Transcriptional regulation of nuclear miRNAs in tumorigenesis (Review)
- Authors:
- Junjie Liu
- Tianhao Yang
- Zishen Huang
- Huifang Chen
- Yinshan Bai
-
Affiliations: School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China - Published online on: May 19, 2022 https://doi.org/10.3892/ijmm.2022.5148
- Article Number: 92
This article is mentioned in:
Abstract
Huang V and Li LC: miRNA goes nuclear. RNA Biol. 9:269–273. 2012. View Article : Google Scholar | |
Syeda ZA, Langden SS, Munkhzul C, Lee M and Song SJ: Regulatory mechanism of microRNA expression in cancer. Int J Mol Sci. 21:17232020. View Article : Google Scholar | |
Bhat IP, Rather TB, Bhat GA, Maqbool I, Akhtar K, Rashid G, Parray FQ, Besina S and Mudassar S: TEAD4 nuclear localization and regulation by miR-4269 and miR-1343-3p in colorectal carcinoma. Pathol Res Pract. 231:1537912022. View Article : Google Scholar | |
Zheng T, Zhou Y, Xu X, Qi X, Liu J, Pu Y, Zhang S, Gao X, Luo X, Li M, et al: MiR-30c-5p loss-induced PELI1 accumulation regulates cell proliferation and migration via activating PI3K/AKT pathway in papillary thyroid carcinoma. J Transl Med. 20:202022. View Article : Google Scholar : PubMed/NCBI | |
Li L, Wei D, Zhang J, Deng R, Tang J and Su D: MiR-641 inhibited cell proliferation and induced apoptosis by targeting NUCKS1/PI3K/AKT signaling pathway in breast cancer. Comput Math Methods Med. 2022:52038392022.PubMed/NCBI | |
Mirzaei S, Zarrabi A, Asnaf SE, Hashemi F, Zabolian A, Hushmandi K, Raei M, Goharrizi MASB, Makvandi P, Samarghandian S, et al: The role of microRNA-338-3p in cancer: Growth, invasion, chemoresistance, and mediators. Life Sci. 268:1190052021. View Article : Google Scholar | |
El Fatimy R, Zhang Y, Deforzh E, Ramadas M, Saravanan H, Wei Z, Rabinovsky R, Teplyuk NM, Uhlmann EJ and Krichevsky AM: A nuclear function for an oncogenic microRNA as a modulator of snRNA and splicing. Mol Cancer. 21:172022. View Article : Google Scholar : PubMed/NCBI | |
Luo X, Dong J, He X, Shen L, Long C, Liu F, Liu X, Lin T, He D and Wei G: MiR-155-5p exerts tumor-suppressing functions in Wilms tumor by targeting IGF2 via the PI3K signaling pathway. Biomed Pharmacother. 125:1098802020. View Article : Google Scholar : PubMed/NCBI | |
Gong R and Jiang Y: Non-coding RNAs in pancreatic ductal adenocarcinoma. Front Oncol. 10:3092020. View Article : Google Scholar | |
Gregorova J, Vychytilova-Faltejskova P and Sevcikova S: Epigenetic regulation of MicroRNA clusters and families during tumor development. Cancers (Basel). 13:13332021. View Article : Google Scholar : PubMed/NCBI | |
O'Brien J, Hayder H, Zayed Y and Peng C: Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 9:4022018. View Article : Google Scholar | |
Yang YL, Chang YH, Li CJ, Huang YH, Tsai MC, Chu PY and Lin HY: New insights into the role of miR-29a in hepatocellular carcinoma: Implications in mechanisms and theragnostics. J Pers Med. 11:2192021. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi H and Tomari Y: RISC assembly: Coordination between small RNAs and Argonaute proteins. Biochim Biophys Acta. 1859:71–81. 2016. View Article : Google Scholar | |
Zhang J, Zhou W, Liu Y, Liu T, Li C and Wang L: Oncogenic role of microRNA-532-5p in human colorectal cancer via targeting of the 5′UTR of RUNX3. Oncol Lett. 15:7215–7220. 2018. | |
