1
|
Jha V, Garcia-Garcia G, Iseki K, Li Z,
Naicker S, Plattner B, Saran R, Wang AYM and Yang CW: Chronic
kidney disease: Global dimension and perspectives. Lancet.
382:260–272. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Vallianou NG, Mitesh S, Gkogkou A and
Geladari E: Chronic kidney disease and cardiovascular disease: Is
there any relationship? Curr Cardiol Rev. 15:55–63. 2019.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Bello AK, Alrukhaimi M, Ashuntantang GE,
Basnet S, Rotter RC, Douthat WG, Kazancioglu R, Köttgen A, Nangaku
M, Powe NR, et al: Complications of chronic kidney disease: Current
state, knowledge gaps, and strategy for action. Kidney Int Suppl
(2011). 7:122–129. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
He J, Xu Y, Koya D and Kanasaki K: Role of
the endothelial-to-mesenchymal transition in renal fibrosis of
chronic kidney disease. Clin Exp Nephrol. 17:488–497. 2013.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Quadri MM, Fatima SS, Che RC and Zhang AH:
Mitochondria and renal fibrosis. Adv Exp Med Biol. 1165:501–524.
2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bhargava P and Schnellmann RG:
Mitochondrial energetics in the kidney. Nat Rev Nephrol.
13:629–646. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ishimoto Y and Inagi R: Mitochondria: A
therapeutic target in acute kidney injury. Nephrol Dial Transplant.
31:1062–1069. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kaushal GP, Chandrashekar K and Juncos LA:
Molecular interactions between reactive oxygen species and
autophagy in kidney disease. Int J Mol Sci. 20:37912019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Coughlan MT and Sharma K: Challenging the
dogma of mitochondrial reactive oxygen species overproduction in
diabetic kidney disease. Kidney Int. 90:272–279. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tsuji N, Tsuji T, Ohashi N, Kato A,
Fujigaki Y and Yasuda H: Role of mitochondrial DNA in septic AKI
via toll-like receptor 9. J Am Soc Nephrol. 27:2009–2020. 2016.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Che R, Yuan Y, Huang S and Zhang A:
Mitochondrial dysfunction in the pathophysiology of renal diseases.
Am J Physiol Renal Physiol. 306:367–378. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yeung BH, Law AY and Wong CK: Evolution
and roles of stanniocalcin. Mol Cell Endocrinol. 349:272–280. 2012.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Ishibashi K and Imai M: Prospect of a
stanniocalcin endocrine/paracrine system in mammals. Am J Physiol
Renal Physiol. 282:F367–F375. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
McCudden CR, James KA, Hasilo C and Wagner
GF: Characterization of mammalian stanniocalcin receptors.
Mitochondrial targeting of ligand and receptor for regulation of
cellular metabolism. J Biol Chem. 277:45249–4558. 2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ellard JP, McCudden CR, Tanega C, James
KA, Ratkovic S, Staples JF and Wagner GF: The respiratory effects
of stanniocalcin-1 (STC-1) on intact mitochondria and cells: STC-1
uncouples oxidative phosphorylation and its actions are modulated
by nucleotide triphosphates. Mol Cell Endocrinol. 264:90–101. 2007.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang Y, Huang L, Abdelrahim M, Cai Q,
Truong A, Bick R, Poindexter B and Sheikh-Hamad D: Stanniocalcin-1
suppresses superoxide generation in macrophages through induction
of mitochondrial UCP2. J Leukoc Biol. 86:981–988. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sheikh-Hamad D: Mammalian stanniocalcin-1
activates mitochondrial antioxidant pathways: New paradigms for
regulation of macrophages and endothelium. Am J Physiol Renal
Physiol. 298:F248–F254. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Huang L, Belousova T, Chen M, DiMattia G,
Liu D and Sheikh-Hamad D: Overexpression of stanniocalcin-1
inhibits reactive oxygen species and renal ischemia/reperfusion
injury in mice. Kidney Int. 82:867–877. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Pan JS, Huang L, Belousova T, Lu L, Yang
Y, Reddel R, Chang A, Ju H, DiMattia G, Tong Q, et al:
Stanniocalcin-1 inhibits renal ischemia/reperfusion injury via an
AMP-activated protein kinase-dependent pathway. J Am Soc Nephrol.
26:364–378. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Meng XM, Nikolic-Paterson DJ and Lan HY:
TGF-β: The master regulator of fibrosis. Nat Rev Nephrol.
12:325–338. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sivandzade F, Bhalerao A and Cucullo L:
Analysis of the mitochondrial membrane potential using the cationic
JC-1 dye as a sensitive fluorescent probe. Bio Protoc.
9:e31282019.PubMed/NCBI
|
22
|
Kim H, Moon SY, Kim JS, Baek CH, Kim M,
Min JY and Lee SK: Activation of AMP-activated protein kinase
inhibits ER stress and renal fibrosis. Am J Physiol Renal Physiol.
308:F226–F236. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Andreyev AY, Kushnareva YE and Starkov AA:
Mitochondrial metabolism of reactive oxygen species. Biochemistry
(Mosc). 70:200–214. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Donadelli M, Dando I, Fiorini C and
Palmieri M: UCP2, a mitochondrial protein regulated at multiple
levels. Cell Mol Life Sci. 71:1171–1190. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Humphreys BD: Mechanisms of renal
fibrosis. Annu Rev Physiol. 80:309–326. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Djudjaj S and Boor P: Cellular and
molecular mechanisms of kidney fibrosis. Mol Aspects Med. 65:16–36.
