1
|
Crosby A, Jones F, Kolosionek E, Southwood
M, Purvis I, Soon E, Butrous G, Dunne DE and Morrell NW:
Praziquantel reverses pulmonary hypertension and vascular
remodeling in murine schistosomiasis. Am J Respir Crit Care Med.
184:467–473. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Pabani S and Mousa S: Current and future
treatment of pulmonary hypertension. Drugs Today (Barc).
48:133–147. 2012. View Article : Google Scholar
|
3
|
Kim G, Ryan J, Marsboom G and Archer SL:
Epigenetic mechanisms of pulmonary hypertension. Pulm Circ.
1:347–356. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Schermuly RT, Ghofrani HA, Wilkins MR and
Grimminger F: Mechanisms of disease: Pulmonary arterial
hypertension. Nat Rev Cardiol. 8:443–455. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Schermuly RT, Dony E, Ghofrani HA,
Pullamsetti S, Savai R, Roth M, Sydykov A, Lai YJ, Weissmann N,
Seeger W and Grimminger F: Reversal of experimental pulmonary
hypertension by PDGF inhibition. J Clin Invest. 115:2811–2821.
2005. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Klein M, Schermuly RT, Ellinghaus P,
Milting H, Riedl B, Nikolova S, Pullamsetti SS, Weissmann N, Dony
E, Savai R, et al: Combined tyrosine and serine/threonine kinase
inhibition by sorafenib prevents progression of experimental
pulmonary hypertension and myocardial remodeling. Circulation.
118:2081–2090. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yue Y, Li YQ, Fu S, Wu YT, Zhu L, Hua L,
Lv JY, Li YL and Yang DL: Osthole inhibits cell proliferation by
regulating the TGF-β1/Smad/p38 signaling pathways in pulmonary
arterial smooth muscle cells. Biomed Pharmacother. 121:1096402020.
View Article : Google Scholar
|
8
|
Wang XB, Wang W, Zhu XC, Ye WJ, Cai H, Wu
PL, Huang XY and Wang LX: The potential of asiaticoside for
TGF-β1/Smad signaling inhibition in prevention and progression of
hypoxia-induced pulmonary hypertension. Life Sci. 137:56–64. 2015.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Yu W, Liu D, Liang C, Ochs T, Chen S, Chen
S, Du S, Tang C, Huang Y, Du J and Jin H: Sulfur dioxide protects
against collagen accumulation in pulmonary artery in association
with downregulation of the transforming growth factor β1/smad
pathway in pulmonary hypertensive rats. J Am Heart Assoc.
5:e0039102016. View Article : Google Scholar
|
10
|
Ma W, Han W, Greer PA, Tuder RM, Toque HA,
Wang KKW, Caldwell RW and Su Y: Calpain mediates pulmonary vascular
remodeling in rodent models of pulmonary hypertension, and its
inhibition attenuates pathologic features of disease. J Clin
Invest. 121:4548–4566. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Thomas M, Docx C, Holmes AM, Beach S,
Duggan N, England K, Leblanc C, Lebret C, Schindler F, Raza F, et
al: Activin-like kinase 5 (ALK5) mediates abnormal proliferation of
vascular smooth muscle cells from patients with familial pulmonary
arterial hypertension and is involved in the progression of
experimental pulmonary arterial hypertension induced by
monocrotaline. Am J Pathol. 174:380–389. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hibino H, Inanobe A, Furutani K, Murakami
S, Findlay I and Kurachi Y: Inwardly rectifying potassium channels:
Their structure, function, and physiological roles. Physiol Rev.
90:291–366. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wu L, Wang Q, Gu J, Zhang H and Gu Y:
Modulation of actin filament dynamics by inward rectifying of
potassium channel Kir2.1. Int J Mol Sci. 21:74792020. View Article : Google Scholar :
|
14
|
Ji CD, Wang YX, Xiang DF, Liu Q, Zhou ZH,
Qian F, Yang L, Ren Y, Cui W, Xu SL, et al: Kir2.1 interaction with
Stk38 promotes invasion and metastasis of human gastric cancer by
enhancing MEKK2MEK1/2ERK1/2 signaling. Cancer Res. 78:3041–3053.
