bartek J, Lukas J and Mailand N: HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. Nat Cell Biol. 12:80–86. 1–12. 2010. View Article : Google Scholar | |
Shibata A and Jeggo PA: Roles for 53BP1 in the repair of radiation-induced DNA double strand breaks. DNA Repair (Amst). 93:1029152020. View Article : Google Scholar | |
Pesavento JJ, Yang H, Kelleher NL and Mizzen CA: Certain and progressive methylation of histone H4 at lysine 20 during the cell cycle. Mol Cell Biol. 28:468–486. 2008. View Article : Google Scholar : | |
Mallette FA, Mattiroli F, Cui G, Young LC, Hendzel MJ, Mer G, Sixma TK and Richard S: RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites. EMBO J. 31:1865–1878. 2012. View Article : Google Scholar : PubMed/NCBI | |
Min J, Allali-Hassani A, Nady N, Qi C, Ouyang H, Liu Y, MacKenzie F, Vedadi M and Arrowsmith CH: L3MBTL1 recognition of mono- and dimethylated histones. Nat Struct Mol Biol. 14:1229–1230. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huen MS, Huang J, Leung JW, Sy SM, Leung KM, Ching YP, Tsao SW and Chen J: Regulation of chromatin architecture by the PWWP domain-containing DNA damage-responsive factor EXPAND1/MUM1. Mol Cell. 37:854–864. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chapman JR, Barral P, Vannier JB, Borel V, Steger M, Tomas-Loba A, Sartori AA, Adams IR, Batista FD and Boulton SJ: RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol Cell. 49:858–871. 2013. View Article : Google Scholar : PubMed/NCBI | |
Callen E, Di Virgilio M, Kruhlak MJ, Nieto-Soler M, Wong N, Chen HT, Faryabi RB, Polato F, Santos M, Starnes LM, et al: 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions. Cell. 153:1266–1280. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xie HY, Zhang TM, Hu SY, Shao ZM and Li DQ: Dimerization of MORC2 through its C-terminal coiled-coil domain enhances chromatin dynamics and promotes DNA repair. Cell Commun Signal. 17:1602019. View Article : Google Scholar : PubMed/NCBI | |
Wu R, Liu W, Sun Y, Shen C, Guo J, Zhao J, Mao G, Li Y and Du G: Nanoscale insight into chromatin remodeling and DNA repair complex in HeLa cells after ionizing radiation. DNA Repair (Amst). 96:1029742020. View Article : Google Scholar | |
Ochs F, Karemore G, Miron E, Brown J, Sedlackova H, Rask MB, Lampe M, Buckle V, Schermelleh L, Lukas J and Lukas C: Stabilization of chromatin topology safeguards genome integrity. Nature. 574:571–574. 2019. View Article : Google Scholar : PubMed/NCBI | |
Arnould C, Rocher V, Finoux AL, Clouaire T, Li K, Zhou F, Caron P, Mangeot PE, Ricci EP, Mourad R, et al: Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature. 590:660–665. 2021. View Article : Google Scholar : PubMed/NCBI | |
Caron P and Polo SE: Reshaping chromatin architecture around DNA breaks. Trends Biochem Sci. 45:177–179. 2020. View Article : Google Scholar | |
Lou J, Priest DG, Solano A, Kerjouan A and Hinde E: Spatiotemporal dynamics of 53BP1 dimer recruitment to a DNA double strand break. Nat Commun. 11:57762020. View Article : Google Scholar : PubMed/NCBI | |
Kilic S, Lezaja A, Gatti M, Bianco E, Michelena J, Imhof R and Altmeyer M: Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments. EMBO J. 38:e1013792019. View Article : Google Scholar : PubMed/NCBI | |
Banani SF, Lee HO, Hyman AA and Rosen MK: Biomolecular condensates: Organizers of cellular biochemistry. Nat Rev Mol Cell Biol. 18:285–298. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shin Y, Berry J, Pannucci N, Haataja MP, Toettcher JE and Brangwynne CP: Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell. 168:159–171.e14. 2017. View Article : Google Scholar : PubMed/NCBI | |
Piccinno R, Minneker V and Roukos V: 53BP1-DNA repair enters a new liquid phase. EMBO J. 38:e1028712019. View Article : Google Scholar : PubMed/NCBI | |
Pessina F, Giavazzi F, Yin Y, Gioia U, Vitelli V, Galbiati A, Barozzi S, Garre M, Oldani A, Flaus A, et al: Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nat Cell Biol. 21:1286–1299. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jakob B, Dubiak-Szepietowska M, Janiel E, Schmidt A, Durante M and Taucher-Scholz G: Differential repair protein recruitment at sites of clustered and isolated DNA double-strand breaks produced by high-energy heavy ions. Sci Rep. 10:14432020. View Article : Google Scholar : PubMed/NCBI | |
Eaton JA and Zidovska A: Structural and dynamical signatures of local DNA damage in live cells. Biophys J. 118:2168–2180. 2020. View Article : Google Scholar : | |