2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ono M, Ohkouchi S, Kanehira M, Tode N,
Kobayashi M, Ebina M, Nukiwa T, Irokawa T, Ogawa H, Akaike T, et
al: Mesenchymal stem cells correct inappropriate
epithelial-mesenchyme relation in pulmonary fibrosis using
stanniocalcin-1. Mol Ther. 23:549–560. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ohkouchi S, Ono M, Kobayashi M, Hirano T,
Tojo Y, Hisata S, Ichinose M, Irokawa T, Ogawa H and Kurosawa H:
Myriad functions of stanniocalcin-1 (STC1) cover multiple
therapeutic targets in the complicated pathogenesis of idiopathic
pulmonary fibrosis (IPF). Clin Med Insights Circ Respir Pul Med.
9:91–96. 2015.PubMed/NCBI
|
29
|
Juszczak F, Caron N, Mathew AV and
Declèves AE: Critical role for AMPK in metabolic disease-induced
chronic kidney disease. Int J Mol Sci. 21:79942020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sharma K: Obesity, oxidative stress, and
fibrosis in chronic kidney disease. Kidney Int Suppl (2011).
4:113–117. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Thakur S, Viswanadhapalli S, Kopp JB, Shi
Q, Barnes JL, Block K, Gorin Y and Abboud HE: Activation of
AMP-activated protein kinase prevents TGF-β1-induced
epithelial-mesenchymal transition and myofibroblast activation. Am
J Pathol. 185:2168–2180. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gao J, Ye J, Ying Y, Lin H and Luo Z:
Negative regulation of TGF-β by AMPK and implications in the
treatment of associated disorders. Acta Biochim Biophys Sin
(Shanghai). 50:523–531. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Borges CM, Fujihara CK, Malheiros D, de
Ávila VF, Formigari GP and Lopes de Faria JB: Metformin arrests the
progression of established kidney disease in the subtotal
nephrectomy model of chronic kidney disease. Am J Physiol Renal
Physiol. 318:F1229–F1236. 2020. View Article : Google Scholar : PubMed/NCBI
|
34
|
Trewin AJ, Berry BJ and Wojtovich AP:
Exercise and mitochondrial dynamics: Keeping in shape with ROS and
AMPK. Antioxidants (Basel). 7:72018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Bhatia D, Capili A and Choi ME:
Mitochondrial dysfunction in kidney injury, inflammation, and
disease: Potential therapeutic approaches. Kidney Res Clin Pract.
39:244–258. 2020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Czajka A, Ajaz S, Gnudi L, Parsade CK,
Jones P, Reid F and Malik AN: Altered mitochondrial function,
mitochondrial DNA and reduced metabolic flexibility in patients
with diabetic nephropathy. EBioMedicine. 2:499–512. 2015.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Su H, Wan C, Song A, Qiu Y, Xiong W and
Zhang C: Oxidative stress and renal fibrosis: Mechanisms and
therapies. Adv Exp Med Biol. 1165:585–604. 2019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lv W, Booz GW, Fan F, Wang Y and Roman RJ:
Oxidative stress and renal fibrosis: Recent isights for the
development of novel therapeutic strategies. Front Physiol.
9:1052018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ding Y, Zheng Y, Huang J, Peng W, Chen X,
Kang X and Zeng Q: UCP2 ameliorates mitochondrial dysfunction,
inflammation, and oxidative stress in lipopolysaccharide-induced
acute kidney injury. Int Immunopharmacol. 71:336–349. 2019.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhou Y, Cai T, Xu J, Jiang L, Wu J, Sun Q,
Zen K and Yang J: UCP2 attenuates apoptosis of tubular epithelial
cells in renal ischemia-reperfusion injury. Am J Physiol Renal
Physiol. 313:F926–F937. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wynn TA and Vannella KM: Macrophages in
tissue repair, regeneration, and fibrosis. Immunity. 44:450–462.
2016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Anders HJ and Ryu M: Renal
microenvironments and macrophage phenotypes determine progression
or resolution of renal inflammation and fibrosis. Kidney Int.
80:915–925. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhang Y, Shan P, Srivastava A, Li Z and
Lee PJ: Endothelial stanniocalcin 1 maintains mitochondrial
bioenergetics and prevents oxidant-induced lung injury via
toll-like receptor 4. Antioxid Redox Signal. 30:1775–1796. 2019.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Abe Y, Sakairi T, Beeson C and Kopp JB:
TGF-β1 stimulates mitochondrial oxidative phosphorylation and
generation of reactive oxygen species in cultured mouse podocytes,
mediated in part by the mTOR pathway. Am J Physiol Renal Physiol.
305:F1477–F1490. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Galvan DL, Green NH and Danesh FR: The
hallmarks of mitochondrial dysfunction in chronic kidney disease.
Kidney Int. 92:1051–1057. 2017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Ribeiro A, Bronk SF, Roberts PJ, Urrutia R
and Gores GJ: The transforming growth factor beta(1)-inducible
transcription factor TIEG1, mediates apoptosis through oxidative
stress. Hepatology. 30:1490–1497. 1999. View Article : Google Scholar : PubMed/NCBI
|
47
|
Perry SW, Norman JP, Barbieri J, Brown EB
and Gelbard HA: Mitochondrial membrane potential probes and the
proton gradient: A practical usage guide. Biotechnique. 50:98–115.
2011. View Article : Google Scholar : PubMed/NCBI
|