
Role of Ca2+ channels in non-alcoholic fatty liver disease and their implications for therapeutic strategies (Review)
- Authors:
- Xingyue Chen
- Li Zhang
- Liming Zheng
- Biguang Tuo
-
Affiliations: Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China - Published online on: July 4, 2022 https://doi.org/10.3892/ijmm.2022.5169
- Article Number: 113
-
Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Brunt EM, Wong VW, Nobili V, Day CP, Sookoian S, Maher JJ, Bugianesi E, Sirlin CB, Neuschwander-Tetri BA and Rinella ME: Nonalcoholic fatty liver disease. Nat Rev Dis Primers. 1:150802015. View Article : Google Scholar : PubMed/NCBI | |
Gusdon AM, Song KX and Qu S: Nonalcoholic fatty liver disease: Pathogenesis and therapeutics from a mitochondria-centric perspective. Oxid Med Cell Longev. 2014:6370272014. View Article : Google Scholar : PubMed/NCBI | |
Zhu JZ, Dai YN, Wang YM, Zhou QY, Yu CH and Li YM: Prevalence of nonalcoholic fatty liver disease and economy. Dig Dis Sci 2015. Nov;60:3194–3202. 2015. View Article : Google Scholar | |
Neuschwander-Tetri BA: Non-alcoholic fatty liver disease. BMC Med. 15:452017. View Article : Google Scholar : PubMed/NCBI | |
Stefan N, Häring H and Cusi K: Non-alcoholic fatty liver disease: Causes, diagnosis, cardiometabolic consequences, and treatment strategies. Lancet Diabetes Endocrinol. 7:313–324. 2019. View Article : Google Scholar | |
Manne V, Handa P and Kowdley KV: Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Clin Liver Dis. 22:23–37. 2018. View Article : Google Scholar | |
Varela-Rey M, Embade N, Ariz U, Lu SC, Mato JM and Martínez-Chantar ML: Non-alcoholic steatohepatitis and animal models: Understanding the human disease. Int J Biochem Cell Biol. 41:969–976. 2009. View Article : Google Scholar | |
Day CP and James OF: Steatohepatitis: A tale of two 'hits'? Gastroenterology. 114:842–845. 1998. View Article : Google Scholar : PubMed/NCBI | |
Friedman SL, Neuschwander-Tetri BA, Rinella M and Sanyal AJ: Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 24:908–922. 2018. View Article : Google Scholar : PubMed/NCBI | |
Buzzetti E, Pinzani M and Tsochatzis E: The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 65:1038–1048. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schuppan D and Schattenberg JM: Non-alcoholic steatohepatitis: Pathogenesis and novel therapeutic approaches. J Gastroenterol Hepatol. 28(Suppl 1): S68–S76. 2013. View Article : Google Scholar | |
Cortez-Pinto H, de Moura MC and Day CP: Non-alcoholic steatohepatitis: From cell biology to clinical practice. J Hepatol. 44:197–208. 2006. View Article : Google Scholar | |
Younossi ZM, Blissett D, Blissett R, Henry L, Stepanova M, Younossi Y, Racila A, Hunt S and Beckerman R: The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology. 64:1577–1586. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wong RJ, Aguilar M, Cheung R, Perumpail RB, Harrison SA, Younossi ZM and Ahmed A: Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology. 148:547–555. 2015. View Article : Google Scholar | |
Kiselyov K and Muallem S: ROS and intracellular ion channels. Cell Calcium. 60:108–114. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guéguinou M, Chantôme A, Fromont G, Bougnoux P, Vandier C and Potier-Cartereau M: KCa and Ca(2+) channels: The complex thought. Biochim Biophys Acta. 1843:2322–2333. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ramírez A, Vázquez-Sánchez AY, Carrión-Robalino N and Camacho J: Ion channels and oxidative stress as a potential link for the diagnosis or treatment of liver diseases. Oxid Med Cell Longev. 2016:39287142016. View Article : Google Scholar : PubMed/NCBI | |