Liu M, Roth A, Yu M, Morris R, Bersani F, Rivera MN, Lu J, Shioda T, Vasudevan S, Ramaswamy S, et al: The IGF2 intronic miR-483 selectively enhances transcription from IGF2 fetal promoters and enhances tumorigenesis. Genes Dev. 27:2543–2548. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xu W, San LA, Wang Z and Liu Y: Identifying microRNA targets in different gene regions. BMC Bioinformatics. 15 (Suppl 7):S42014. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Lan X, Han R, Wang J, Huang Y, Sun J, Guo W and Chen H: MiR-2478 inhibits TGFβ1 expression by targeting the transcriptional activation region downstream of the TGFβ1 promoter in dairy goats. Sci Rep. 7:426272017. View Article : Google Scholar : PubMed/NCBI | |
Guo D, Barry L, Lin SSH, Huang V and Li LC: RNAa in action: From the exception to the norm. RNA Biol. 11:1221–1225. 2014. View Article : Google Scholar | |
Stavast CJ and Erkeland SJ: The non-canonical aspects of microRNAs: Many roads to gene regulation. Cells Basel. 8:14652019. View Article : Google Scholar | |
Fan L, Lai R, Ma N, Dong Y, Li Y, Wu Q, Qiao J, Lu H, Gong L, Tao Z, et al: MiR-552-3p modulates transcriptional activities of FXR and LXR to ameliorate hepatic glycolipid metabolism disorder. J Hepatol. 74:8–19. 2021. View Article : Google Scholar | |
Liu H, Lei C, He Q, Pan Z, Xiao D and Tao Y: Nuclear functions of mammalian microRNAs in gene regulation, immunity and cancer. Mol Cancer. 17:642018. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Tian YC, Mao G, Zhang YG and Han L: MiR-675 is frequently overexpressed in gastric cancer and enhances cell proliferation and invasion via targeting a potent anti-tumor gene PITX1. Cell Signal. 62:1093522019. View Article : Google Scholar | |
Majid S, Dar AA, Saini S, Yamamura S, Hirata H, Tanaka Y, Deng G and Dahiya R: MicroRNA-205-directed transcriptional activation of tumor suppressor genes in prostate cancer. Cancer. 116:5637–5649. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kumar R and Xi Y: MicroRNA, epigenetic machinery and lung cancer. Thorac Cancer. 2:35–44. 2011. View Article : Google Scholar : PubMed/NCBI | |
Place RF, Li LC, Pookot D, Noonan EJ and Dahiya R: MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA. 105:1608–1613. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xiang X, Mei H, Qu H, Zhao X, Li D, Song H, Jiao W, Pu J, Huang K, Zheng L and Tong Q: MiRNA-584-5p exerts tumor suppressive functions in human neuroblastoma through repressing transcription of matrix metalloproteinase 14. Biochim Biophys Acta. 1852:1743–1754. 2015. View Article : Google Scholar | |
Bai B, Liu H and Laiho M: Small RNA expression and deep sequencing analyses of the nucleolus reveal the presence of nucleolus-associated microRNAs. FEBS Open Bio. 4:441–449. 2014. View Article : Google Scholar : PubMed/NCBI | |
Catalanotto C, Cogoni C and Zardo G: MicroRNA in control of gene expression: An overview of nuclear functions. Int J Mol Sci. 17:17122016. View Article : Google Scholar | |
Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA and Jones PA: Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 9:435–443. 2006. View Article : Google Scholar | |
Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar | |
Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar | |
Lai .Eric C: Micro RNAs are complementary to 3′UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet. 30:363–364. 2002. View Article : Google Scholar | |