Drané P, Brault ME, Cui G, Meghani K, Chaubey S, Detappe A, Parnandi N, He Y, Zheng XF, Botuyan MV, et al: TIRR regulates 53BP1 by masking its histone methyl-lysine binding function. Nature. 543:211–216. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang A, Peng B, Huang P, Chen J and Gong Z: The p53-binding protein 1-Tudor-interacting repair regulator complex participates in the DNA damage response. J Biol Chem. 292:6461–6467. 2017. View Article : Google Scholar : PubMed/NCBI | |
Botuyan MV, Cui G, Drané P, Oliveira C, Detappe A, Brault ME, Parnandi N, Chaubey S, Thompson JR, Bragantini B, et al: Mechanism of 53BP1 activity regulation by RNA-binding TIRR and a designer protein. Nat Struct Mol Biol. 25:591–600. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Yuan Z, Cui Y, Xie R, Yang G, Kassab MA, Wang M, Ma Y, Wu C, Yu X and Liu X: Molecular basis for the inhibition of the methyl-lysine binding function of 53BP1 by TIRR. Nat Commun. 9:26892018. View Article : Google Scholar : PubMed/NCBI | |
Dai Y, Zhang A, Shan S, Gong Z and Zhou Z: Structural basis for recognition of 53BP1 tandem Tudor domain by TIRR. Nat Commun. 9:21232018. View Article : Google Scholar : PubMed/NCBI | |
Parnandi N, Rendo V, Cui G, Botuyan MV, Remisova M, Nguyen H, Drané P, Beroukhim R, Altmeyer M, Mer G and Chowdhury D: TIRR inhibits the 53BP1-p53 complex to alter cell-fate programs. Mol Cell. 81:2583–2595.e6. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shibata A and Jeggo PA: Roles for the DNA-PK complex and 53BP1 in protecting ends from resection during DNA double-strand break repair. J Radiat Res. 61:718–726. 2020. View Article : Google Scholar : PubMed/NCBI | |
Broustas CG, Duval AJ, Chaudhary KR, Friedman RA, Virk RK and Lieberman HB: Targeting MEK5 impairs nonhomologous end-joining repair and sensitizes prostate cancer to DNA damaging agents. Oncogene. 39:2467–2477. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sharma A and Almasan A: USP14 regulates DNA damage response and is a target for radiosensitization in non-small cell lung cancer. Int J Mol Sci. 21:63832020. View Article : Google Scholar : | |
Feng M, Wang Y, Bi L, Zhang P, Wang H, Zhao Z, Mao JH and Wei G: CRL4ADTL degrades DNA-PKcs to modulate NHEJ repair and induce genomic instability and subsequent malignant transformation. Oncogene. 40:2096–2111. 2021. View Article : Google Scholar : PubMed/NCBI | |
Caggiano C, Cavallo F, Giannattasio T, Cappelletti G, Rossi P, Grimaldi P, Feldman DR, Jasin M and Barchi M: Testicular germ cell tumors acquire cisplatin resistance by rebalancing the usage of DNA repair pathways. Cancers (Basel). 13:7872021. View Article : Google Scholar | |
Ma S, Rong Z, Liu C, Qin X, Zhang X and Chen Q: DNA damage promotes microtubule dynamics through a DNA-PK-AKT axis for enhanced repair. J Cell Biol. 220:e2019110252021. View Article : Google Scholar : PubMed/NCBI | |
Lee KY and Dutta A: Chk1 promotes non-homologous end joining in G1 through direct phosphorylation of ASF1A. Cell Rep. 34:1086802021. View Article : Google Scholar : PubMed/NCBI | |
Wardlaw CP, Carr AM and Oliver AW: TopBP1: A BRCT-scaffold protein functioning in multiple cellular pathways. DNA Repair (Amst). 22:165–174. 2014. View Article : Google Scholar | |
Bigot N, Day M, Baldock RA, Watts FZ, Oliver AW and Pearl LH: Phosphorylation-mediated interactions with TOPBP1 couple 53BP1 and 9-1-1 to control the G1 DNA damage checkpoint. Elife. 8:e443532019. View Article : Google Scholar : PubMed/NCBI | |
Ha K, Ma C, Lin H, Tang L, Lian Z, Zhao F, Li JM, Zhen B, Pei H, Han S, et al: The anaphase promoting complex impacts repair choice by protecting ubiquitin signalling at DNA damage sites. Nat Commun. 8:157512017. View Article : Google Scholar : PubMed/NCBI | |
Beishline K, Kelly CM, Olofsson BA, Koduri S, Emrich J, Greenberg RA and Azizkhan-Clifford J: Sp1 facilitates DNA double-strand break repair through a nontranscriptional mechanism. Mol Cell Biol. 32:3790–3799. 2012. View Article : Google Scholar : PubMed/NCBI | |
Swift ML, Beishline K, Flashner S and Azizkhan-Clifford J: DSB repair pathway choice is regulated by recruitment of 53BP1 through cell cycle-dependent regulation of Sp1. Cell Rep. 34:1088402021. View Article : Google Scholar : PubMed/NCBI | |
Tang M, Feng X, Pei G, Srivastava M, Wang C, Chen Z, Li S, Zhang H, Zhao Z, Li X and Chen J: FOXK1 participates in DNA damage response by controlling 53BP1 function. Cell Rep. 32:1080182020. View Article : Google Scholar : PubMed/NCBI | |
Murray-Nerger LA, Justice JL, Rekapalli P, Hutton JE and Cristea IM: Lamin B1 acetylation slows the G1 to S cell cycle transition through inhibition of DNA repair. Nucleic Acids Res. 49:2044–2064. 2021. View Article : Google Scholar : PubMed/NCBI | |