Ali ES, Rychkov GY and Barritt GJ: Targeting Ca2+ signaling in the initiation, promotion and progression of hepatocellular carcinoma. Cancers (Basel). 12:27552020. View Article : Google Scholar | |
Ben-Moshe S and Itzkovitz S: Spatial heterogeneity in the mammalian liver. Nat Rev Gastroenterol Hepatol. 16:395–410. 2019. View Article : Google Scholar : PubMed/NCBI | |
Garcin I and Tordjmann T: Calcium signalling and liver regeneration. Int J Hepatol. 2012:6306702012. View Article : Google Scholar : PubMed/NCBI | |
Taira Z, Ueda Y, Monmasu H, Yamase D, Miyake S and Shiraishi M: Characteristics of intracellular Ca2+ signals consisting of two successive peaks in hepatocytes during liver regeneration after 70% partial hepatectomy in rats. J Exp Pharmacol. 8:21–33. 2016. View Article : Google Scholar : | |
Berridge MJ, Bootman MD and Roderick HL: Calcium signalling: Dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 4:517–529. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Lian W and Zhao L: Calcium signaling in cancer progression and therapy. FEBS J. 288:6187–6205. 2021. View Article : Google Scholar : PubMed/NCBI | |
Oliva-Vilarnau N, Hankeova S, Vorrink SU, Mkrtchian S, Andersson ER and Lauschke VM: Calcium signaling in liver injury and regeneration. Front Med (Lausanne). 5:1922018. View Article : Google Scholar | |
Bartlett P, Gaspers L, Pierobon N and Thomas A: Calcium-dependent regulation of glucose homeostasis in the liver. Cell Calcium. 55:306–316. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen CC, Hsu LW, Chen KD, Chiu KW, Chen CL and Huang KT: Emerging roles of calcium signaling in the development of non-alcoholic fatty liver disease. Int J Mol Sci. 23:2562021. View Article : Google Scholar | |
Wang J, He W, Tsai PJ, Chen PH, Ye M, Guo J and Su Z: Mutual interaction between endoplasmic reticulum and mitochondria in nonalcoholic fatty liver disease. Lipids Health Dis. 19:722020. View Article : Google Scholar : PubMed/NCBI | |
Arruda A, Pers B, Parlakgul G, Güney E, Goh T, Cagampan E, Lee GY, Goncalves RL and Hotamisligil GS: Defective STIM-mediated store operated Ca2+ entry in hepatocytes leads to metabolic dysfunction in obesity. Elife. 6:e299682017. View Article : Google Scholar | |
Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA and Cahalan MD: STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature. 437:902–905. 2005. View Article : Google Scholar : PubMed/NCBI | |
Park SW, Zhou Y, Lee J, Lee J and Ozcan U: Sarco(endo)plasmic reticulum Ca2+-ATPase 2b is a major regulator of endoplasmic reticulum stress and glucose homeostasis in obesity. Proc Natl Acad Sci USA. 107:19320–19325. 2010. View Article : Google Scholar : PubMed/NCBI | |
Egnatchik RA, Leamy AK, Jacobson DA, Shiota M and Young JD: ER calcium release promotes mitochondrial dysfunction and hepatic cell lipotoxicity in response to palmitate overload. Mol Metab. 3:544–553. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fu S, Yang L, Li P, Hofmann O, Dicker L, Hide W, Lin X, Watkins SM, Ivanov AR and Hotamisligil GS: Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature. 473:528–531. 2011. View Article : Google Scholar : PubMed/NCBI | |
Amaya M and Nathanson M: Calcium signaling in the liver. Compr Physiol. 3:515–539. 2013. View Article : Google Scholar : PubMed/NCBI | |
Szabadkai G, Bianchi K, Várnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T and Rizzuto R: Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol. 175:901–911. 2006. View Article : Google Scholar : PubMed/NCBI | |
Masarone M, Rosato V, Dallio M, Gravina AG, Aglitti A, Loguercio C, Federico A and Persico M: Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev. 2018:95476132018. View Article : Google Scholar : PubMed/NCBI | |
