Common methods in mitochondrial research (Review)
- Authors:
- Yiyuan Yin
- Haitao Shen
-
Affiliations: Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China - Published online on: August 19, 2022 https://doi.org/10.3892/ijmm.2022.5182
- Article Number: 126
-
Copyright: © Yin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Akbari M, Kirkwood TBL and Bohr VA: Mitochondria in the signaling pathways that control longevity and health span. Ageing Res Rev. 54:1009402019. View Article : Google Scholar : PubMed/NCBI | |
Bock FJ and Tait SWG: Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 21:85–100. 2020. View Article : Google Scholar | |
Chakrabarty RP and Chandel NS: Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell. 28:394–408. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hood DA, Memme JM, Oliveira AN and Triolo M: Maintenance of skeletal muscle mitochondria in health, exercise, and aging. Annu Rev Physiol. 81:19–41. 2019. View Article : Google Scholar | |
Li L, Conradson DM, Bharat V, Kim MJ, Hsieh CH, Minhas PS, Papakyrikos AM, Durairaj AS, Ludlam A, Andreasson KI, et al: A mitochondrial membrane-bridging machinery mediates signal transduction of intramitochondrial oxidation. Nat Metab. 3:1242–1258. 2021. View Article : Google Scholar : PubMed/NCBI | |
Martínez-Reyes I and Chandel NS: Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 11:1022020. View Article : Google Scholar : PubMed/NCBI | |
Kim Hong HT, Bich Phuong TT, Thu Thuy NT, Wheatley MD and Cushman JC: Simultaneous chloroplast, mitochondria isolation and mitochondrial protein preparation for two-dimensional electrophoresis analysis of ice plant leaves under well watered and water-deficit stressed treatments. Protein Expr Purif. 155:86–94. 2019. View Article : Google Scholar | |
Boussardon C and Keech O: Cell type-specific isolation of mitochondria in Arabidopsis. Methods Mol Biol. 2363:13–23. 2022. View Article : Google Scholar | |
Elekofehinti OO, Kamdem JP, Saliu TP, Famusiwa CD, Boligon A and Teixeira Rocha JB: Improvement of mitochondrial function by Tapinanthus globifer (A.Rich.) Tiegh. Against hepatotoxic agent in isolated rat's liver mitochondria. J Ethnopharmacol. 242:1120262019. View Article : Google Scholar : PubMed/NCBI | |
Gäbelein CG, Feng Q, Sarajlic E, Zambelli T, Guillaume-Gentil O, Kornmann B and Vorholt JA: Mitochondria transplantation between living cells. PLoS Biol. 20:e30015762022. View Article : Google Scholar : PubMed/NCBI | |
Lee D, Lee YH, Lee KH, Lee BS, Alishir A, Ko YJ, Kang KS and Kim KH: Aviculin isolated from lespedeza cuneata induce apoptosis in breast cancer cells through mitochondria-mediated caspase activation pathway. Molecules. 25:17082020. View Article : Google Scholar : | |
Léger JL, Jougleux JL, Savadogo F, Pichaud N and Boudreau LH: Rapid isolation and purification of functional platelet mitochondria using a discontinuous percoll gradient. Platelets. 31:258–264. 2020. View Article : Google Scholar | |
Léger JL, Pichaud N and Boudreau LH: Purification of functional platelet mitochondria using a discontinuous percoll gradient. Methods Mol Biol. 2276:57–66. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liao PC, Bergamini C, Fato R, Pon LA and Pallotti F: Isolation of mitochondria from cells and tissues. Methods Cell Biol. 155:3–31. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lin YT, Chen ST, Chang JC, Teoh RJ, Liu CS and Wang GJ: Green extraction of healthy and additive free mitochondria with a conventional centrifuge. Lab Chip. 19:3862–3869. 2019. View Article : Google Scholar : PubMed/NCBI | |
Long Q, Huang L, Huang K and Yang Q: Assessing mitochondrial bioenergetics in isolated mitochondria from mouse heart tissues using oroboros 2k-oxygraph. Methods Mol Biol. 1966:237–246. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rahman MH, Xiao Q, Zhao S, Wei AC and Ho YP: Extraction of functional mitochondria based on membrane stiffness. Methods Mol Biol. 2276:343–355. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ramezani M, Samiei F and Pourahmad J: Anti-glioma effect of pseudosynanceia melanostigma venom on isolated mitochondria from glioblastoma cells. Asian Pac J Cancer Prev. 22:2295–2302. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ruzzenente B and Metodiev MD: Linear density sucrose gradients to study mitoribosomal biogenesis in tissue-specific knockout mice. Methods Mol Biol. 2224:47–60. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Cao L, Li Y, Liu H, Zhang M, Ma H, Wang B, Yuan X and Liu Q: Gracillin isolated from reineckia carnea induces apoptosis of A549 cells via the mitochondrial pathway. Drug Des Devel Ther. 15:233–243. 2021. View Article : Google Scholar : | |