2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Anton R, Ghenghea M, Ristoiu V, Gattlen C,
Suter MR, Cojocaru PA, Popa-Wagner A, Catalin B and Deftu AF:
Potassium channels Kv1.3 and Kir2.1 but not Kv1.5 contribute to BV2
cell line and primary microglial migration. Int J Mol Sci.
22:20812021. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang Y, Li G, Che H, Sun HY, Xiao GS,
Wang Y and Li GR: Effects of BKCa and Kir2.1 channels on cell
cycling progression and migration in human cardiac c-kit+
progenitor cells. PLoS One. 10:e01385812015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lam D and Schlichter L: Expression and
contributions of the Kir2.1 inward-rectifier K(+) channel to
proliferation, migration and chemotaxis of microglia in
unstimulated and anti-inflammatory states. Front Cell Neurosci.
9:1852015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Karkanis T, Li S, Pickering JG and Sims
SM: Plasticity of KIR channels in human smooth muscle cells from
internal thoracic artery. Am J Physiol Heart Circ Physiol.
284:H2325–H2334. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bradley K, Jaggar J, Bonev A, Heppner TJ,
Flynn ER, Nelson MT and Horowitz B: Kir2.1 encodes the inward
rectifier potassium channel in rat arterial smooth muscle cells. J
Physio. 515(Pt 3): pp. 639–651. 1999, View Article : Google Scholar
|
20
|
Chilton L, Loutzenhiser K, Morales E,
Breaks J, Kargacin G and Loutzenhiser R: Inward rectifier K(+)
currents and Kir2.1 expression in renal afferent and efferent
arterioles. J Am Soc Nephrol. 19:69–76. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tennant B, Cui Y, Tinker A and Clapp L:
Functional expression of inward rectifier potassium channels in
cultured human pulmonary smooth muscle cells: Evidence for a major
role of Kir2.4 subunits. J Membr Biol. 213:19–29. 2006. View Article : Google Scholar
|
22
|
Qiao Y, Tang C, Wang Q, Wang D, Yan G and
Zhu B: Kir2.1 regulates rat smooth muscle cell proliferation,
migration, and post-injury carotid neointimal formation. Biochem
Biophys Res Commun. 477:774–780. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bayne K: Revised guide for the care and
use of laboratory animals available. American physiological society
Physiologist. 39:208–111. 1996.
|
24
|
Barman S, Li X, Haigh S, Kondrikov D,
Mahboubi K, Bordan Z, Stepp DW, Zhou J, Wang Y, Weintraub DS, et
al: Galectin-3 is expressed in vascular smooth muscle cells and
promotes pulmonary hypertension through changes in proliferation,
apoptosis, and fibrosis. Am J Physiol Lung Cell Mol Physiol.
316:L784–L797. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tian L, Wu D, Dasgupta A, Chen KH, Mewburn
J, Potus F, Lima PDA, Hong Z, Zhao YY, Hindmarch CCT, et al:
Epigenetic metabolic reprogramming of right ventricular fibroblasts
in pulmonary arterial hypertension: A pyruvate dehydrogenase
kinase-dependent shift in mitochondrial metabolism promotes right
ventricular fibrosis. Circ Res. 126:1723–1745. 2020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang L, Fan Z, Wang L, Liu LQ, Li XZ, Li
L, Si JQ and Ma KT: Carbenoxolone decreases monocrotaline-induced
pulmonary inflammation and pulmonary arteriolar remodeling in rats
by decreasing the expression of connexins in T lymphocytes. Int J
Mol Med. 45:81–92. 2020.
|
27
|
Flues K, Moraes-Silva I, Mostarda C, Souza
PRM, Diniz GP, Moreira ED, Piratello AC, Chaves MLB, Angelis KD,
Salemi VMC, et al: Cardiac and pulmonary arterial remodeling after
sinoaortic denervation in normotensive rats. Auton Neurosci.
166:47–53. 2012. View Article : Google Scholar
|
28
|
Yared K, Noseworthy P, Weyman AE, McCabe
E, Picard MH and Baggish AL: Pulmonary artery acceleration time
provides an accurate estimate of systolic pulmonary arterial
pressure during transthoracic echocardiography. J Am Soc
Echocardiogr. 24:687–692. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang L, Zhang F, Li J, Liu Z, Kou Y, Song
Y, Xu H, Wang H and Wang Y: Using pulmonary artery acceleration
time to evaluate pulmonary hemodynamic changes on preterm infants
with respiratory distress syndrome. Transl Pediatr. 10:2287–2297.