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S and Kim VN: The nuclear RNase III Drosha initiates microRNA processing. Nature. 425:415–419. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yi R, Qin Y, Macara IG and Cullen BR: Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Gene Dev. 17:3011–3016. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gagnon KT, Li L, Chu Y, Janowski BA and Corey DR: RNAi factors are present and active in human cell nuclei. Cell Rep. 6:211–221. 2014. View Article : Google Scholar : PubMed/NCBI | |
Weinmann L, Höck J, Ivacevic T, Ohrt T, Mutze J, Schwille P, Kremmer E, Benes V, Urlaub H and Meister G: Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell. 136:496–507. 2009. View Article : Google Scholar | |
Wei Y, Li L, Wang D, Zhang CY and Zen K: Importin 8 regulates the transport of mature microRNAs into the cell nucleus. J Biol Chem. 289:10270–10275. 2014. View Article : Google Scholar : PubMed/NCBI | |
Azmi AS, Uddin MH and Mohammad RM: The nuclear export protein XPO1-from biology to targeted therapy. Nat Rev Clin Oncol. 18:152–169. 2021. View Article : Google Scholar | |
Nishi K, Nishi A, Nagasawa T and Ui-Tei K: Human TNRC6A is an argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus. RNA. 19:17–35. 2013. View Article : Google Scholar : PubMed/NCBI | |
Daniel S, Schindler SG, Johannes D, Elisabeth K, Janina P, Stefan H, Reinhard D and Gunter M: Importin-β facilitates nuclear import of human GW proteins and balances cytoplasmic gene silencing protein levels. Nucleic Acids Res. 43:7447–7461. 2015. View Article : Google Scholar : PubMed/NCBI | |
Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P and Izaurralde E: MRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 20:1885–1898. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nishi K, Takahashi T, Suzawa M, Miyakawa T, Nagasawa T, Ming Y, Tanokura M and Ui-Tei K: Control of the localization and function of a miRNA silencing component TNRC6A by argonaute protein. Nucleic Acids Res. 43:9856–9873. 2015.PubMed/NCBI | |
Hicks JA, Li L, Matsui M, Chu Y, Volkov O, Johnson KC and Corey DR: Human GW182 paralogs are the central organizers for RNA-Mediated control of transcription. Cell Rep. 20:1543–1552. 2017. View Article : Google Scholar : PubMed/NCBI | |
Castanotto D, Lingeman R, Riggs AD and Rossi JJ: CRM1 mediates nuclear-cytoplasmic shuttling of mature microRNAs. Proc Natl Acad Sci USA. 106:21655–21659. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kalantari R, Hicks JA, Li L, Gagnon KT, Sridhara V, Lemoff A, Mirzaei H and Corey DR: Stable association of RNAi machinery is conserved between the cytoplasm and nucleus of human cells. RNA. 22:1085–1098. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kuhn CD and Joshua-Tor L: Eukaryotic argonautes come into focus. Trends Biochem Sci. 38:263–271. 2013. View Article : Google Scholar | |
Ryazansky S, Kulbachinskiy A and Aravin AA: The expanded universe of prokaryotic argonaute proteins. mBio. 9:e01935–18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Peters L and Meister G: Argonaute proteins: Mediators of RNA silencing. Mol Cell. 26:611–623. 2007. View Article : Google Scholar | |
Hutvagner G and Simard MJ: Argonaute proteins: Key players in RNA silencing. Nat Rev Mol Cell Biol. 9:22–32. 2008. View Article : Google Scholar | |
Siomi MC, Sato K, Pezic D and Aravin AA: PIWI-interacting small RNAs: The vanguard of genome defence. Nat Rev Mol Cell Biol. 12:246–258. 2011. View Article : Google Scholar | |