Luzio JP, Hackmann Y, Dieckmann NM and Griffiths GM: The biogenesis of lysosomes and lysosome-related organelles. Cold Spring Harb Perspect Biol. 6:a0168402014. View Article : Google Scholar : PubMed/NCBI | |
Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM and Czaja MJ: Autophagy regulates lipid metabolism. Nature. 458:1131–1135. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lin CW, Zhang H, Li M, Xiong X, Chen X, Chen X, Dong XC and Yin XM: Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice. J Hepatol. 58:993–999. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ali ES, Rychkov GY and Barritt GJ: Deranged hepatocyte intracellular Ca2+ homeostasis and the progression of non-alcoholic fatty liver disease to hepatocellular carcinoma. Cell Calcium. 82:1020572019. View Article : Google Scholar | |
Miyagawa K, Oe S, Honma Y, Izumi H, Baba R and Harada M: Lipid-induced endoplasmic reticulum stress impairs selective autophagy at the step of autophagosome-lysosome fusion in hepatocytes. Am J Pathol. 186:1861–1873. 2016. View Article : Google Scholar : PubMed/NCBI | |
Koo JH and Han CY: Signaling nodes associated with endoplasmic reticulum stress during NAFLD progression. Biomolecules. 11:2422021. View Article : Google Scholar : PubMed/NCBI | |
Ali ES and Petrovsky N: Calcium signaling as a therapeutic target for liver steatosis. Trends Endocrinol Metab. 30:270–281. 2019. View Article : Google Scholar : PubMed/NCBI | |
Grimm C, Holdt LM, Chen CC, Hassan S, Müller C, Jörs S, Cuny H, Kissing S, Schröder B, Butz E, et al: High susceptibility to fatty liver disease in two-pore channel 2-deficient mice. Nat Commun. 5:46992014. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Li L, Wang F, Chen J, Zhao Y, Wang P, Nilius B, Liu D and Zhu Z: Dietary capsaicin prevents nonalcoholic fatty liver disease through transient receptor potential vanilloid 1-mediated peroxisome proliferator-activate receptor delta activation. Pflugers Arch. 465:1303–1316. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li L, Chen J, Ni Y, Feng X, Zhao Z, Wang P, Sun J, Yu H, Yan Z, Liu D, et al: TRPV1 activation prevents nonalcoholic fatty liver through UCP2 upregulation in mice. Pflugers Arch. 463:727–732. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Tan W, Liu X, Deng L, Huang L, Wang X and Gao X: New insight and potential therapy for NAFLD: CYP2E1 and flavonoids. Biomed Pharmacother. 137:1113262021. View Article : Google Scholar : PubMed/NCBI | |
Seth RK, Das S, Dattaroy D, Chandrashekaran V, Alhasson F, Michelotti G, Nagarkatti M, Nagarkatti P, Diehl AM, Bell PD, et al: TRPV4 activation of endothelial nitric oxide synthase resists nonalcoholic fatty liver disease by blocking CYP2E1-mediated redox toxicity. Free Radic Biol Med. 102:260–273. 2017. View Article : Google Scholar | |
Feng Q, Liu C, Gao W, Geng XL and Dai N: Salidroside-mitigated inflammatory injury of hepatocytes with non-alcoholic fatty liver disease via inhibition TRPM2 ion channel activation. Diabetes Metab Syndr Obes. 12:2755–2763. 2019. View Article : Google Scholar | |
Ali ES, Rychkov GY and Barritt GJ: TRPM2 non-selective cation channels in liver injury mediated by reactive oxygen species. Antioxidants (Basel). 10:12432021. View Article : Google Scholar | |
Yu T, Zheng E, Li Y, Li Y, Xia J, Ding Q, Hou Z, Ruan XZ, Zhao L and Chen Y: Src-mediated Tyr353 phosphorylation of IP3R1 promotes its stability and causes apoptosis in palmitic acid-treated hepatocytes. Exp Cell Res. 399:1124382021. View Article : Google Scholar | |