Chandra K, Kumar V, Werner SE and Odom TW: Separation of stabilized MOPS gold nanostars by density gradient centrifugation. ACS Omega. 2:4878–4884. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen BY, Sung CW, Chen C, Cheng CM, Lin DP, Huang CT and Hsu MY: Advances in exosomes technology. Clin Chim Acta. 493:14–19. 2019. View Article : Google Scholar : PubMed/NCBI | |
Écija-Arenas Á, Román-Pizarro V and Fernández-Romero JM: Luminescence continuous flow system for monitoring the efficiency of hybrid liposomes separation using multiphase density gradient centrifugation. Talanta. 222:1215322021. View Article : Google Scholar | |
Hu P, Fabyanic E, Kwon DY, Tang S, Zhou Z and Wu H: Dissecting cell-type composition and activity-dependent transcriptional state in mammalian brains by massively parallel single-nucleus RNA-Seq. Mol Cell. 68:1006–1015.e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jerri HA, Sheehan WP, Snyder CE and Velegol D: Prolonging density gradient stability. Langmuir. 26:4725–4731. 2010. View Article : Google Scholar | |
Johnson ME, Montoro Bustos AR and Winchester MR: Practical utilization of spICP-MS to study sucrose density gradient centrifugation for the separation of nanoparticles. Anal Bioanal Chem. 408:7629–7640. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pužar Dominkuš P, Stenovec M, Sitar S, Lasič E, Zorec R, Plemenitaš A, Žagar E, Kreft M and Lenassi M: PKH26 labeling of extracellular vesicles: Characterization and cellular internalization of contaminating PKH26 nanoparticles. Biochim Biophys Acta Biomembr. 1860:1350–1361. 2018. View Article : Google Scholar | |
Wang J, Shen T, Huang X, Kumar GR, Chen X, Zeng Z, Zhang R, Chen R, Li T, Zhang T, et al: Serum hepatitis B virus RNA is encapsidated pregenome RNA that may be associated with persistence of viral infection and rebound. J Hepatol. 65:700–710. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sugiura A, Nagashima S, Tokuyama T, Amo T, Matsuki Y, Ishido S, Kudo Y, McBride HM, Fukuda T, Matsushita N, et al: MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2. Mol Cell. 51:20–34. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xiong B, Cheng J, Qiao Y, Zhou R, He Y and Yeung ES: Separation of nanorods by density gradient centrifugation. J Chromatogr A. 1218:3823–3829. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Xu K, Zhou B, Chen T, Huang Y, Li Q, Wen F, Ge W, Wang J, Yu S, et al: A circulating extracellular vesicles-based novel screening tool for colorectal cancer revealed by shotgun and data-independent acquisition mass spectrometry. J Extracell Vesicles. 9:17502022020. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Liu B, Wang Z, Wang D, Ni H, Zhang L and Wang Y: Exosomes from nicotine-stimulated macrophages accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC migration and proliferation. Theranostics. 9:6901–6919. 2019. View Article : Google Scholar : PubMed/NCBI | |
Qattan AT, Mulvey C, Crawford M, Natale DA and Godovac-Zimmermann J: Quantitative organelle proteomics of MCF-7 breast cancer cells reveals multiple subcellular locations for proteins in cellular functional processes. J Proteome Res. 9:495–508. 2010. View Article : Google Scholar | |
Hassani M, Hellebrekers P, Chen N, van Aalst C, Bongers S, Hietbrink F, Koenderman L and Vrisekoop N: On the origin of low-density neutrophils. J Leukoc Biol. 107:809–818. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shi W, Wang Y, Zhang C, Jin H, Zeng Z, Wei L, Tian Y, Zhang D and Sun G: Isolation and purification of immune cells from the liver. Int Immunopharmacol. 85:1066322020. View Article : Google Scholar : PubMed/NCBI | |
Grist TM, Canon CL, Fishman EK, Kohi MP and Mossa-Basha M: Short-, mid-, and long-term strategies to manage the shortage of iohexol. Radiology. 304:289–293. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liang S, Su M, Liu B, Liu R, Zheng H, Qiu W and Zhang Z: Evaluation of blood induced influence for high-definition intravascular ultrasound (HD-IVUS). IEEE Trans Ultrason Ferroelectr Freq Control. 69:98–105. 2022. View Article : Google Scholar | |
Warwick J and Holness J: Measurement of glomerular filtration rate. Semin Nucl Med. 52:453–466. 2022. View Article : Google Scholar : PubMed/NCBI | |
Elgamal S, Cocucci E, Sass EJ, Mo XM, Blissett AR, Calomeni EP, Rogers KA, Woyach JA, Bhat SA, Muthusamy N, et al: Optimizing extracellular vesicles' isolation from chronic lymphocytic leukemia patient plasma and cell line supernatant. JCI Insight. 6:e1379372021. View Article : Google Scholar | |