Svobodová Kovaříková A, Legartová S, Krejčí J and Bártová E: H3K9me3 and H4K20me3 represent the epigenetic landscape for 53BP1 binding to DNA lesions. Aging (Albany NY). 10:2585–2605. 2018. View Article : Google Scholar | |
Nakamura K, Saredi G, Becker JR, Foster BM, Nguyen NV, Beyer TE, Cesa LC, Faull PA, Lukauskas S, Frimurer T, et al: H4K20me0 recognition by BRCA1-BARD1 directs homologous recombination to sister chromatids. Nat Cell Biol. 21:311–318. 2019. View Article : Google Scholar : PubMed/NCBI | |
Harding SM and Bristow RG: Discordance between phosphorylation and recruitment of 53BP1 in response to DNA double-strand breaks. Cell Cycle. 11:1432–1444. 2012. View Article : Google Scholar : PubMed/NCBI | |
Feng L, Li N, Li Y, Wang J, Gao M, Wang W and Chen J: Cell cycle-dependent inhibition of 53BP1 signaling by BRCA1. Cell Discov. 1:150192015. View Article : Google Scholar : PubMed/NCBI | |
Bothmer A, Robbiani DF, Di Virgilio M, Bunting SF, Klein IA, Feldhahn N, Barlow J, Chen HT, Bosque D, Callen E, et al: Regulation of DNA end joining, resection, and immunoglobulin class switch recombination by 53BP1. Mol Cell. 42:319–329. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sanz-Garcia M, Monsalve DM, Sevilla A and Lazo PA: Vaccinia-related kinase 1 (VRK1) is an upstream nucleosomal kinase required for the assembly of 53BP1 foci in response to ionizing radiation-induced DNA damage. J Biol Chem. 287:23757–23768. 2012. View Article : Google Scholar : PubMed/NCBI | |
Campillo-Marcos I, Garcia-Gonzalez R, Navarro-Carrasco E and Lazo PA: The human VRK1 chromatin kinase in cancer biology. Cancer Lett. 503:117–128. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Dong Y, Luo Y, Jiang S, Meng FL, Tan M, Li J and Zang Y: AMPK-mediated phosphorylation on 53BP1 promotes c-NHEJ. Cell Rep. 34:1087132021. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Lei T, Du S, Tong R, Wang H, Yang J, Huang J, Sun M, Wang Y and Dong Z: Nuclear GSK3β induces DNA double-strand break repair by phosphorylating 53BP1 in glioblastoma. Int J Oncol. 52:709–720. 2018.PubMed/NCBI | |
Lee DH, Acharya SS, Kwon M, Drane P, Guan Y, Adelmant G, Kalev P, Shah J, Pellman D, Marto JA and Chowdhury D: Dephosphorylation enables the recruitment of 53BP1 to double-strand DNA breaks. Mol Cell. 54:512–525. 2014. View Article : Google Scholar : PubMed/NCBI | |
Isono M, Niimi A, Oike T, Hagiwara Y, Sato H, Sekine R, Yoshida Y, Isobe SY, Obuse C, Nishi R, et al: BRCA1 directs the repair pathway to homologous recombination by promoting 53BP1 dephosphorylation. Cell Rep. 18:520–532. 2017. View Article : Google Scholar : PubMed/NCBI | |
Burdova K, Storchova R, Palek M and Macurek L: WIP1 promotes homologous recombination and modulates sensitivity to PARP inhibitors. Cells. 8:12582019. View Article : Google Scholar : | |
Bohgaki M, Bohgaki T, El Ghamrasni S, Srikumar T, Maire G, Panier S, Fradet-Turcotte A, Stewart GS, Raught B, Hakem A and Hakem R: RNF168 ubiquitylates 53BP1 and controls its response to DNA double-strand breaks. Proc Natl Acad Sci USA. 110:20982–20987. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Hou Y, Zhang W, Alvarez AA, Bai Y, Hu B, Cheng SY, Yang K, Li Y and Feng H: Lipolytic inhibitor G0S2 modulates glioma stem-like cell radiation response. J Exp Clin Cancer Res. 38:1472019. View Article : Google Scholar : PubMed/NCBI | |
Lee NS, Chang HR, Kim S, Ji JH, Lee J, Lee HJ, Seo Y, Kang M, Han JS, Myung K, et al: Ring finger protein 126 (RNF126) suppresses ionizing radiation-induced p53-binding protein 1 (53BP1) focus formation. J Biol Chem. 293:588–598. 2018. View Article : Google Scholar | |
Yang C, Zang W, Tang Z, Ji Y, Xu R, Yang Y, Luo A, Hu B, Zhang Z, Liu Z and Zheng X: A20/TNFAIP3 regulates the DNA damage response and mediates tumor cell resistance to DNA-damaging therapy. Cancer Res. 78:1069–1082. 2018. View Article : Google Scholar | |
Walser F, Mulder MPC, Bragantini B, Burger S, Gubser T, Gatti M, Botuyan MV, Villa A, Altmeyer M, Neri D, et al: Ubiquitin phosphorylation at Thr12 modulates the DNA damage response. Mol Cell. 80:423–436.e9. 2020. View Article : Google Scholar : PubMed/NCBI | |
Poulsen M, Lukas C, Lukas J, Bekker-Jensen S and Mailand N: Human RNF169 is a negative regulator of the ubiquitin-dependent response to DNA double-strand breaks. J Cell Biol. 197:189–199. 2012. View Article : Google Scholar : PubMed/NCBI | |