2021. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zaky A, Zafar I, Masjoan-Juncos JX, Husain
M, Mariappan N, Morgan CJ, Hamid T, Frölich MA, Ahmad S and Ahmad
A: Echocardiographic, biochemical, and electrocardiographic
correlates associated with progressive pulmonary arterial
hypertension. Front Cardiovasc Med. 8:7056662021. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yang J, Zhou R, Zhang M, Tan HR and Yu JQ:
Betaine attenuates monocrotaline-induced pulmonary arterial
hypertension in rats via inhibiting inflammatory response.
Molecules. 23:12742018. View Article : Google Scholar :
|
32
|
Zhang LZ, Fan ZR, Wang L, Liu LQ, Li XZ,
Li L, Si JQ and Ma KT: Carbenoxolone decreases
monocrotaline-induced pulmonary inflammation and pulmonary
arteriolar remodeling in rats by decreasing the expression of
connexins in T lymphocytes. Int J Mol Med. 45:81–92. 2020.
|
33
|
Baldwin SN, Sandow SL, Mondéjar-Parreño G,
Stott JB and Greenwood IA: K(V)7 channel expression and function
within rat mesenteric endothelial cells. Front Physiol.
11:5987792020. View Article : Google Scholar
|
34
|
Ji Z, Li J and Wang J: Jujuboside b
inhibits neointimal hyperplasia and prevents vascular smooth muscle
cell dedifferentiation, proliferation, and migration via activation
of AMPK/PPAR-γ signaling. Front Pharmacol. 12:6721502021.
View Article : Google Scholar
|
35
|
Zuo W, Liu N, Zeng Y, Xiao Z, Wu K, Yang
F, Li B, Song Q, Xiao Y and Liu Q: Luteolin ameliorates
experimental pulmonary arterial hypertension via suppressing
hippo-YAP/PI3K/AKT signaling pathway. Front Pharmacol. 12:663551.
2021. View Article : Google Scholar : PubMed/NCBI
|
36
|
Niu W, Lim TC, Alshihri A, Rajappa R, Wang
L, Kurisawa M and Spector M: Platelet-derived growth factor
stimulated migration of bone marrow mesenchymal stem cells into an
injectable gelatin-hydroxyphenyl propionic acid matrix.
Biomedicines. 9:2032021. View Article : Google Scholar : PubMed/NCBI
|
37
|
An Z, Liu Y, Song ZS, Tang H, Yuan Y and
Xu ZY: Mechanisms of aortic dissection smooth muscle cell phenotype
switch. J Thorac Cardiovasc Surg. 154:1511–1521.e6. 2017.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Song W, Li L, Jia Q, Cao N, Li L, Ma K and
Si J: Monocrotaline pyrrole induces A549 cells and activates
TGF-β1/SMAD2/SMAD3 pathway to promote proliferation and migration
of human pulmonary artery smooth muscle cells. Xi Bao Yu Fen Zi
Mian Yi Xue Za Zhi. 36:527–534. 2020.In Chinese. PubMed/NCBI
|
39
|
Jia Q, Li L, Song W, Cao N, Li L, Ma K and
Si J: Up-regulation of connexin 43 (Cx43) by angiotensin II
promotes the proliferation and migration of human pulmonary artery
smooth muscle cells. Xi Bao Yu Fen Zi Mian Yi Xue Za. 36:616–621.
2020.In Chinese.
|
40
|
Raines EW: PDGF and cardiovascular
disease. Cytokine Growth Factor Rev. 15:237–254. 2004. View Article : Google Scholar : PubMed/NCBI
|
41
|
Tang C, Wang D, Luo E, Yan G, Liu B and
Hou J: Activation of inward rectifier K(+) channel 2.1 by PDGF-BB
in rat vascular smooth muscle cells through protein kinase a.
Biomed Res Int. 1:43708322020.
|
42
|
Burg ED, Remillard CV and Yuan JXJ:
Potassium channels in the regulation of pulmonary artery smooth
muscle cell proliferation and apoptosis: Pharmacotherapeutic
implications. Br J Pharmacol. 153:S99–S111. 2008. View Article : Google Scholar
|
43
|
Mondejar-Parreño G, Perez-Vizcaino F and
Cogolludo A: Kv7 channels in lung diseases. Front Physiol.