Inoue T, Kusumoto S, Iio E, Ogawa S, Suzuki T, Yagi S, Kaneko A, Matsuura K, Aoyagi K and Tanaka Y: Clinical efficacy of a novel, high-sensitivity HBcrAg assay in the management of chronic hepatitis B and HBV reactivation. J Hepatol. 75:302–310. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tóth EÁ, Turiák L, Visnovitz T, Cserép C, Mázló A, Sódar BW, Försönits AI, Petővári G, Sebestyén A, Komlósi Z, et al: Formation of a protein corona on the surface of extracellular vesicles in blood plasma. J Extracell Vesicles. 10:e121402021. View Article : Google Scholar : PubMed/NCBI | |
Veerman RE, Teeuwen L, Czarnewski P, Güclüler Akpinar G, Sandberg A, Cao X, Pernemalm M, Orre LM, Gabrielsson S and Eldh M: Molecular evaluation of five different isolation methods for extracellular vesicles reveals different clinical applicability and subcellular origin. J Extracell Vesicles. 10:e121282021. View Article : Google Scholar : PubMed/NCBI | |
Cartuche L, Reyes-Batlle M, Sifaoui I, Arberas-Jiménez I, Piñero JE, Fernández JJ, Lorenzo-Morales J and Díaz-Marrero AR: Antiamoebic activities of indolocarbazole metabolites isolated from streptomyces sanyensis cultures. Mar Drugs. 17:5882019. View Article : Google Scholar : | |
Jiang S, Zhang E, Ruan H, Ma J, Zhao X, Zhu Y, Xiu X, Han N, Li J, Zhang H, et al: Actinomycin V induces apoptosis associated with mitochondrial and PI3K/AKT pathways in human CRC cells. Mar Drugs. 19:5992021. View Article : Google Scholar : PubMed/NCBI | |
Li K, Liang Z, Chen W, Luo X, Fang W, Liao S, Lin X, Yang B, Wang J, Tang L, et al: Iakyricidins A-D, antiproliferative piericidin analogues bearing a carbonyl group or cyclic skeleton from streptomyces iakyrus SCSIO NS104. J Org Chem. 84:12626–12631. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Zhu H, Wu W, Shen Y, Lin X, Wu Y, Liu L, Tang J, Zhou Y, Sun F and Lin HW: Neoantimycin F, a streptomyces-derived natural product induces mitochondria-related apoptotic death in human non-small cell lung cancer cells. Front Pharmacol. 10:10422019. View Article : Google Scholar : | |
Rawat PS, Jaiswal A, Khurana A, Bhatti JS and Navik U: Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother. 139:1117082021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K and Hauser CJ: Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 464:104–107. 2010. View Article : Google Scholar : PubMed/NCBI | |
Deng X, Liu J, Liu L, Sun X, Huang J and Dong J: Drp1-mediated mitochondrial fission contributes to baicalein-induced apoptosis and autophagy in lung cancer via activation of AMPK signaling pathway. Int J Biol Sci. 16:1403–1416. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ma ZJ, Lu L, Yang JJ, Wang XX, Su G, Wang ZL, Chen GH, Sun HM, Wang MY and Yang Y: Lariciresinol induces apoptosis in HepG2 cells via mitochondrial-mediated apoptosis pathway. Eur J Pharmacol. 821:1–10. 2018. View Article : Google Scholar | |
Ke H, Dass S, Morrisey JM, Mather MW and Vaidya AB: The mitochondrial ribosomal protein L13 is critical for the structural and functional integrity of the mitochondrion in plasmodium falciparum. J Biol Chem. 293:8128–8137. 2018. View Article : Google Scholar : PubMed/NCBI | |
Galvan DL, Green NH and Danesh FR: The hallmarks of mitochondrial dysfunction in chronic kidney disease. Kidney Int. 92:1051–1057. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wiemerslage L and Lee D: Quantification of mitochondrial morphology in neurites of dopaminergic neurons using multiple parameters. J Neurosci Methods. 262:56–65. 2016. View Article : Google Scholar : PubMed/NCBI | |
Labarta E, de Los Santos MJ, Escribá MJ, Pellicer A and Herraiz S: Mitochondria as a tool for oocyte rejuvenation. Fertil Steril. 111:219–226. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li WQ, Wang Z, Hao S, He H, Wan Y, Zhu C, Sun LP, Cheng G and Zheng SY: Mitochondria-targeting polydopamine nanoparticles to deliver doxorubicin for overcoming drug resistance. ACS Appl Mater Interfaces. 9:16793–16802. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Liu J, Bai R, Shi J, Zhu X, Liu J, Guo J, Zhang W, Liu H and Liu Z: Mitochondria-inspired nanoparticles with microenvironment-adapting capacities for on-demand drug delivery after ischemic injury. ACS Nano. 14:11846–11859. 2020. View Article : Google Scholar : PubMed/NCBI | |
Smith GM and Gallo G: The role of mitochondria in axon development and regeneration. Dev Neurobiol. 78:221–237. 2018. View Article : Google Scholar : | |
Bastian C, Day J, Politano S, Quinn J, Brunet S and Baltan S: Preserving mitochondrial structure and motility promotes recovery of white matter after ischemia. Neuromolecular Med. 21:484–492. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bhargava P and Schnellmann RG: Mitochondrial energetics in the kidney. Nat Rev Nephrol. 13:629–646. 2017. View Article : Google Scholar : PubMed/NCBI | |