An L, Dong C, Li J, Chen J, Yuan J, Huang J, Chan KM, Yu CH and Huen MSY: RNF169 limits 53BP1 deposition at DSBs to stimulate single-strand annealing repair. Proc Natl Acad Sci USA. 115:E8286–E8295. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hu Q, Botuyan MV, Cui G, Zhao D and Mer G: Mechanisms of ubiquitin-nucleosome recognition and regulation of 53BP1 chromatin recruitment by RNF168/169 and RAD18. Mol Cell. 66:473–487.e9. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hwang JW, Kim SN, Myung N, Song D, Han G, Bae GU, Bedford MT and Kim YK: PRMT5 promotes DNA repair through methylation of 53BP1 and is regulated by Src-mediated phosphorylation. Commun Biol. 3:4282020. View Article : Google Scholar : PubMed/NCBI | |
Clarke TL, Sanchez-Bailon MP, Chiang K, Reynolds JJ, Herrero-Ruiz J, Bandeiras TM, Matias PM, Maslen SL, Skehel JM, Stewart GS and Davies CC: PRMT5-dependent methylation of the TIP60 coactivator RUVBL1 is a key regulator of homologous recombination. Mol Cell. 65:900–916.e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Devoucoux M, Song X, Li L, Ayaz G, Cheng H, Tempel W, Dong C, Loppnau P, Côté J and Min J: Structural basis for EPC1-mediated recruitment of MBTD1 into the NuA4/TIP60 acetyltransferase complex. Cell Rep. 30:3996–4002.e4. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jacquet K, Fradet-Turcotte A, Avvakumov N, Lambert JP, Roques C, Pandita RK, Paquet E, Herst P, Gingras AC, Pandita TK, et al: The TIP60 complex regulates bivalent chromatin recognition by 53BP1 through direct H4K20me binding and H2AK15 acetylation. Mol Cell. 62:409–421. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sivanand S, Rhoades S, Jiang Q, Lee JV, Benci J, Zhang J, Yuan S, Viney I, Zhao S, Carrer A, et al: Nuclear acetyl-CoA production by ACLY promotes homologous recombination. Mol Cell. 67:252–265.e6. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Zhong J, Ren X, Liu W, Wu D, Chen C, Huang H, Huang X, Liu Y and Liu J: Involvement of a novel regulatory cascade consisting of SET-H3K18ac/H3K27ac-53BP1 in Cr(VI)-induced malignant transformation of 16HBE cells. Toxicol Lett. 339:70–77. 2021. View Article : Google Scholar | |
Guo X, Bai Y, Zhao M, Zhou M, Shen Q, Yun CH, Zhang H, Zhu WG and Wang J: Acetylation of 53BP1 dictates the DNA double strand break repair pathway. Nucleic Acids Res. 46:689–703. 2018. View Article : Google Scholar : | |
Li N, Zhang Y, Han X, Liang K, Wang J, Feng L, Wang W, Songyang Z, Lin C, Yang L, et al: Poly-ADP ribosylation of PTEN by Tankyrases promotes PTEN degradation and tumor growth. Genes Dev. 29:157–170. 2015. View Article : Google Scholar : | |
Guettler S, LaRose J, Petsalaki E, Gish G, Scotter A, Pawson T, Rottapel R and Sicheri F: Structural basis and sequence rules for substrate recognition by Tankyrase explain the basis for cherubism disease. Cell. 147:1340–1354. 2011. View Article : Google Scholar : PubMed/NCBI | |
DaRosa PA, Wang Z, Jiang X, Pruneda JN, Cong F, Klevit RE and Xu W: Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal. Nature. 517:223–226. 2015. View Article : Google Scholar : | |
Zhang Y, Liu S, Mickanin C, Feng Y, Charlat O, Michaud GA, Schirle M, Shi X, Hild M, Bauer A, et al: RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat Cell Biol. 13:623–629. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Lou L, Peng B, Song X, Reizes O, Almasan A and Gong Z: Nudix hydrolase NUDT16 regulates 53BP1 protein by Reversing 53BP1 ADP-ribosylation. Cancer Res. 80:999–1010. 2020. View Article : Google Scholar : PubMed/NCBI | |
Palazzo L, Thomas B, Jemth AS, Colby T, Leidecker O, Feijs KL, Zaja R, Loseva O, Puigvert JC, Matic I, et al: Processing of protein ADP-ribosylation by Nudix hydrolases. Biochem J. 468:293–301. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mackay DR, Howa AC, Werner TL and Ullman KS: Nup153 and Nup50 promote recruitment of 53BP1 to DNA repair foci by antagonizing BRCA1-dependent events. J Cell Sci. 130:3347–3359. 2017.PubMed/NCBI | |
Duheron V, Nilles N, Pecenko S, Martinelli V and Fahrenkrog B: Localisation of Nup153 and SENP1 to nuclear pore complexes is required for 53BP1-mediated DNA double-strand break repair. J Cell Sci. 130:2306–2316. 2017.PubMed/NCBI | |
Lu WT, Hawley BR, Skalka GL, Baldock RA, Smith EM, Bader AS, Malewicz M, Watts FZ, Wilczynska A and Bushell M: Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair. Nat Commun. 9:5322018. View Article : Google Scholar : PubMed/NCBI | |
Cabrini M, Roncador M, Galbiati A, Cipolla L, Maffia A, Iannelli F, Sabbioneda S, d'Adda di Fagagna F and Francia S: DROSHA is recruited to DNA damage sites by the MRN complex to promote non-homologous end joining. J Cell Sci. 134:jcs2497062021. View Article : Google Scholar : PubMed/NCBI | |