Sasaki T, Shiohama A, Minoshima S and Shimizu N: Identification of eight members of the argonaute family in the human genome. Genomics. 82:323–330. 2003. View Article : Google Scholar : PubMed/NCBI | |
Faehnle CR, Elkayam E, Haase AD, Hannon GJ and Joshua-Tor L: The making of a slicer: Activation of human argonaute-1. Cell Rep. 3:1901–1909. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schirle NT, Sheu-Gruttadauria J, Chandradoss SD, Joo C and MacRae IJ: Water-mediated recognition of t1-adenosine anchors argonaute2 to microRNA targets. Elife. 4:e076462015. View Article : Google Scholar | |
Park MS, Phan HD, Busch F, Hinckley SH, Brackbill JA, Wysocki VH and Nakanishi K: Human argonaute3 has slicer activity. Nucleic Acids Res. 45:11867–11877. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kwak PB and Tomari Y: The N domain of argonaute drives duplex unwinding during RISC assembly. Nat Struct Mol Biol. 19:145–151. 2012. View Article : Google Scholar | |
Czech B and Hannon GJ: Small RNA sorting: Matchmaking for argonautes. Nat Rev Genet. 12:19–31. 2011. View Article : Google Scholar | |
Yoda M, Kawamata T, Paroo Z, Ye X, Iwasaki S, Liu Q and Tomari Y: ATP-dependent human RISC assembly pathways. Nat Struct Mol Biol. 17:17–23. 2010. View Article : Google Scholar | |
Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L and Hannon GJ: Argonaute2 is the catalytic engine of mammalian RNAi. Science. 305:1437–1441. 2004. View Article : Google Scholar : PubMed/NCBI | |
Huang V and Li LC: Demystifying the nuclear function of argonaute proteins. RNA Biol. 11:18–24. 2014. View Article : Google Scholar | |
Huntzinger E and Izaurralde E: Gene silencing by microRNAs: Contributions of translational repression and mRNA decay. Nat Rev Genet. 12:99–110. 2011. View Article : Google Scholar | |
Younger ST and Corey DR: Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters. Nucleic Acids Res. 39:5682–5691. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Tan P, Wang L, Jin N, Li Y, Zhang L, Yang H, Hu Z, Zhang L, Hu C, et al: RNALocate: A resource for RNA subcellular localizations. Nucleic Acids Res. 45:D135–D138. 2017. View Article : Google Scholar : PubMed/NCBI | |
Piriyapongsa J, Bootchai C, Ngamphiw C and Tongsima S: MicroPIR2: A comprehensive database for human-mouse comparative study of microRNA-promoter interactions. Database (Oxford). 2014:bau1152014. View Article : Google Scholar : PubMed/NCBI | |
Lukasik A, Wójcikowski M and Zielenkiewicz P: Tools4miRs-one place to gather all the tools for miRNA analysis. Bioinformatics. 32:2722–2724. 2016. View Article : Google Scholar : PubMed/NCBI | |
Parveen A, Gretz N and Dweep H: Obtaining miRNA-target interaction information from miRWalk2.0. Curr Protoc Bioinformatics. 55:12.15.1–12.15.27. 2016. View Article : Google Scholar | |
Liu Q, Wang J, Zhao Y, Li CI, Stengel KR, Acharya P, Johnston G, Hiebert SW and Shyr Y: Identification of active miRNA promoters from nuclear run-on RNA sequencing. Nucleic Acids Res. 45:e1212017. View Article : Google Scholar : PubMed/NCBI | |
Jeffries CD, Fried HM and Perkins DO: Nuclear and cytoplasmic localization of neural stem cell microRNAs. RNA. 17:675–86. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wong JJ, Ritchie W, Gao D, Lau KA, Gonzalez M, Choudhary A, Taft RJ, Rasko JE and Holst J: Identification of nuclear-enriched miRNAs during mouse granulopoiesis. J Hematol Oncol. 7:422014. View Article : Google Scholar | |