Granata C, Jamnick NA and Bishop DJ: Training-induced changes in mitochondrial content and respiratory function in human skeletal muscle. Sports Med. 48:1809–1828. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hammond K, Ryadnov MG and Hoogenboom BW: Atomic force microscopy to elucidate how peptides disrupt membranes. Biochim Biophys Acta Biomembr. 1863:1834472021. View Article : Google Scholar | |
Heath GR, Kots E, Robertson JL, Lansky S, Khelashvili G, Weinstein H and Scheuring S: Localization atomic force microscopy. Nature. 594:385–390. 2021. View Article : Google Scholar : PubMed/NCBI | |
Müller DJ, Dumitru AC, Lo Giudice C, Gaub HE, Hinterdorfer P, Hummer G, De Yoreo JJ, Dufrêne YF and Alsteens D: Atomic force microscopy-based force spectroscopy and multiparametric imaging of biomolecular and cellular systems. Chem Rev. 121:11701–11725. 2021. View Article : Google Scholar | |
Vogt N: Atomic force microscopy in super-resolution. Nat Methods. 18:8592021. View Article : Google Scholar : PubMed/NCBI | |
Kolossov VL, Sivaguru M, Huff J, Luby K, Kanakaraju K and Gaskins HR: Airyscan super-resolution microscopy of mitochondrial morphology and dynamics in living tumor cells. Microsc Res Tech. 81:115–128. 2018. View Article : Google Scholar | |
Rocha EM, De Miranda B and Sanders LH: Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease. Neurobiol Dis. 109:249–257. 2018. View Article : Google Scholar | |
Szymański J, Janikiewicz J, Michalska B, Patalas-Krawczyk P, Perrone M, Ziółkowski W, Duszyński J, Pinton P, Dobrzyń A and Więckowski MR: Interaction of mitochondria with the endoplasmic reticulum and plasma membrane in calcium homeostasis, lipid trafficking and mitochondrial structure. Int J Mol Sci. 18:15762017. View Article : Google Scholar | |
Adam N, Beattie TL and Riabowol K: Fluorescence microscopy methods for examining telomeres during cell aging. Ageing Res Rev. 68:1013202021. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Chen H, Luo Y, Rivenson Y and Ozcan A: Recurrent neural network-based volumetric fluorescence microscopy. Light Sci Appl. 10:622021. View Article : Google Scholar : PubMed/NCBI | |
Thiele JC, Helmerich DA, Oleksiievets N, Tsukanov R, Butkevich E, Sauer M, Nevskyi O and Enderlein J: Confocal fluorescence-lifetime single-molecule localization microscopy. ACS Nano. 14:14190–14200. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zong H, Zong C, Tan Y, Zhang M, Zhan Y and Cheng JX: Fluorescence-detected mid-infrared photothermal microscopy. J Am Chem Soc. 143:11490–11499. 2021. View Article : Google Scholar : PubMed/NCBI | |
Alexander JF, Seua AV, Arroyo LD, Ray PR, Wangzhou A, Heiβ-Lückemann L, Schedlowski M, Price TJ, Kavelaars A and Heijnen CJ: Nasal administration of mitochondria reverses chemotherapy-induced cognitive deficits. Theranostics. 11:3109–3130. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dumitru AC, Stommen A, Koehler M, Cloos AS, Yang J, Leclercqz A, Tyteca D and Alsteens D: Probing PIEZO1 localization upon activation using high-resolution atomic force and confocal microscopy. Nano Lett. 21:4950–4958. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Han X, Su Y, Glidewell M, Daniels JS, Liu J, Sengupta T, Rey-Suarez I, Fischer R, Patel A, et al: Multiview confocal super-resolution microscopy. Nature. 600:279–284. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yordanov S, Neuhaus K, Hartmann R, Díaz-Pascual F, Vidakovic L, Singh PK and Drescher K: Single-objective high-resolution confocal light sheet fluorescence microscopy for standard biological sample geometries. Biomed Opt Express. 12:3372–3391. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Raghuram A, Kim HK, Hielscher AH, Robinson JT and Veeraraghavan A: High resolution, deep imaging using confocal time-of-flight diffuse optical tomography. IEEE Trans Pattern Anal Mach Intell. 43:2206–2219. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dalecká M, Sabó J, Backová L, Rösel D, Brábek J, Benda A and Tolde O: Invadopodia structure in 3D environment resolved by near-infrared branding protocol combining correlative confocal and FIB-SEM microscopy. Int J Mol Sci. 22:78052021. View Article : Google Scholar : PubMed/NCBI | |
Guo R, Barnea I and Shaked NT: Limited-angle tomographic phase microscopy utilizing confocal scanning fluorescence microscopy. Biomed Opt Express. 12:1869–1881. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lamers MM, van der Vaart J, Knoops K, Riesebosch S, Breugem TI, Mykytyn AZ, Beumer J, Schipper D, Bezstarosti K, Koopman CD, et al: An organoid-derived bronchioalveolar model for SARS-CoV-2 infection of human alveolar type II-like cells. EMBO J. 40:e1059122021. View Article : Google Scholar | |