Wikiniyadhanee R, Lerksuthirat T, Stitchantrakul W, Chitphuk S, Sura T and Dejsuphong D: TRIM29 is required for efficient recruitment of 53BP1 in response to DNA double-strand breaks in vertebrate cells. FEBS Open Bio. 10:2055–2071. 2020. View Article : Google Scholar : PubMed/NCBI | |
Alonso-de Vega I, Paz-Cabrera MC, Rother MB, Wiegant WW, Checa-Rodriguez C, Hernandez-Fernaud JR, Huertas P, Freire R, van Attikum H and Smits VAJ: PHF2 regulates homology-directed DNA repair by controlling the resection of DNA double strand breaks. Nucleic Acids Res. 48:4915–4927. 2020. View Article : Google Scholar : PubMed/NCBI | |
Koo GB, Ji JH, Cho H, Morgan MJ and Kim YS: Nuclear TRADD prevents DNA damage-mediated death by facilitating non-homologous end-joining repair. Sci Rep. 7:33322017. View Article : Google Scholar : PubMed/NCBI | |
Clements KE, Schleicher EM, Thakar T, Hale A, Dhoonmoon A, Tolman NJ, Sharma A, Liang X, Imamura Kawasawa Y, Nicolae CM, et al: Identification of regulators of poly-ADP-ribose polymerase inhibitor response through complementary CRISPR knockout and activation screens. Nat Commun. 11:61182020. View Article : Google Scholar : PubMed/NCBI | |
Shenoy TR, Boysen G, Wang MY, Xu QZ, Guo W, Koh FM, Wang C, Zhang LZ, Wang Y, Gil V, et al: CHD1 loss sensitizes prostate cancer to DNA damaging therapy by promoting error-prone double-strand break repair. Ann Oncol. 28:1495–1507. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fouquin A, Guirouilh-Barbat J, Lopez B, Hall J, Amor-Guéret M and Pennaneach V: PARP2 controls double-strand break repair pathway choice by limiting 53BP1 accumulation at DNA damage sites and promoting end-resection. Nucleic Acids Res. 45:12325–12339. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zimmermann M and de Lange T: 53BP1: Pro choice in DNA repair. Trends Cell Biol. 24:108–117. 2014. View Article : Google Scholar : | |
Escribano-Diaz C and Durocher D: DNA repair pathway choice-a PTIP of the hat to 53BP1. EMBO Rep. 14:665–666. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lottersberger F, Bothmer A, Robbiani DF, Nussenzweig MC and de Lange T: Role of 53BP1 oligomerization in regulating double-strand break repair. Proc Natl Acad Sci USA. 110:2146–2151. 2013. View Article : Google Scholar : PubMed/NCBI | |
Manis JP, Morales JC, Xia Z, Kutok JL, Alt FW and Carpenter PB: 53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination. Nat Immunol. 5:481–487. 2004. View Article : Google Scholar : PubMed/NCBI | |
Methot SP and Di Noia JM: Molecular mechanisms of somatic hypermutation and class switch recombination. Adv Immunol. 133:37–87. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gupta R, Somyajit K, Narita T, Maskey E, Stanlie A, Kremer M, Typas D, Lammers M, Mailand N, Nussenzweig A, et al: DNA repair network analysis reveals shieldin as a key regulator of NHEJ and PARP inhibitor sensitivity. Cell. 173:972–988.e23. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ghezraoui H, Oliveira C, Becker JR, Bilham K, Moralli D, Anzilotti C, Fischer R, Deobagkar-Lele M, Sanchiz-Calvo M, Fueyo-Marcos E, et al: 53BP1 cooperation with the REV7-shieldin complex underpins DNA structure-specific NHEJ. Nature. 560:122–127. 2018. View Article : Google Scholar : PubMed/NCBI | |
Noordermeer SM, Adam S, Setiaputra D, Barazas M, Pettitt SJ, Ling AK, Olivieri M, Aacute;lvarez-Quilón A, Moatti N, Zimmermann M, et al: The shieldin complex mediates 53BP1-dependent DNA repair. Nature. 560:117–121. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liang L, Feng J, Zuo P, Yang J, Lu Y and Yin Y: Molecular basis for assembly of the shieldin complex and its implications for NHEJ. Nat Commun. 11:19722020. View Article : Google Scholar : PubMed/NCBI | |
Bochkarev A and Bochkareva E: From RPA to BRCA2: Lessons from single-stranded DNA binding by the OB-fold. Curr Opin Struct Biol. 14:36–42. 2004. View Article : Google Scholar : PubMed/NCBI | |
Findlay S, Heath J, Luo VM, Malina A, Morin T, Coulombe Y, Djerir B, Li Z, Samiei A, Simo-Cheyou E, et al: SHLD2/FAM35A co-operates with REV7 to coordinate DNA double-strand break repair pathway choice. EMBO J. 37:e1001582018. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Feng S, Ning S, Liu J, Zhao H, Xu Y, Shang J, Li K, Li Q, Guo R and Xu D: An OB-fold complex controls the repair pathways for DNA double-strand breaks. Nat Commun. 9:39252018. View Article : Google Scholar : PubMed/NCBI | |
Cannavo E and Cejka P: Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature. 514:122–125. 2014. View Article : Google Scholar : PubMed/NCBI | |