Li ZF, Liang YM, Lau PN, Shen W, Wang DK, Cheung WT, Xue CJ, Poon LM and Lam YW: Dynamic localisation of mature microRNAs in human nucleoli is influenced by exogenous genetic materials. PLoS One. 8:e708692013. View Article : Google Scholar : PubMed/NCBI | |
Sahu I, Hebalkar R, Kar S, Sreevidya TS, Gutti U and Gutti RK: Systems biology approach to study the role of miRNA in promoter targeting during megakaryopoiesis. Exp Cell Res. 366:192–198. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liao JY, Ma LM, Guo YH, Zhang YC, Zhou H, Shao P, Chen YQ and Qu LH: Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3′trailers. PLoS One. 5:e105632010. View Article : Google Scholar : PubMed/NCBI | |
Politz JCR, Hogan EM and Pederson T: MicroRNAs with a nucleolar location. RNA. 15:1705–1715. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tang R, Li L, Zhu D, Hou D, Cao T, Gu H, Zhang J, Chen J, Zhang CY and Zen K: Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: Evidence for a microRNA hierarchy system. Cell Res. 22:504–515. 2012. View Article : Google Scholar : PubMed/NCBI | |
Toms D, Pan B, Bai Y and Li J: Small RNA sequencing reveals distinct nuclear microRNAs in pig granulosa cells during ovarian follicle growth. J Ovarian Res. 14:542021. View Article : Google Scholar : PubMed/NCBI | |
Sato K and Siomi MC: The piRNA pathway in Drosophila ovarian germ and somatic cells. Proc Jpn Acad Ser B Phys Biol Sci. 96:32–42. 2020. View Article : Google Scholar | |
Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H and Siomi MC: A slicer-mediated mechanism for repeat-associated siRNA 59 end formation in drosophila. Science. 315:1587–1590. 2007. View Article : Google Scholar : PubMed/NCBI | |
Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R and Hannon GJ: Discrete small RNA-generating loci as master regulators of transposon activity in drosophila. Cell. 128:1089–1103. 2007. View Article : Google Scholar | |
Yu Y, Gu J, Jin Y, Luo Y, Preall JB, Ma J, Czech B and Hannon GJ: Panoramix enforces piRNA-dependent cotranscriptional silencing. Science. 350:339–342. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sienski G, Donertas D and Brennecke J: Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell. 151:964–980. 2012. View Article : Google Scholar | |
Watanabe T, Tomizawa S, Mitsuya K, Totoki Y, Yamamoto Y, Kuramochi-Miyagawa S, Iida N, Hoki Y, Murphy PJ, Toyoda A, et al: Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science. 332:848–852. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Hu G, Myers TG and Williamson PR: Protocols for the analysis of microRNA expression, biogenesis, and function in immune cells. Curr Protoc Immunol. 126:e782019. View Article : Google Scholar | |
Fu Y, Zhang L, Zhang R, Xu S, Wang H, Jin Y and Wu Z: Enterovirus 71 suppresses miR-17-92 cluster through up-regulating methylation of the miRNA promoter. Front Microbiol. 10:6252019. View Article : Google Scholar | |
Younger ST, Pertsemlidis A and Corey DR: Predicting potential miRNA target sites within gene promoters. Bioorg Med Chem Lett. 19:3791–3794. 2009. View Article : Google Scholar | |
Chellini L, Frezza V and Paronetto MP: Dissecting the transcriptional regulatory networks of promoter-associated noncoding RNAs in development and cancer. J Exp Clin Cancer Res. 39:512020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y and Zhang H: RNAa induced by TATA box-targeting microRNAs. Adv Exp Med Biol. 983:91–111. 2017. View Article : Google Scholar | |
