1
|
Darveau RP: Periodontitis: A polymicrobial
disruption of host homeostasis. Nat Rev Microbiol. 8:481–490. 2010.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Hajishengallis G, Wang M and Liang S:
Induction of distinct TLR2-mediated proinflammatory and proadhesive
signaling pathways in response to porphyromonas gingivalis
fimbriae. J Immunol. 182:6690–6696. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Takii R, Kadowaki T, Baba A, Tsukuba T and
Yamamoto K: A functional virulence complex composed of gingipains,
adhesins, and lipopolysaccharide shows high affinity to host cells
and matrix proteins and escapes recognition by host immune systems.
Infect Immun. 73:883–893. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hiyari S, Atti E, Camargo PM, Eskin E,
Lusis AJ, Tetradis S and Pirih FQ: Heritability of periodontal bone
loss in mice. J Periodontal Res. 50:730–736. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Liu R, Desta T, Raptis M, Darveau RP and
Graves DT: P. gingivalis and E. coli lipopolysaccharides exhibit
different systemic but similar local induction of inflammatory
markers. J Periodontol. 79:1241–1247. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Suh JS, Kim S, Boström KI, Wang CY, Kim RH
and Park NH: Periodontitis-induced systemic inflammation
exacerbates atherosclerosis partly via endothelial-mesenchymal
transition in mice. Int J Oral Sci. 11:212019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Imamura T: The role of gingipains in the
pathogenesis of periodontal disease. J Periodontol. 74:111–118.
2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
O'Brien-Simpson NM, Paolini RA, Hoffmann
B, Slakeski N, Dashper SG and Reynolds EC: Role of RgpA, RgpB, and
Kgp proteinases in virulence of Porphyromonas gingivalis W50 in a
murine lesion model. Infect Immun. 69:7527–7534. 2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Pike RN, Potempa J, McGraw W, Coetzer TH
and Travis J: Characterization of the binding activities of
proteinase-adhesin complexes from Porphyromonas gingivalis. J
Bacteriol. 178:2876–2882. 1996. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ding PH, Yang MX, Wang NN, Jin LJ, Dong Y,
Cai X and Chen LL: Porphyromonas gingivalis-induced NLRP3
inflammasome activation and its downstream interleukin-1beta
release depend on caspase-4. Front Microbiol. 11:18812020.
View Article : Google Scholar
|
11
|
Fitzpatrick RE, Wijeyewickrema LC and Pike
RN: The gingipains: Scissors and glue of the periodontal pathogen,
Porphyromonas gingivalis. Future Microbiol. 4:471–487. 2009.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Gui MJ, Dashper SG, Slakeski N, Chen YY
and Reynolds EC: Spheres of influence: Porphyromonas gingivalis
outer membrane vesicles. Mol Oral Microbiol. 31:365–378. 2016.
View Article : Google Scholar
|
13
|
Guo Y, Nguyen KA and Potempa J: Dichotomy
of gingipains action as virulence factors: From cleaving substrates
with the precision of a surgeon's knife to a meat chopper-like
brutal degradation of proteins. Periodontol 2000. 54:15–44. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Grenier D, Roy S, Chandad F, Plamondon P,
Yoshioka M, Nakayama K and Mayrand D: Effect of inactivation of the
Arg- and/or Lys-gingipain gene on selected virulence and
physiological properties of porphyromonas gingivalis. Infect Immun.
71:4742–4748. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lalla E, Lamster IB, Feit M, Huang L and
Schmidt AM: A murine model of accelerated periodontal disease in
diabetes. J Periodontal Res. 33:387–399. 1998. View Article : Google Scholar : PubMed/NCBI
|
16
|
Graves DT, Kang J, Andriankaja O, Wada K
and Rossa C Jr: Animal models to study host-bacteria interactions
involved in periodontitis. Front Oral Biol. 15:117–132. 2012.