Anand R, Ranjha L, Cannavo E and Cejka P: Phosphorylated CtIP functions as a co-factor of the MRE11-RAD50-NBS1 endonuclease in DNA end resection. Mol Cell. 64:940–950. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nimonkar AV, Genschel J, Kinoshita E, Polaczek P, Campbell JL, Wyman C, Modrich P and Kowalczykowski SC: BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev. 25:350–362. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gravel S, Chapman JR, Magill C and Jackson SP: DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev. 22:2767–2772. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dev H, Chiang TW, Lescale C, de Krijger I, Martin AG, Pilger D, Coates J, Sczaniecka-Clift M, Wei W, Ostermaier M, et al: Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells. Nat Cell Biol. 20:954–965. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharjee A, Wang Y, Diao J and Price CM: Dynamic DNA binding, junction recognition and G4 melting activity underlie the telomeric and genome-wide roles of human CST. Nucleic Acids Res. 45:12311–12324. 2017. View Article : Google Scholar : PubMed/NCBI | |
Barazas M, Annunziato S, Pettitt SJ, de Krijger I, Ghezraoui H, Roobol SJ, Lutz C, Frankum J, Song FF, Brough R, et al: The CST complex mediates end protection at double-strand breaks and promotes PARP inhibitor sensitivity in BRCA1-deficient cells. Cell Rep. 23:2107–2118. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mirman Z, Lottersberger F, Takai H, Kibe T, Gong Y, Takai K, Bianchi A, Zimmermann M, Durocher D and de Lange T: 53BP1-RIF1-shieldin counteracts DSB resection through CST- and Polα-dependent fill-in. Nature. 560:112–116. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pellegrini L: The Pol α-primase complex. Subcell Biochem. 62:157–169. 2012. View Article : Google Scholar | |
Sfeir A and Symington LS: Microhomology-mediated end joining: A back-up survival mechanism or dedicated pathway? Trends Biochem Sci. 40:701–714. 2015. View Article : Google Scholar : PubMed/NCBI | |
Muñoz IM and Rouse J: Control of histone methylation and genome stability by PTIP. EMBO Rep. 10:239–245. 2009. View Article : Google Scholar : PubMed/NCBI | |
Munoz IM, Jowsey PA, Toth R and Rouse J: Phospho-epitope binding by the BRCT domains of hPTIP controls multiple aspects of the cellular response to DNA damage. Nucleic Acids Res. 35:5312–5322. 2007. View Article : Google Scholar : PubMed/NCBI | |
Callen E, Faryabi RB, Luckey M, Hao B, Daniel JA, Yang W, Sun HW, Dressler G, Peng W, Chi H, et al: The DNA damage- and transcription-associated protein paxip1 controls thymocyte development and emigration. Immunity. 37:971–985. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Aroumougame A, Lobrich M, Li Y, Chen D, Chen J and Gong Z: PTIP associates with Artemis to dictate DNA repair pathway choice. Genes Dev. 28:2693–2698. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Pannicke U, Schwarz K and Lieber MR: Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D) J recombination. Cell. 108:781–794. 2002. View Article : Google Scholar : PubMed/NCBI | |
Goodarzi AA, Yu Y, Riballo E, Douglas P, Walker SA, Ye R, Härer C, Marchetti C, Morrice N, Jeggo PA and Lees-Miller SP: DNA-PK autophosphorylation facilitates Artemis endonuclease activity. EMBO J. 25:3880–3889. 2006. View Article : Google Scholar : PubMed/NCBI | |
Park SJ, Gavrilova O, Brown AL, Soto JE, Bremner S, Kim J, Xu X, Yang S, Um JH, Koch LG, et al: DNA-PK promotes the mitochondrial, metabolic, and physical decline that occurs during aging. Cell Metab. 26:4472017. View Article : Google Scholar : PubMed/NCBI | |
Kawale AS, Akopiants K, Valerie K, Ruis B, Hendrickson EA, Huang SN, Pommier Y and Povirk LF: TDP1 suppresses mis-joining of radiomimetic DNA double-strand breaks and cooperates with Artemis to promote optimal nonhomologous end joining. Nucleic Acids Res. 46:8926–8939. 2018. View Article : Google Scholar : PubMed/NCBI | |
Morales JC, Richard P, Rommel A, Fattah FJ, Motea EA, Patidar PL, Xiao L, Leskov K, Wu SY, Hittelman WN, et al: Kub5-Hera, the human Rtt103 homolog, plays dual functional roles in transcription termination and DNA repair. Nucleic Acids Res. 42:4996–5006. 2014. View Article : Google Scholar : PubMed/NCBI | |
Han J, Ruan C, Huen MSY, Wang J, Xie A, Fu C, Liu T and Huang J: BRCA2 antagonizes classical and alternative nonhomologous end-joining to prevent gross genomic instability. Nat Commun. 8:14702017. View Article : Google Scholar : PubMed/NCBI | |
Isobe SY, Hiraga SI, Nagao K, Sasanuma H, Donaldson AD and Obuse C: Protein phosphatase 1 acts as a RIF1 effector to suppress DSB resection prior to Shieldin action. Cell Rep. 36:1093832021. View Article : Google Scholar : PubMed/NCBI | |