Feriod CN, Oliveira AG, Guerra MT, Nguyen L, Richards KM, Jurczak MJ, Ruan HB, Camporez JP, Yang X, Shulman GI, et al: Hepatic inositol 1,4,5 trisphosphate receptor type 1 mediates fatty liver. Hepatol Commun. 1:23–35. 2017. View Article : Google Scholar : PubMed/NCBI | |
Khamphaya T, Chukijrungroat N, Saengsirisuwan V, Mitchell-Richards KA, Robert ME, Mennone A, Ananthanarayanan M, Nathanson MH and Weerachayaphorn J: Nonalcoholic fatty liver disease impairs expression of the type II inositol 1,4,5-trisphosphate receptor. Hepatology. 67:560–574. 2018. View Article : Google Scholar | |
Smedlund K, Dube P and Vazquez G: Early steatohepatitis in hyperlipidemic mice with endothelial-specific gain of TRPC3 function precedes changes in aortic atherosclerosis. Physiol Genomics. 48:644–649. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Zhang C, Xu F, Zhao M, Bergquist J, Yang C, Liu X, Tan Y, Wang X, Li S, et al: System biology analysis reveals the role of voltage-dependent anion channel in mitochondrial dysfunction during non-alcoholic fatty liver disease progression into hepatocellular carcinoma. Cancer Sci. 111:4288–4302. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ali ES, Rychkov GY and Barritt GJ: Metabolic disorders and cancer: Hepatocyte store-operated Ca2+ channels in nonalcoholic fatty liver disease. Adv Exp Med Biol. 993:595–621. 2017. View Article : Google Scholar | |
Wilson CH, Ali ES, Scrimgeour N, Martin AM, Hua J, Tallis GA, Rychkov GY and Barritt GJ: Steatosis inhibits liver cell store-operated Ca2+ entry and reduces ER Ca2+ through a protein kinase C-dependent mechanism. Biochem J. 466:379–390. 2015. View Article : Google Scholar | |
Zhang B, Yang W, Zou Y, Li M, Guo H, Zhang H, Xia C and Xu C: NEFA-sensitive Orai1 expression in regulation of de novo lipogenesis. Cell Physiol Biochem. 47:1310–1317. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Li M, Zou Y, Guo H, Zhang B, Xia C, Zhang H, Yang W and Xu C: NFκB/Orai1 facilitates endoplasmic reticulum stress by oxidative stress in the pathogenesis of non-alcoholic fatty liver disease. Front Cell Dev Biol. 7:2022019. View Article : Google Scholar | |
Chatterjee S, Rana R, Corbett J, Kadiiska MB, Goldstein J and Mason RP: P2X7 receptor-NADPH oxidase axis mediates protein radical formation and Kupffer cell activation in carbon tetrachloride-mediated steatohepatitis in obese mice. Free Radic Biol Med. 52:1666–1679. 2012. View Article : Google Scholar : PubMed/NCBI | |
Das S, Seth RK, Kumar A, Kadiiska MB, Michelotti G, Diehl AM and Chatterjee S: Purinergic receptor X7 is a key modulator of metabolic oxidative stress-mediated autophagy and inflammation in experimental nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol. 305:G950–G963. 2013. View Article : Google Scholar : PubMed/NCBI | |
Freise C, Heldwein S, Erben U, Hoyer J, Köhler R, Jöhrens K, Patsenker E, Ruehl M, Seehofer D, Stickel F and Somasundaram R: K+-channel inhibition reduces portal perfusion pressure in fibrotic rats and fibrosis associated characteristics of hepatic stellate cells. Liver Int. 35:1244–1252. 2015. View Article : Google Scholar | |
Paka L, Smith DE, Jung D, McCormack S, Zhou P, Duan B, Li JS, Shi J, Hao YJ, Jiang K, et al: Anti-steatotic and anti-fibrotic effects of the KCa3.1 channel inhibitor, senicapoc, in non-alcoholic liver disease. World J Gastroenterol. 23:4181–4190. 2017. View Article : Google Scholar : PubMed/NCBI | |
Morgan AJ and Galione A: Two-pore channels (TPCs): Current controversies. Bioessays. 36:173–183. 2014. View Article : Google Scholar | |