View Article : Google Scholar
|
17
|
Baker PJ, Evans RT and Roopenian DC: Oral
infection with Porphyromonas gingivalis and induced alveolar bone
loss in immunocompetent and severe combined immunodeficient mice.
Arch Oral Biol. 39:1035–1040. 1994. View Article : Google Scholar : PubMed/NCBI
|
18
|
Bainbridge B, Verma RK, Eastman C, Yehia
B, Rivera M, Moffatt C, Bhattacharyya I, Lamont RJ and Kesavalu L:
Role of Porphyromonas gingivalis phosphoserine phosphatase enzyme
SerB in inflammation, immune response, and induction of alveolar
bone resorption in rats. Infect Immun. 78:4560–4569. 2010.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Baker PJ, Dixon M, Evans RT and Roopenian
DC: Heterogeneity of Porphyromonas gingivalis strains in the
induction of alveolar bone loss in mice. Oral Microbiol Immunol.
15:27–32. 2000. View Article : Google Scholar
|
20
|
Dumitrescu AL, Abd-El-Aleem S, Morales-Aza
B and Donaldson LF: A model of periodontitis in the rat: Effect of
lipopolysaccharide on bone resorption, osteoclast activity, and
local peptidergic innervation. J Clin Periodontol. 31:596–603.
2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Nishida E, Hara Y, Kaneko T, Ikeda Y, Ukai
T and Kato I: Bone resorption and local interleukin-1alpha and
interleukin-1beta synthesis induced by Actinobacillus
actinomycetemcomitans and Porphyromonas gingivalis
lipopolysaccharide. J Periodontal Res. 36:1–8. 2001. View Article : Google Scholar : PubMed/NCBI
|
22
|
Marchesan J, Girnary MS, Jing L, Miao MZ,
Zhang S, Sun L, Morelli T, Schoenfisch MH, Inohara N, Offenbacher S
and Jiao Y: An experimental murine model to study periodontitis.
Nat Protoc. 13:2247–2267. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kimura S, Nagai A, Onitsuka T, Koga T,
Fujiwara T, Kaya H and Hamada S: Induction of experimental
periodontitis in mice with Porphyromonas gingivalis-adhered
ligatures. J Periodontol. 71:1167–1173. 2000. View Article : Google Scholar : PubMed/NCBI
|
24
|
Suh JS, Lee SH, Fouladian Z, Lee JY, Kim
T, Kang MK, Lusis AJ, Boström KI, Kim RH and Park NH: Rosuvastatin
prevents the exacerbation of atherosclerosis in ligature-induced
periodontal disease mouse model. Sci Rep. 10:63832020. View Article : Google Scholar : PubMed/NCBI
|
25
|
Belanger M, Rodrigues P and Progulske-Fox
A: Genetic manipulation of porphyromonas gingivalis. Curr Protoc
Microbiol. Chapter 13: Unit13C.2. 2007. View Article : Google Scholar
|
26
|
Velsko IM, Chukkapalli SS, Rivera MF, Lee
JY, Chen H, Zheng D, Bhattacharyya I, Gangula PR, Lucas AR and
Kesavalu L: Active invasion of oral and aortic tissues by
Porphyromonas gingivalis in mice causally links periodontitis and
atherosclerosis. PLoS One. 9:e978112014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Siegel SD, Amer BR, Wu C, Sawaya MR,
Gosschalk JE, Clubb RT and Ton-That H: Structure and mechanism of
LcpA, a phosphotransferase that mediates glycosylation of a
gram-positive bacterial cell wall-anchored protein. mBio.