Xiao M, Li J, Li W, Wang Y, Wu F, Xi Y, Zhang L, Ding C, Luo H, Li Y, et al: MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol. 14:1326–1334. 2017. View Article : Google Scholar | |
Zhang Y, Liu W, Chen Y, Liu J, Wu K, Su L, Zhang W, Jiang Y, Zhang X, Zhang Y, et al: A cellular microRNA facilitates regulatory t lymphocyte development by targeting the FOXP3 promoter TATA-box motif. J Immunol. 200:1053–1063. 2017. View Article : Google Scholar | |
Bai Y, Pan B, Zhan X, Silver H and Li J: MicroRNA 195-5p targets foxo3 promoter region to regulate its expression in granulosa cells. Int J Mol Sci. 22:67212021. View Article : Google Scholar | |
Cao R and Zhang Y: The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev. 14:155–164. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mellor J, Dudek P and Clynes D: A glimpse into the epigenetic landscape of gene regulation. Curr Opin Genet Dev. 18:116–122. 2008. View Article : Google Scholar : PubMed/NCBI | |
Guo H, Pu M, Tai Y, Chen Y and Ren J: Nuclear miR-30b-5p suppresses TFEB-mediated lysosomal biogenesis and autophagy. Cell Death Differ. 28:320–336. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li LC: Chromatin remodeling by the small RNA machinery in mammalian cells. Epigenetics. 9:45–52. 2014. View Article : Google Scholar : PubMed/NCBI | |
Barlak N, Capik O, Kilic A, Sanli F, Aytatli A, Yazici A, Karatas EA, Ortucu S and Karatas OF: MicroRNA-145 transcriptionally regulates semaphorin 3A expression in prostate cancer cells. Cell Biol Int. 45:1082–1090. 2021. View Article : Google Scholar | |
Song M, Wang Y, Zhou P, Wang J, Xu H and Zheng J: MicroRNA-361-5p aggravates acute pancreatitis by promoting interleukin-17A secretion via impairment of nuclear factor IA-dependent hes1 downregulation. J Med Chem. 64:16541–16552. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Wang YY, Xu Y, Zhang L, Zhu J, Si PC, Wang YW and Ma R: A two-miRNA signature of upregulated miR-185-5p and miR-362-5p as a blood biomarker for breast cancer. Pathol Res Pract. 222:1534582021. View Article : Google Scholar | |
Van Roosbroeck K and Calin GA: Cancer hallmarks and MicroRNAs: The therapeutic connection. Adv Cancer Res. 135:119–149. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kolenda T, Przybyla W, Teresiak A, Mackiewicz A and Lamperska KM: The mystery of let-7d-a small RNA with great power. Contemp Oncol (Pozn). 18:293–301. 2014.PubMed/NCBI | |
Seviour EG, Sehgal V, Lu Y, Luo Z, Moss T, Zhang F, Hill SM, Liu W, Maiti SN, Cooper L, et al: Functional proteomics identifies miRNAs to target a p27/Myc/phospho-Rb signature in breast and ovarian cancer. Oncogene. 35:691–701. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schmid G, Notaro S, Reimer D, Abdel-Azim S, Duggan-Peer M, Holly J, Fiegl H, Rossler J, Wiedemair A, Concin N, et al: Expression and promotor hypermethylation of miR-34a in the various histological subtypes of ovarian cancer. BMC Cancer. 16:1022016. View Article : Google Scholar : PubMed/NCBI | |