Patel S and Kilpatrick BS: Two-pore channels and disease. Biochim Biophys Acta Mol Cell Res. 1865:1678–1686. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bishnoi M, Khare P, Brown L and Panchal SK: Transient receptor potential (TRP) channels: A metabolic TR(i)P to obesity prevention and therapy. Obes Rev. 19:1269–1292. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhu Z, Luo Z, Ma S and Liu D: TRP channels and their implications in metabolic diseases. Pflugers Arch. 461:211–223. 2011. View Article : Google Scholar | |
Nilius B and Owsianik G: The transient receptor potential family of ion channels. Genome Biol. 12:2182011. View Article : Google Scholar : PubMed/NCBI | |
Venkatachalam K and Montell C: TRP channels. Annu Rev Biochem. 76:387–417. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang LL, Yan Liu D, Ma LQ, Luo ZD, Cao TB, Zhong J, Yan ZC, Wang LJ, Zhao ZG, Zhu SJ, et al: Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ Res. 100:1063–1070. 2007. View Article : Google Scholar : PubMed/NCBI | |
Uchida K, Dezaki K, Yoneshiro T, Watanabe T, Yamazaki J, Saito M, Yada T, Tominaga M and Iwasaki Y: Involvement of thermosensitive TRP channels in energy metabolism. J Physiol Sci. 67:549–560. 2017. View Article : Google Scholar : PubMed/NCBI | |
Park HW and Lee JH: Calcium channel blockers as potential therapeutics for obesity-associated autophagy defects and fatty liver pathologies. Autophagy. 10:2385–2386. 2014. View Article : Google Scholar : PubMed/NCBI | |
Polyzos SA, Kountouras J and Mantzoros CS: Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism. 92:82–97. 2019. View Article : Google Scholar | |
Li J, Li X, Liu D, Zhang S, Tan N, Yokota H and Zhang P: Phosphorylation of eIF2α signaling pathway attenuates obesity-induced non-alcoholic fatty liver disease in an ER stress and autophagy-dependent manner. Cell Death Dis. 11:10692020. View Article : Google Scholar | |
Baffy G: Uncoupling protein-2 and non-alcoholic fatty liver disease. Front Biosci. 10:2082–2096. 2005. View Article : Google Scholar : PubMed/NCBI | |
Panchal SK, Bliss E and Brown L: Capsaicin in metabolic syndrome. Nutrients. 10:6302018. View Article : Google Scholar : | |
Yang L, Li P, Fu S, Calay E and Hotamisligil GS: Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11:467–478. 2010. View Article : Google Scholar : PubMed/NCBI | |
Everaerts W, Nilius B and Owsianik G: The vanilloid transient receptor potential channel TRPV4: From structure to disease. Prog Biophys Mol Biol. 103:2–17. 2010. View Article : Google Scholar | |
Ye L, Kleiner S, Wu J, Sah R, Gupta RK, Banks AS, Cohen P, Khandekar MJ, Boström P, Mepani RJ, et al: TRPV4 is a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis. Cell. 151:96–110. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhan L, Yang Y, Ma TT, Huang C, Meng XM, Zhang L and Li J: Transient receptor potential vanilloid 4 inhibits rat HSC-T6 apoptosis through induction of autophagy. Mol Cell Biochem. 402:9–22. 2015. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Zhan L, Yu M, Huang C, Meng X, Ma T, Zhang L and Li J: TRPV4 channel inhibits TGF-β1-induced proliferation of hepatic stellate cells. PLoS One. 9:e1011792014. View Article : Google Scholar | |
Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE and McNulty S: Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res. 26:159–178. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kheradpezhouh E, Ma L, Morphett A, Barritt GJ and Rychkov GY: TRPM2 channels mediate acetaminophen-induced liver damage. Proc Natl Acad Sci USA. 111:3176–3181. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vanderheyden V, Devogelaere B, Missiaen L, De Smedt H, Bultynck G and Parys JB: Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by reversible phosphorylation and dephosphorylation. Biochim Biophys Acta. 1793:959–970. 2009. View Article : Google Scholar : PubMed/NCBI | |