Messal HA, Almagro J, Zaw Thin M, Tedeschi A, Ciccarelli A, Blackie L, Anderson KI, Miguel-Aliaga I, van Rheenen J and Behrens A: Antigen retrieval and clearing for whole-organ immunofluorescence by FLASH. Nat Protoc. 16:239–262. 2021. View Article : Google Scholar | |
Miyashita L, Foley G, Gill I, Gillmore G, Grigg J and Wertheim D: Confocal microscopy 3D imaging of diesel particulate matter. Environ Sci Pollut Res Int. 28:30384–30389. 2021. View Article : Google Scholar : PubMed/NCBI | |
Restall BS, Kedarisetti P, Haven NJM, Martell MT and Zemp RJ: Multimodal 3D photoacoustic remote sensing and confocal fluorescence microscopy imaging. J Biomed Opt. 26:0965012021. View Article : Google Scholar : | |
Rodriguez-Gallardo S, Kurokawa K, Sabido-Bozo S, Cortes-Gomez A, Perez-Linero AM, Aguilera-Romero A, Lopez S, Waga M, Nakano A and Muñiz M: Assay for dual cargo sorting into endoplasmic reticulum exit sites imaged by 3D super-resolution confocal live imaging microscopy (SCLIM). PLoS One. 16:e02581112021. View Article : Google Scholar : PubMed/NCBI | |
Durand MJ, Ait-Aissa K, Levchenko V, Staruschenko A, Gutterman DD and Beyer AM: Visualization and quantification of mitochondrial structure in the endothelium of intact arteries. Cardiovasc Res. 115:1546–1556. 2019. View Article : Google Scholar : | |
Bartolák-Suki E and Suki B: Tuning mitochondrial structure and function to criticality by fluctuation-driven mechanotransduction. Sci Rep. 10:4072020. View Article : Google Scholar : PubMed/NCBI | |
Chandhok G, Lazarou M and Neumann B: Structure, function, and regulation of mitofusin-2 in health and disease. Biol Rev Camb Philos Soc. 93:933–949. 2018. View Article : Google Scholar | |
Kowaltowski AJ, Menezes-Filho SL, Assali EA, Gonçalves IG, Cabral-Costa JV, Abreu P, Miller N, Nolasco P, Laurindo FRM, Bruni-Cardoso A and Shirihai OS: Mitochondrial morphology regulates organellar Ca2+ uptake and changes cellular Ca2+ homeostasis. FASEB J. 33:13176–13188. 2019. View Article : Google Scholar : PubMed/NCBI | |
Csordás G, Weaver D and Hajnóczky G: Endoplasmic reticulum-mitochondrial contactology: Structure and signaling functions. Trends Cell Biol. 28:523–540. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xie LL, Shi F, Tan Z, Li Y, Bode AM and Cao Y: Mitochondrial network structure homeostasis and cell death. Cancer Sci. 109:3686–3694. 2018. View Article : Google Scholar : PubMed/NCBI | |
Correia-Álvarez E, Keating JE, Glish G, Tarran R and Sassano MF: Reactive oxygen species, mitochondrial membrane potential, and cellular membrane potential are predictors of E-liquid induced cellular toxicity. Nicotine Tob Res. 22(Suppl 1): S4–S13. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Long Q, Wu H, Li W, Qi J, Wu Y, Xiang G, Tang H, Yang L, Chen K, et al: Topology-dependent, bifurcated mitochondrial quality control under starvation. Autophagy. 16:562–574. 2020. View Article : Google Scholar : | |
Du R, Bei H, Jia L, Huang C, Chen Q, Wang J, Wu F, Chen J and Bo H: A low-cost, accurate method for detecting reticulocytes at different maturation stages based on changes in the mitochondrial membrane potential. J Pharmacol Toxicol Methods. 101:1066642020. View Article : Google Scholar | |
Ganta KK, Mandal A and Chaubey B: Depolarization of mitochondrial membrane potential is the initial event in non-nucleoside reverse transcriptase inhibitor efavirenz induced cytotoxicity. Cell Biol Toxicol. 33:69–82. 2017. View Article : Google Scholar | |
Dreier DA, Denslow ND and Martyniuk CJ: Computational in vitro toxicology uncovers chemical structures impairing mitochondrial membrane potential. J Chem Inf Model. 59:702–712. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lee JY, Lim W, Ham J, Kim J, You S and Song G: Ivermectin induces apoptosis of porcine trophectoderm and uterine luminal epithelial cells through loss of mitochondrial membrane potential, mitochondrial calcium ion overload, and reactive oxygen species generation. Pestic Biochem Physiol. 159:144–153. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tao L, Liu X, Da W, Tao Z and Zhu Y: Pycnogenol achieves neuroprotective effects in rats with spinal cord injury by stabilizing the mitochondrial membrane potential. Neurol Res. 42:597–604. 2020. View Article : Google Scholar : PubMed/NCBI | |
Haider SZ, Mohanraj N, Markandeya YS, Joshi PG and Mehta B: Picture perfect: Imaging mitochondrial membrane potential changes in retina slices with minimal stray fluorescence. Exp Eye Res. 202:1083182021. View Article : Google Scholar | |