10:e01580–01518. 2019.PubMed/NCBI
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
29
|
Hayashi C, Gudino CV, Gibson FC III and
Genco CA: Review: Pathogen-induced inflammation at sites distant
from oral infection: bacterial persistence and induction of
cell-specific innate immune inflammatory pathways. Mol Oral
Microbiol. 25:305–316. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gibson FC III, Hong C, Chou HH, Yumoto H,
Chen J, Lien E, Wong J and Genco CA: Innate immune recognition of
invasive bacteria accelerates atherosclerosis in apolipoprotein
E-deficient mice. Circulation. 109:2801–2806. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lalla E, Lamster IB, Hofmann MA,
Bucciarelli L, Jerud AP, Tucker S, Lu Y, Papapanou PN and Schmidt
AM: Oral infection with a periodontal pathogen accelerates early
atherosclerosis in apolipoprotein E-null mice. Arterioscler Thromb
Vasc Biol. 23:1405–1411. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Harrington WN, Nolan J, Nedosekin DA,
Smeltzer MS and Zharov VP: Real-time monitoring of bacteria
clearance from blood in a murine model. Cytometry A. 97:706–712.
2020. View Article : Google Scholar
|
33
|
He Y, Shiotsu N, Uchida-Fukuhara Y, Guo J,
Weng Y, Ikegame M, Wang Z, Ono K, Kamioka H, Torii Y, et al: Outer
membrane vesicles derived from Porphyromonas gingivalis induced
cell death with disruption of tight junctions in human lung
epithelial cells. Arch Oral Biol. 118:1048412020. View Article : Google Scholar : PubMed/NCBI
|
34
|
O'Brien-Simpson NM, Pathirana RD, Walker
GD and Reynolds EC: Porphyromonas gingivalis RgpA-Kgp
proteinase-adhesin complexes penetrate gingival tissue and induce
proinflammatory cytokines or apoptosis in a concentration-dependent
manner. Infect Immun. 77:1246–1261. 2009. View Article : Google Scholar :
|
35
|
Nativel B, Couret D, Giraud P, Meilhac O,
d'Hellencourt CL, Viranaïcken W and Silva CRD: Porphyromonas
gingivalis lipopolysaccharides act exclusively through TLR4 with a
resilience between mouse and human. Sci Rep. 7:157892017.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Maekawa T, Takahashi N, Tabeta K, Aoki Y,
Miyashita H, Miyauchi S, Miyazawa H, Nakajima T and Yamazaki K:
Chronic oral infection with Porphyromonas gingivalis accelerates
atheroma formation by shifting the lipid profile. PLoS One.
6:e202402011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Parameswaran N and Patial S: Tumor
necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene
Expr. 20:87–103. 2010. View Article : Google Scholar
|
38
|
Yunna C, Mengru H, Lei W and Weidong C:
Macrophage M1/M2 polarization. Eur J Pharmacol. 877:1730902020.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Rajakaruna GA, Negi M, Uchida K, Sekine M,
Furukawa A, Ito T, Kobayashi D, Suzuki Y, Akashi T, Umeda M, et al:
Localization and density of porphyromonas gingivalis and tannerella
forsythia in gingival and subgingival granulation tissues affected
by chronic or aggressive periodontitis. Sci Rep. 8:95072018.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Delbosc S, Alsac JM, Journe C, Louedec L,
Castier Y, Bonnaure-Mallet M, Ruimy R, Rossignol P, Bouchard P,
Michel JB and Meilhac O: Porphyromonas gingivalis participates in
pathogenesis of human abdominal aortic aneurysm by neutrophil
activation. Proof of concept in rats. PLoS One. 6:e186792011.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Nakano K, Nemoto H, Nomura R, Inaba H,
Yoshioka H, Taniguchi K, Amano A and Ooshima T: Detection of oral
bacteria in cardiovascular specimens. Oral Microbiol Immunol.