Wong KY, Yu L and Chim CS: DNA methylation of tumor suppressor miRNA genes: A lesson from the miR-34 family. Epigenomics. 3:83–92. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Fang S, Di Y, Ying W, Tan Y and Gu W: Modulation of NF-κB/miR-21/PTEN pathway sensitizes non-small cell lung cancer to cisplatin. PLoS One. 10:e01215472015. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Zhu S, Tao Z and Ye S: High circulating miR-18a, miR-20a, and miR-92a expression correlates with poor prognosis in patients with non-small cell lung cancer. Cancer Med. 7:21–31. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zhou H, Luo J and Huang J: MicroRNA-17-5p inhibits proliferation and triggers apoptosis in non-small cell lung cancer by targeting transforming growth factor β receptor 2. Exp Ther Med. 13:2715–2722. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Liu C, Wu H, Xie Y and Zhang X: CSB affected on the sensitivity of lung cancer cells to platinum-based drugs through the global decrease of let-7 and miR-29. BMC Cancer. 19:9482019. View Article : Google Scholar : PubMed/NCBI | |
Kristensen LS, Andersen MS, Stagsted L, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar | |
Zheng L, Jiao W, Mei H, Song H, Li D, Xiang X, Chen Y, Yang F, Li H, Huang K and Tong Q: MiRNA-337-3p inhibits gastric cancer progression through repressing myeloid zinc finger 1-facilitated expression of matrix metalloproteinase 14. Oncotarget. 7:40314–40328. 2016. View Article : Google Scholar | |
Zhang L, Zhou Q, Qiu Q, Hou L and Lu Y: CircPLEKHM3 acts as a tumor suppressor through regulation of the miR-9/BRCA1/DNAJB6/KLF4/AKT1 axis in ovarian cancer. Mol Cancer. 18:1442019. View Article : Google Scholar : PubMed/NCBI | |
Christofides A, Papagregoriou G, Dweep H, Makrides N, Gretz N, Felekkis K and Deltas C: Evidence for miR-548c-5p regulation of FOXC2 transcription through a distal genomic target site in human podocytes. Cell Mol Life Sci. 77:2441–2459. 2020. View Article : Google Scholar | |
Dharap A, Pokrzywa C, Murali S, Pandi G and Vemuganti R: MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS One. 8:e794672013. View Article : Google Scholar : PubMed/NCBI | |
Huang V: Endogenous miRNAa: MiRNA-mediated gene upregulation. Adv Exp Med Biol. 983:65–79. 2017. View Article : Google Scholar | |
Huang V, Place RF, Portnoy V, Wang J, Qi Z, Jia Z, Yu A, Shuman M, Yu J and Li LC: Upregulation of Cyclin B1 by miRNA and its implications in cancer. Nucleic Acids Res. 40:1695–1707. 2012. View Article : Google Scholar : PubMed/NCBI | |
Matsui M, Chu Y, Zhang H, Gagnon KT, Shaikh S, Kuchimanchi S, Manoharan M, Corey DR and Janowski BA: Promoter RNA links transcriptional regulation of inflammatory pathway genes. Nucleic Acids Res. 41:10086–10109. 2013. View Article : Google Scholar : PubMed/NCBI | |
Turner M, Jiao A and Slack FJ: Autoregulation of lin-4 microRNA transcription by RNA activation (RNAa) in C. Elegans. Cell Cycle. 13:772–781. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vera H, Yi Q, Ji W, Xiaoling W, Place RF, Guiting L, Lue TF, Long-Cheng L and Dong-Yan J: RNAa is conserved in mammalian cells. PLoS One. 5:e88482010. View Article : Google Scholar : PubMed/NCBI | |
Qu H, Zheng L, Pu J, Mei H, Xiang X, Zhao X, Li D, Li S, Mao L, Huang K and Tong Q: MiRNA-558 promotes tumorigenesis and aggressiveness of neuroblastoma cells through activating the transcription of heparanase. Hum Mol Genet. 24:2539–2551. 2015. View Article : Google Scholar | |
Wang C, Chen Z, Ge Q, Hu J, Li F, Hu J, Xu H, Ye Z and Li LC: Up-regulation of p21(WAF1/CIP1) by miRNAs and its implications in bladder cancer cells. FEBS Lett. 588:4654–4664. 2014. View Article : Google Scholar | |
Zou Q, Liang Y, Luo H and Yu W: MiRNA-mediated RNAa by targeting enhancers. Adv Exp Med Biol. 983:113–125. 2017. View Article : Google Scholar | |