Zhang G, Yang W, Zou P, Jiang F, Zeng Y, Chen Q, Sun L, Yang H, Zhou N, Wang X, et al: Mitochondrial functionality modifies human sperm acrosin activity, acrosome reaction capability and chromatin integrity. Hum Reprod. 34:3–11. 2019. View Article : Google Scholar | |
Sakthivel R, Malar DS and Devi KP: Phytol shows anti-angiogenic activity and induces apoptosis in A549 cells by depolarizing the mitochondrial membrane potential. Biomed Pharmacother. 105:742–752. 2018. View Article : Google Scholar : PubMed/NCBI | |
Alyasin A, Momeni HR and Mahdieh M: Aquaporin3 expression and the potential role of aquaporins in motility and mitochondrial membrane potential in human spermatozoa. Andrologia. 52:e135882020. View Article : Google Scholar : PubMed/NCBI | |
Alpert NM, Guehl N, Ptaszek L, Pelletier-Galarneau M, Ruskin J, Mansour MC, Wooten D, Ma C, Takahashi K, Zhou Y, et al: Quantitative in vivo mapping of myocardial mitochondrial membrane potential. PLoS One. 13:e01909682018. View Article : Google Scholar : PubMed/NCBI | |
Kuwahara Y, Roudkenar MH, Suzuki M, Urushihara Y and Fukumoto M, Saito Y and Fukumoto M: The Involvement of mitochondrial membrane potential in cross-resistance between radiation and docetaxel. Int J Radiat Oncol Biol Phys. 96:556–565. 2016. View Article : Google Scholar : PubMed/NCBI | |
Marcondes NA, Terra SR, Lasta CS, Hlavac NRC, Dalmolin ML, Lacerda LA, Faulhaber GAM and González FHD: Comparison of JC-1 and MitoTracker probes for mitochondrial viability assessment in stored canine platelet concentrates: A flow cytometry study. Cytometry A. 95:214–218. 2019. View Article : Google Scholar | |
Poznanski RR, Cacha LA, Ali J, Rizvi ZH, Yupapin P, Salleh SH and Bandyopadhyay A: Induced mitochondrial membrane potential for modeling solitonic conduction of electrotonic signals. PLoS One. 12:e01836772017. View Article : Google Scholar : PubMed/NCBI | |
Georgakopoulos ND, Wells G and Campanella M: The pharmacological regulation of cellular mitophagy. Nat Chem Biol. 13:136–146. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bikas A, Jensen K, Patel A, Costello J, Kaltsas G, Hoperia V, Wartofsky L, Burman K and Vasko V: Mitotane induces mitochondrial membrane depolarization and apoptosis in thyroid cancer cells. Int J Oncol. 55:7–20. 2019.PubMed/NCBI | |
Gloria A, Wegher L, Carluccio A, Valorz C, Robbe D and Contri A: Factors affecting staining to discriminate between bull sperm with greater and lesser mitochondrial membrane potential. Anim Reprod Sci. 189:51–59. 2018. View Article : Google Scholar | |
Saraf KK, Kumaresan A, Chhillar S, Nayak S, Lathika S, Datta TK, Gahlot SC, Karan P, Verma K and Mohanty TK: Spermatozoa with high mitochondrial membrane potential and low tyrosine phosphorylation preferentially bind to oviduct explants in the water buffalo (Bubalus bubalis). Anim Reprod Sci. 180:30–36. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cano M, Datta S, Wang L, Liu T, Flores-Bellver M, Sachdeva M, Sinha D and Handa JT: Nrf2 deficiency decreases NADPH from impaired IDH shuttle and pentose phosphate pathway in retinal pigmented epithelial cells to magnify oxidative stress-induced mitochondrial dysfunction. Aging Cell. 20:e134442021. View Article : Google Scholar : PubMed/NCBI | |
El Manaa W, Duplan E, Goiran T, Lauritzen I, Vaillant Beuchot L, Lacas-Gervais S, Morais VA, You H, Qi L and Salazar M: et al Transcription- and phosphorylation-dependent control of a functional interplay between XBP1s and PINK1 governs mitophagy and potentially impacts Parkinson disease pathophysiology. Autophagy. 17:4363–4385. 2021. View Article : Google Scholar : PubMed/NCBI | |
Franco-Iborra S, Plaza-Zabala A, Montpeyo M, Sebastian D, Vila M and Martinez-Vicente M: Mutant HTT (huntingtin) impairs mitophagy in a cellular model of Huntington disease. Autophagy. 17:672–689. 2021. View Article : Google Scholar : | |
Hamilton K, Krause K, Badr A, Daily K, Estfanous S, Eltobgy M, Khweek AA, Anne MNK, Carafice C, Baetzhold D, et al: Defective immunometabolism pathways in cystic fibrosis macrophages. J Cyst Fibros. 20:664–672. 2021. View Article : Google Scholar : | |
Rabinovich-Nikitin I, Rasouli M, Reitz CJ, Posen I, Margulets V, Dhingra R, Khatua TN, Thliveris JA, Martino TA and Kirshenbaum LA: Mitochondrial autophagy and cell survival is regulated by the circadian clock gene in cardiac myocytes during ischemic stress. Autophagy. 17:3794–3812. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rovini A, Heslop K, Hunt EG, Morris ME, Fang D, Gooz M, Gerencser AA and Maldonado EN: Quantitative analysis of mitochondrial membrane potential heterogeneity in unsynchronized and synchronized cancer cells. FASEB J. 35:e211482021. View Article : Google Scholar | |