24:64–68. 2009. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kurihara N, Inoue Y, Iwai T, Umeda M,
Huang Y and Ishikawa I: Detection and localization of
periodontopathic bacteria in abdominal aortic aneurysms. Eur J Vasc
Endovasc Surg. 28:553–558. 2004. View Article : Google Scholar : PubMed/NCBI
|
43
|
Shimoda A, Ueda K, Nishiumi S,
Murata-Kamiya N, Mukai SA, Sawada SI, Azuma T, Hatakeyama M and
Akiyoshi K: Exosomes as nanocarriers for systemic delivery of the
helicobacter pylori virulence factor CagA. Sci Rep. 6:183462016.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Takeuchi H, Sasaki N, Yamaga S, Kuboniwa
M, Matsusaki M and Amano A: Porphyromonas gingivalis induces
penetration of lipopolysaccharide and peptidoglycan through the
gingival epithelium via degradation of junctional adhesion molecule
1. PLoS Pathog. 15:e10081242019. View Article : Google Scholar : PubMed/NCBI
|
45
|
Paigen B, Morrow A, Holmes PA, Mitchell D
and Williams RA: Quantitative assessment of atherosclerotic lesions
in mice. Atherosclerosis. 68:231–240. 1987. View Article : Google Scholar : PubMed/NCBI
|
46
|
Johnston TP, Baker JC, Hall D, Jamal S,
Palmer WK and Emeson EE: Regression of poloxamer 407-induced
atherosclerotic lesions in C57BL/6 mice using atorvastatin.
Atherosclerosis. 149:303–313. 2000. View Article : Google Scholar : PubMed/NCBI
|
47
|
Johnston TP, Nguyen LB, Chu WA and Shefer
S: Potency of select statin drugs in a new mouse model of
hyperlipidemia and atherosclerosis. Int J Pharm. 229:75–86. 2001.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Kleemann R, Princen HM, Emeis JJ, Jukema
JW, Fontijn RD, Horrevoets AJG, Kooistra T and Havekes LM:
Rosuvastatin reduces atherosclerosis development beyond and
independent of its plasma cholesterol-lowering effect in
APOE*3-Leiden transgenic mice: Evidence for antiinflammatory
effects of rosuvastatin. Circulation. 108:1368–1374. 2003.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Park KY and Heo TH: Combination therapy
with cilostazol and pravastatin improves antiatherogenic effects in
low-density lipoprotein receptor knockout mice. Cardiovasc Ther.
36:e124762018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Potempa J, Banbula A and Travis J: Role of
bacterial proteinases in matrix destruction and modulation of host
responses. Periodontol 2000. 24:153–192. 2000. View Article : Google Scholar
|
51
|
Pavloff N, Pemberton PA, Potempa J, Chen
WC, Pike RN, Prochazka V, Kiefer MC, Travis J and Barr PJ:
Molecular cloning and characterization of Porphyromonas gingivalis
lysine-specific gingipain. A new member of an emerging family of
pathogenic bacterial cysteine proteinases. J Biol Chem.
272:1595–1600. 1997. View Article : Google Scholar : PubMed/NCBI
|
52
|
Pavloff N, Potempa J, Pike RN, Prochazka
V, Kiefer MC, Travis J and Barr PJ: Molecular cloning and
structural characterization of the Arg-gingipain proteinase of
Porphyromonas gingivalis. Biosynthesis as a proteinase-adhesin
polyprotein. J Biol Chem. 270:1007–1010. 1995. View Article : Google Scholar : PubMed/NCBI
|
53
|
Hashimoto M, Kadowaki T, Tsukuba T and
Yamamoto K: Selective proteolysis of apolipoprotein B-100 by
Arg-gingipain mediates atherosclerosis progression accelerated by
bacterial exposure. J Biochem. 140:713–723. 2006. View Article : Google Scholar : PubMed/NCBI
|
54
|
Shepardson NE, Shankar GM and Selkoe DJ:
Cholesterol level and statin use in Alzheimer disease: I. Review of
epidemiological and preclinical studies. Arch Neurol. 68:1239–1244.
2011. View Article : Google Scholar : PubMed/NCBI
|
55
|
Vaya J and Schipper HM: Oxysterols,
cholesterol homeostasis, and Alzheimer disease. J Neurochem.
102:1727–1737. 2007. View Article : Google Scholar : PubMed/NCBI
|