Spyropoulou Z, Papaspyropoulos A, Lagopati N, Myrianthopoulos V, Georgakilas AG, Fousteri M, Kotsinas A and Gorgoulis VG: Cockayne syndrome group B (CSB): The regulatory framework governing the multifunctional protein and its plausible role in cancer. Cells. 10:8662021. View Article : Google Scholar : PubMed/NCBI | |
Batenburg NL, Walker JR, Noordermeer SM, Moatti N, Durocher D and Zhu XD: ATM and CDK2 control chromatin remodeler CSB to inhibit RIF1 in DSB repair pathway choice. Nat Commun. 8:19212017. View Article : Google Scholar : PubMed/NCBI | |
Batenburg NL, Qin J, Walker JR and Zhu XD: Efficient UV repair requires disengagement of the CSB winged helix domain from the CSB ATPase domain. DNA Repair (Amst). 68:58–67. 2018. View Article : Google Scholar | |
Batenburg NL, Walker JR, Coulombe Y, Sherker A, Masson JY and Zhu XD: CSB interacts with BRCA1 in late S/G2 to promote MRN- and CtIP-mediated DNA end resection. Nucleic Acids Res. 47:10678–10692. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kreßner C, Nollau P, Grosse R and Brandt DT: Functional interaction of SCAI with the SWI/SNF complex for transcription and tumor cell invasion. PLoS One. 8:e699472013. View Article : Google Scholar | |
Hansen RK, Mund A, Poulsen SL, Sandoval M, Klement K, Tsouroula K, Tollenaere MA, Räschle M, Soria R, Offermanns S, et al: SCAI promotes DNA double-strand break repair in distinct chromosomal contexts. Nat Cell Biol. 18:1357–1366. 2016. View Article : Google Scholar : PubMed/NCBI | |
Isobe SY, Nagao K, Nozaki N, Kimura H and Obuse C: Inhibition of RIF1 by SCAI allows BRCA1-mediated repair. Cell Rep. 20:297–307. 2017. View Article : Google Scholar : PubMed/NCBI | |
Parvin S, Ramirez-Labrada A, Aumann S, Lu X, Weich N, Santiago G, Cortizas EM, Sharabi E, Zhang Y, Sanchez-Garcia I, et al: LMO2 confers synthetic lethality to PARP inhibition in DLBCL. Cancer Cell. 36:237–249.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bonanno L, Costa C, Majem M, Sanchez JJ, Gimenez-Capitan A, Rodriguez I, Vergnenegre A, Massuti B, Favaretto A, Rugge M, et al: The predictive value of 53BP1 and BRCA1 mRNA expression in advanced non-small-cell lung cancer patients treated with first-line platinum-based chemotherapy. Oncotarget. 4:1572–1581. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schouten PC, Vollebergh MA, Opdam M, Jonkers M, Loden M, Wesseling J, Hauptmann M and Linn SC: High XIST and low 53BP1 expression predict poor outcome after high-dose alkylating chemotherapy in patients with a BRCA1-like breast cancer. Mol Cancer Ther. 15:190–198. 2016. View Article : Google Scholar | |
Zhang T, Chai J and Chi L: Induction Of XLF And 53BP1 expression is associated with temozolomide resistance in glioblastoma cells. Onco Targets Ther. 12:10139–10151. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yao J, Huang A, Zheng X, Liu T, Lin Z, Zhang S, Yang Q, Zhang T and Ma H: 53BP1 loss induces chemoresistance of colorectal cancer cells to 5-fluorouracil by inhibiting the ATM-CHK2-P53 pathway. J Cancer Res Clin Oncol. 143:419–431. 2017. View Article : Google Scholar | |
Krais JJ, Wang Y, Bernhardy AJ, Clausen E, Miller JA, Cai KQ, Scott CL and Johnson N: RNF168-mediated ubiquitin signaling inhibits the viability of BRCA1-null cancers. Cancer Res. 80:2848–2860. 2020. View Article : Google Scholar : PubMed/NCBI | |
Belotserkovskaya R, Raga Gil E, Lawrence N, Butler R, Clifford G, Wilson MD and Jackson SP: PALB2 chromatin recruitment restores homologous recombination in BRCA1-deficient cells depleted of 53BP1. Nat Commun. 11:8192020. View Article : Google Scholar : PubMed/NCBI | |
Miyamoto K, Minegaki T, Hirano S, Hayashi I, Tsujimoto M and Nishiguchi K: Olaparib potentiates anticancer drug cytotoxicity via 53BP1 in oesophageal squamous cell carcinoma cells. Anticancer Res. 40:813–823. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mu F, Liu T, Zheng H, Xie X, Lei T, He X, Du S, Tong R and Wang Y: Mangiferin induces radiosensitization in glioblastoma cells by inhibiting nonhomologous end joining. Oncol Rep. 40:3663–3673. 2018.PubMed/NCBI | |
Pustovalova M, Alhaddad L, Smetanina N, Chigasova A, Blokhina T, Chuprov-Netochin R, Osipov AN and Leonov S: The p53-53BP1-related survival of A549 and H1299 human lung cancer cells after multifractionated radiotherapy demonstrated different response to additional acute X-ray exposure. Int J Mol Sci. 21:33422020. View Article : Google Scholar | |
Eke I, Zong D, Aryankalayil MJ, Sandfort V, Bylicky MA, Rath BH, Graves EE, Nussenzweig A and Coleman CN: 53BP1/RIF1 signaling promotes cell survival after multifractionated radiotherapy. Nucleic Acids Res. 48:1314–1326. 2020. View Article : Google Scholar : | |