Samuvel DJ, Li L, Krishnasamy Y, Gooz M, Takemoto K, Woster PM, Lemasters JJ and Zhong Z: Mitochondrial depolarization after acute ethanol treatment drives mitophagy in living mice. Autophagy. 1–15. 2022.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Wang Q and Hutt KJ: Evaluation of mitochondria in mouse oocytes following cisplatin exposure. J Ovarian Res. 14:652021. View Article : Google Scholar : PubMed/NCBI | |
Yazdankhah M, Ghosh S, Shang P, Stepicheva N, Hose S, Liu H, Chamling X, Tian S, Sullivan MLG, Calderon MJ, et al: BNIP3L-mediated mitophagy is required for mitochondrial remodeling during the differentiation of optic nerve oligodendrocytes. Autophagy. 17:3140–3159. 2021. View Article : Google Scholar : PubMed/NCBI | |
Young VC and Artigas P: Displacement of the Na+/K+ pump's transmembrane domains demonstrates conserved conformational changes in P-type 2 ATPases. Proc Natl Acad Sci USA. 118:e20193171182021. View Article : Google Scholar | |
Cui Y, Duan W, Jin Y, Wo F, Xi F and Wu J: Graphene quantum dot-decorated luminescent porous silicon dressing for theranostics of diabetic wounds. Acta Biomater. 131:544–554. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kambe Y and Yamaoka T: Initial immune response to a FRET-based MMP sensor-immobilized silk fibroin hydrogel in vivo. Acta Biomater. 130:199–210. 2021. View Article : Google Scholar : PubMed/NCBI | |
Feng R, Guo L, Fang J, Jia Y, Wang X, Wei Q and Yu X: Construction of the FRET pairs for the visualization of mitochondria membrane potential in dual emission colors. Anal Chem. 91:3704–3709. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lee H, Kim SJ, Shin H and Kim YP: Collagen-immobilized extracellular FRET reporter for visualizing protease activity secreted by living cells. ACS Sens. 5:655–664. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Chu H, Yang J, Sun Y, Ma P and Song D: Construction of a magnetic-fluorescent-plasmonic nanosensor for the determination of MMP-2 activity based on SERS-fluorescence dual-mode signals. Biosens Bioelectron. 212:1143892022. View Article : Google Scholar : PubMed/NCBI | |
Zhan Y, Ling S, Huang H, Zhang Y, Chen G, Huang S, Li C, Guo W and Wang Q: Rapid unperturbed-tissue analysis for intraoperative cancer diagnosis using an enzyme-activated NIR-II nanoprobe. Angew Chem Int Ed Engl. 60:2637–2642. 2021. View Article : Google Scholar | |
Wang C, Wang G, Li X, Wang K, Fan J, Jiang K, Guo Y and Zhang H: Highly sensitive fluorescence molecular switch for the ratio monitoring of trace change of mitochondrial membrane potential. Anal Chem. 89:11514–11519. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rao M, Jaber BL and Balakrishnan VS: Chronic kidney disease and acquired mitochondrial myopathy. Curr Opin Nephrol Hypertens. 27:113–120. 2018. View Article : Google Scholar | |
Zhu SC, Chen C, Wu YN, Ahmed M, Kitmitto A, Greenstein AS, Kim SJ, Shao YF and Zhang YH: Cardiac complex II activity is enhanced by fat and mediates greater mitochondrial oxygen consumption following hypoxic re-oxygenation. Pflugers Arch. 472:367–374. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kurhaluk N, Lukash O, Nosar V, Portnychenko A, Portnichenko V, Wszedybyl-Winklewska M and Winklewski PJ: Liver mitochondrial respiratory plasticity and oxygen uptake evoked by cobalt chloride in rats with low and high resistance to extreme hypobaric hypoxia. Can J Physiol Pharmacol. 97:392–399. 2019. View Article : Google Scholar : PubMed/NCBI | |
Acetoze G, Champagne J, Ramsey JJ and Rossow HA: Liver mitochondrial oxygen consumption and efficiency of milk production in lactating Holstein cows supplemented with copper, manganese and zinc. J Anim Physiol Anim Nutr (Berl). 102:e787–e797. 2018. View Article : Google Scholar | |
Kalyanaraman B, Cheng G, Hardy M, Ouari O, Lopez M, Joseph J, Zielonka J and Dwinell MB: A review of the basics of mitochondrial bioenergetics, metabolism, and related signaling pathways in cancer cells: Therapeutic targeting of tumor mitochondria with lipophilic cationic compounds. Redox Biol. 14:316–327. 2018. View Article : Google Scholar | |
Banh RS, Iorio C, Marcotte R, Xu Y, Cojocari D, Rahman AA, Pawling J, Zhang W, Sinha A, Rose CM, et al: PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia. Nat Cell Biol. 18:803–813. 2016. View Article : Google Scholar : PubMed/NCBI | |
Campos JC, Queliconi BB, Bozi LHM, Bechara LRG, Dourado PMM, Andres AM, Jannig PR, Gomes KMS, Zambelli VO, Rocha-Resende C, et al: Exercise reestablishes autophagic flux and mitochondrial quality control in heart failure. Autophagy. 13:1304–1317. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rossow HA, Acetoze G, Champagne J and Ramsey JJ: Measuring liver mitochondrial oxygen consumption and proton leak kinetics to estimate mitochondrial respiration in holstein dairy cattle. J Vis Exp. 2018. View Article : Google Scholar : PubMed/NCBI | |