Arruda AP, Pers BM, Parlakgül G, Güney E, Inouye K and Hotamisligil GS: Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat Med. 20:1427–1435. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rodrigues MA, Gomes DA, Leite MF, Grant W, Zhang L, Lam W, Cheng YC, Bennett AM and Nathanson MH: Nucleoplasmic calcium is required for cell proliferation. J Biol Chem. 282:17061–17068. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lemasters JJ and Holmuhamedov E: Voltage-dependent anion channel (VDAC) as mitochondrial governator-thinking outside the box. Biochim Biophys Acta. 1762:181–190. 2006. View Article : Google Scholar | |
Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N and Arbel N: VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med. 31:227–285. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pittala S, Krelin Y, Kuperman Y and Shoshan-Barmatz V: A mitochondrial VDAC1-based peptide greatly suppresses steatosis and NASH-associated pathologies in a mouse model. Mol Ther. 27:1848–1862. 2019. View Article : Google Scholar : PubMed/NCBI | |
Prakriya M and Lewis RS: Store-operated calcium channels. Physiol Rev. 95:1383–1436. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kappel S, Borgström A, Stoklosa P, Dörr K and Peinelt C: Store-operated calcium entry in disease: Beyond STIM/Orai expression levels. Semin Cell Dev Biol. 94:66–73. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Ge M, Ciani L, Kuriakose G, Westover EJ, Dura M, Covey DF, Freed JH, Maxfield FR, Lytton J and Tabas I: Enrichment of endoplasmic reticulum with cholesterol inhibits sarcoplasmic-endoplasmic reticulum calcium ATPase-2b activity in parallel with increased order of membrane lipids: Implications for depletion of endoplasmic reticulum calcium stores and apoptosis in cholesterol-loaded macrophages. J Biol Chem. 279:37030–37039. 2004. View Article : Google Scholar : PubMed/NCBI | |
Maus M, Cuk M, Patel B, Lian J, Ouimet M, Kaufmann U, Yang J, Horvath R, Hornig-Do HT, Chrzanowska-Lightowlers ZM, et al: Store-operated Ca2+ entry controls induction of lipolysis and the transcriptional reprogramming to lipid metabolism. Cell Metab. 25:698–712. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jain S and Jacobson KA: Purinergic signaling in liver pathophysiology. Front Endocrinol (Lausanne). 12:7184292021. View Article : Google Scholar | |
Jiang M, Cui BW, Wu YL, Zhang Y, Shang Y, Liu J, Yang HX, Qiao CY, Zhan ZY, Ye H, et al: P2X7R orchestrates the progression of murine hepatic fibrosis by making a feedback loop from macrophage to hepatic stellate cells. Toxicol Lett. 333:22–32. 2020. View Article : Google Scholar : PubMed/NCBI | |
Takenouchi T, Nakai M, Iwamaru Y, Sugama S, Tsukimoto M, Fujita M, Wei J, Sekigawa A, Sato M, Kojima S, et al: The activation of P2X7 receptor impairs lysosomal functions and stimulates the release of autophagolysosomes in microglial cells. J Immunol. 182:2051–2062. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chatterjee S and Das S: P2X7 receptor as a key player in oxidative stress-driven cell fate in nonalcoholic steatohepatitis. Oxid Med Cell Longev. 2015:1724932015. View Article : Google Scholar : PubMed/NCBI | |
Wulff H and Castle NA: Therapeutic potential of KCa3.1 blockers: Recent advances and promising trends. Expert Rev Clin Pharmacol. 3:385–396. 2010. View Article : Google Scholar : PubMed/NCBI | |
Alkhouri N, Dixon LJ and Feldstein AE: Lipotoxicity in nonalcoholic fatty liver disease: Not all lipids are created equal. Expert Rev Gastroenterol Hepatol. 3:445–451. 2009. View Article : Google Scholar : PubMed/NCBI |