Roobol SJ, van den Bent I, van Cappellen WA, Abraham TE, Paul MW, Kanaar R, Houtsmuller AB, van Gent DC and Essers J: Comparison of high- and low-LET radiation-induced DNA double-strand break processing in living cells. Int J Mol Sci. 21:66022020. View Article : Google Scholar : | |
Oizumi T, Ohno R, Yamabe S, Funayama T and Nakamura AJ: Repair kinetics of DNA double strand breaks induced by simulated space radiation. Life (Basel). 10:3412020. | |
Anglada T, Genescà A and Martin M: Age-associated deficient recruitment of 53BP1 in G1 cells directs DNA double-strand break repair to BRCA1/CtIP-mediated DNA-end resection. Aging (Albany NY). 12:24872–24893. 2020. View Article : Google Scholar | |
Li N, Wang J, Wang X, Sun J and Li Z: Icariin exerts a protective effect against d-galactose induced premature ovarian failure via promoting DNA damage repair. Biomed Pharmacother. 118:1092182019. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Geng X, Wang F, Tang J, Ichida Y, Sharma A, Jin S, Chen M, Tang M, Pozo FM, et al: 53BP1 regulates heterochromatin through liquid phase separation. Nat Commun. 13:3602022. View Article : Google Scholar : PubMed/NCBI | |
Dimitrova N, Chen YC, Spector DL and de Lange T: 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature. 456:524–528. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Xu B, Mulvey B, Evans M, Jordan S, Wang YD, Pagala V, Peng J, Fan Y, Patel A and Peng JC: Differentiation of human pluripotent stem cells into neurons or cortical organoids requires transcriptional co-regulation by UTX and 53BP1. Nat Neurosci. 22:362–373. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lambrus BG, Daggubati V, Uetake Y, Scott PM, Clutario KM, Sluder G and Holland AJ: A USP28-53BP1-p53-p21 signaling axis arrests growth after centrosome loss or prolonged mitosis. J Cell Biol. 214:143–153. 2016. View Article : Google Scholar : PubMed/NCBI | |
Phan TP, Maryniak AL, Boatwright CA, Lee J, Atkins A, Tijhuis A, Spierings DC, Bazzi H, Foijer F, Jordan PW, et al: Centrosome defects cause microcephaly by activating the 53BP1-USP28-TP53 mitotic surveillance pathway. EMBO J. 40:e1061182021. View Article : Google Scholar | |
Damen M, Wirtz L, Soroka E, Khatif H, Kukat C, Simons BD and Bazzi H: High proliferation and delamination during skin epidermal stratification. Nat Commun. 12:32272021. View Article : Google Scholar : PubMed/NCBI | |
Turocy J, Adashi EY and Egli D: Heritable human genome editing: Research progress ethical considerations, and hurdles to clinical practice. Cell. 184:1561–1574. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Ren S, Yu S, Pan H, Li T, Ge S, Zhang J and Xia N: Methods favoring homology-directed repair choice in response to CRISPR/Cas9 induced-double strand breaks. Int J Mol Sci. 21:64612020. View Article : Google Scholar : | |
Canny MD, Moatti N, Wan LCK, Fradet-Turcotte A, Krasner D, Mateos-Gomez PA, Zimmermann M, Orthwein A, Juang YC, Zhang W, et al: Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency. Nat Biotechnol. 36:95–102. 2018. View Article : Google Scholar : | |
Sun Y, Lu H, Fang X, Xiao S, Yang F, Chen Y, Wang H, Li X, Lu J, Lin H, et al: Discovery of a novel 53BP1 inhibitor through AlphaScreen-based high-throughput screening. Bioorg Med Chem. 34:1160542021. View Article : Google Scholar : PubMed/NCBI | |
Paulsen BS, Mandal PK, Frock RL, Boyraz B, Yadav R, Upadhyayula S, Gutierrez-Martinez P, Ebina W, Fasth A, Kirchhausen T, et al: Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR-Cas9 genome editing. Nat Biomed Eng. 1:878–888. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nambiar TS, Billon P, Diedenhofen G, Hayward SB, Taglialatela A, Cai K, Huang JW, Leuzzi G, Cuella-Martin R, Palacios A, et al: Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant. Nat Commun. 10:33952019. View Article : Google Scholar : PubMed/NCBI | |
Jayavaradhan R, Pillis DM, Goodman M, Zhang F, Zhang Y, Andreassen PR and Malik P: CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites. Nat Commun. 10:28662019. View Article : Google Scholar : PubMed/NCBI | |
Markiewicz-Potoczny M, Lobanova A, Loeb AM, Kirak O, Olbrich T, Ruiz S and Lazzerini Denchi E: TRF2-mediated telomere protection is dispensable in pluripotent stem cells. Nature. 589:110–115. 2021. View Article : Google Scholar | |
Vančevska A, Ahmed W, Pfeiffer V, Feretzaki M, Boulton SJ and Lingner J: SMCHD1 promotes ATM-dependent DNA damage signaling and repair of uncapped telomeres. EMBO J. 39:e1026682020. View Article : Google Scholar |