11:6342020. View Article : Google Scholar : PubMed/NCBI
|
44
|
Iqbal H, Verma AK, Yadav P, Alam S, Shafiq
M, Mishra D, Khan F, Hanif K, Negi AS and Chanda D:
Antihypertensive effect of a novel angiotensin II receptor blocker
fluorophenyl benzimidazole: Contribution of cGMP, voltage-dependent
calcium channels, and BK channels to vasorelaxant mechanisms. Front
Pharmacol. 12:6111092021. View Article : Google Scholar
|
45
|
Jin X, Wu Y, Cui N, Jiang C and Li SS:
Methylglyoxal-induced miR-223 suppresses rat vascular K channel
activity by downregulating Kir6.1 mRNA in carbonyl stress. Vascula
Pharmacol. 128-129:1066662020. View Article : Google Scholar
|
46
|
Shen X, Zhang L, Jiang L, Xiong W, Tang Y,
Lin L and Yu T: Alteration of sphingosine-1-phosphate with aging
induces contractile dysfunction of colonic smooth muscle cells via
Ca2+ -activated K channel (BKCa)
upregulation. Neurogastroenterol Motil. 33:e140522021. View Article : Google Scholar
|
47
|
Li Y, Bai J, Yang YH, Hoshi N and Chen DB:
Hydrogen sulfide relaxes human uterine artery via activating smooth
muscle BKCa channels. Antioxidants (Basel). 9:11272020. View Article : Google Scholar
|
48
|
Yuan XJ: Voltage-gated K+ currents
regulate resting membrane potential and [Ca2+]i in pulmonary
arterial myocytes. Circ Res. 77:370–378. 1995. View Article : Google Scholar : PubMed/NCBI
|
49
|
Wang H, Zhang W, Gao Q, Cao X, Li Y, Li X,
Min Z, Yu Y, Guo Y and Shuai L: Extractive from hypericum ascyron L
promotes serotonergic neuronal differentiation in vitro. Stem Cell
Res. 31:42–50. 2018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Xie YF, Wang Y, Rong Y, He W, Yan M, Li X,
Si J, Li L, Zhang Y and Ma K: Hypoxia induces apoptosis of
microglia BV2 by upregulating Kir2.1 to activate
mitochondrial-related apoptotic pathways. Dis Markers.
17:58558892022.
|
51
|
Gao Q, Zhang W, Zhao Y, Tian Y, Wang Y,
Zhang J, Geng M, Xu M, Yao C, Wang H, et al: High-throughput
screening in postimplantation haploid epiblast stem cells reveals
Hs3st3b1 as a modulator for reprogramming. Stem Cells Transl Med.
10:743–755. 2021. View Article : Google Scholar : PubMed/NCBI
|
52
|
Zhang X, Cui X, Li X, Yan H, Li H, Guan X,
Wang Y, Liu S, Qin X and Cheng M: Inhibition of Kir2.1
channel-induced depolarization promotes cell biological activity
and differentiation by modulating autophagy in late endothelial
progenitor cells. J Mol Cell Cardiol. 127:57–66. 2019. View Article : Google Scholar
|
53
|
Goumans M and Dijke PT: TGF-β signaling in
control of cardiovascular function. Cold Spring Harbor Perspect
Biol. 10:a0222102018. View Article : Google Scholar
|
54
|
Cao N, Tang X, Gao R, Kong L, Zhang J, Qin
W, Hu N, Zhang A, Ma K, Li L and Si JQ: Galectin-3 participates in
PASMC migration and proliferation by interacting with TGF-β1. Life
Sci. 1274:1193472021. View Article : Google Scholar
|
55
|
Meng XM, Nikolic-Paterson DJ and Lan HY:
TGF-β: The master regulator of fibrosis. Nat Rev Nephrol.
12:325–338. 2016. View Article : Google Scholar : PubMed/NCBI
|
56
|
Salvarani N, Maguy A, De Simone S,
Miragoli M, Jousset F and Rohr S: TGF-β1 (Transforming
Growth Factor-β1) plays a pivotal role in cardiac
myofibroblast arrhythmogenicity. Cir Arrhythm Electrophysiol.
10:e0045672017.
|