Huang YP, Qiu LZ and Zhou GP: MicroRNA-939 down-regulates CD2-associated protein by targeting promoter in HEK-293T cells. Renal Failure. 38:508–513. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mao H, Zhu C, Zong D, Weng C, Yang X, Huang H, Liu D, Feng X and Guang S: The nrde pathway mediates small-RNA-directed histone H3 lysine 27 Trimethylation in Caenorhabditis elegans. Curr Biol. 25:2398–2403. 2015. View Article : Google Scholar | |
Liu X, Fan Z, Li Y, Li Z, Zhou Z, Yu X, Wan J, Min Z, Yang L and Li D: MicroRNA-196a-5p inhibits testicular germ cell tumor progression via NR6A1/E-cadherin axis. Cancer Med. 9:9107–9122. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo F, Gao Y, Sui G, Jiao D, Sun L, Fu Q and Jin C: MiR-375-3p/YWHAZ/β-catenin axis regulates migration, invasion, EMT in gastric cancer cells. Clin Exp Pharmacol Physiol. 46:144–152. 2019. View Article : Google Scholar | |
Li J and Zou X: MiR-652 serves as a prognostic biomarker in gastric cancer and promotes tumor proliferation, migration, and invasion via targeting RORA. Cancer Biomark. 26:323–331. 2019. View Article : Google Scholar : PubMed/NCBI | |
To KK, Leung WW and Ng SS: A novel miR-203-DNMT3b-ABCG2 regulatory pathway predisposing colorectal cancer development. Mol Carcinog. 56:4642016. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Chen Q, Li S, Li S and Zhao Z: Dual inhibition of PCDH9 expression by miR-215-5p up-regulation in gliomas. Oncotarget. 8:10287–10297. 2016. View Article : Google Scholar | |
Tan Y, Zhang B, Wu T, Skogerbø G, Zhu X, Guo X, He S and Chen R: Transcriptional inhibiton of Hoxd4 expression by miRNA-10a in human breast cancer cells. BMC Mol Biol. 10:122009. View Article : Google Scholar | |
Kang MR, Park KH, Yang JO, Lee CW and Kang JS: MiR-6734 up-regulates p21 gene expression and induces cell cycle arrest and apoptosis in colon cancer cells. PLoS One. 11:e1609612016. View Article : Google Scholar | |
Zhang Y, Fan M, Geng G, Liu B, Huang Z, Luo H, Zhou J, Guo X, Cai W and Zhang H: A novel HIV-1-encoded microRNA enhances its viral replication by targeting the TATA box region. Retrovirology. 11:232014. View Article : Google Scholar : PubMed/NCBI | |
Li S, Zhu Y, Liang Z, Wang X and Xie L: Up-regulation of p16 by miR-877-3p inhibits proliferation of bladder cancer. Oncotarget. 7:51773–51783. 2016. View Article : Google Scholar | |
Kim DH, Saetrom P, Snove O Jr and Rossi JJ: MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA. 105:16230–16235. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cui C, Yu J, Huang S, Zhu H and Huang Z: Transcriptional regulation of gene expression by microRNAs as endogenous decoys of transcription factors. Cell Physiol Biochem. 33:1698–1714. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zardo G, Ciolfi A, Vian L, Starnes LM, Billi M, Racanicchi S, Maresca C, Fazi F, Travaglini L, Noguera N, et al: Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression. Blood. 119:4034–4046. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sepramaniam S, Ying LK, Armugam A, Wintour EM and Jeyaseelan K: MicroRNA-130a represses transcriptional activity of aquaporin 4 M1 promoter. J Biol Chem. 287:12006–12015. 2012. View Article : Google Scholar : PubMed/NCBI | |
Miao L, Yao H, Li C, Pu M, Yao X, Yang H, Qi X, Ren J and Wang Y: A dual inhibition: MicroRNA-552 suppresses both transcription and translation of cytochrome P450 2E1. Biochim Biophys Acta. 1859:650–662. 2016. View Article : Google Scholar |