Morimoto N, Hashimoto S, Yamanaka M, Nakano T, Satoh M, Nakaoka Y, Iwata H, Fukui A, Morimoto Y and Shibahara H: Mitochondrial oxygen consumption rate of human embryos declines with maternal age. J Assist Reprod Genet. 37:1815–1821. 2020. View Article : Google Scholar : PubMed/NCBI | |
Darr CR, Cortopassi GA, Datta S, Varner DD and Meyers SA: Mitochondrial oxygen consumption is a unique indicator of stallion spermatozoal health and varies with cryopreservation media. Theriogenology. 86:1382–1392. 2016. View Article : Google Scholar : PubMed/NCBI | |
Müller ME, Vikstrom S, König M, Schlichting R, Zarfl C, Zwiener C and Escher BI: Mitochondrial toxicity of selected micropollutants, their mixtures, and surface water samples measured by the oxygen consumption rate in cells. Environ Toxicol Chem. 38:1000–1011. 2019. View Article : Google Scholar : PubMed/NCBI | |
Thomas LW and Ashcroft M: Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria. Cell Mol Life Sci. 76:1759–1777. 2019. View Article : Google Scholar : PubMed/NCBI | |
Espinosa JA, Pohan G, Arkin MR and Markossian S: Real-time assessment of mitochondrial toxicity in HepG2 cells using the Seahorse extracellular flux analyzer. Curr Protoc. 1:e752021. View Article : Google Scholar : PubMed/NCBI | |
Fu Y, Wang D, Wang H, Cai M, Li C, Zhang X, Chen H, Hu Y, Zhang X, Ying M, et al: TSPO deficiency induces mitochondrial dysfunction, leading to hypoxia, angiogenesis, and a growth-promoting metabolic shift toward glycolysis in glioblastoma. Neuro Oncol. 22:240–252. 2020. | |
Gu X, Ma Y, Liu Y and Wan Q: Measurement of mitochondrial respiration in adherent cells by Seahorse XF96 cell mito stress Test. STAR Protoc. 2:1002452021. View Article : Google Scholar : PubMed/NCBI | |
Eagleson KL, Villaneuva M, Southern RM and Levitt P: Proteomic and mitochondrial adaptations to early-life stress are distinct in juveniles and adults. Neurobiol Stress. 13:1002512020. View Article : Google Scholar : PubMed/NCBI | |
Maremanda KP, Sundar IK and Rahman I: Role of inner mitochondrial protein OPA1 in mitochondrial dysfunction by tobacco smoking and in the pathogenesis of COPD. Redox Biol. 45:1020552021. View Article : Google Scholar : PubMed/NCBI | |
Nishida M, Yamashita N, Ogawa T, Koseki K, Warabi E, Ohue T, Komatsu M, Matsushita H, Kakimi K, Kawakami E, et al: Mitochondrial reactive oxygen species trigger metformin-dependent antitumor immunity via activation of Nrf2/mTORC1/p62 axis in tumor-infiltrating CD8T lymphocytes. J Immunother Cancer. 9:e0029542021. View Article : Google Scholar : PubMed/NCBI | |
Nishida Y, Nawaz A, Kado T, Takikawa A, Igarashi Y, Onogi Y, Wada T, Sasaoka T, Yamamoto S, Sasahara M, et al: Astaxanthin stimulates mitochondrial biogenesis in insulin resistant muscle via activation of AMPK pathway. J Cachexia Sarcopenia Muscle. 11:241–258. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sabogal-Guáqueta AM, Hobbie F, Keerthi A, Oun A, Kortholt A, Boddeke E and Dolga A: Linalool attenuates oxidative stress and mitochondrial dysfunction mediated by glutamate and NMDA toxicity. Biomed Pharmacother. 118:1092952019. View Article : Google Scholar : PubMed/NCBI | |
Tian T, Zhang Y, Wu T, Yang L, Chen C, Li N, Li Y, Xu S, Fu Z, Cui X, et al: miRNA profiling in the hippocampus of attention-deficit/hyperactivity disorder rats. J Cell Biochem. 120:3621–3629. 2019. View Article : Google Scholar | |
Ooi K, Hu L, Feng Y, Han C, Ren X, Qian X, Huang H, Chen S, Shi Q, Lin H, et al: Sigma-1 receptor activation suppresses microglia M1 polarization via regulating endoplasmic reticulum-mitochondria contact and mitochondrial functions in stress-induced hypertension rats. Mol Neurobiol. 58:6625–6646. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shetty T, Park B and Corson TW: Measurement of mitochondrial respiration in the murine retina using a Seahorse extracellular flux analyzer. STAR Protoc. 2:1005332021. View Article : Google Scholar : PubMed/NCBI | |
Wang SH, Zhu XL, Wang F, Chen SX, Chen ZT, Qiu Q, Liu WH, Wu MX, Deng BQ, Xie Y, et al: LncRNA H19 governs mitophagy and restores mitochondrial respiration in the heart through Pink1/Parkin signaling during obesity. Cell Death Dis. 12:5572021. View Article : Google Scholar : PubMed/NCBI | |
Andersen JV, Jakobsen E, Waagepetersen HS and Aldana BI: Distinct differences in rates of oxygen consumption and ATP synthesis of regionally isolated non-synaptic mouse brain mitochondria. J Neurosci Res. 97:961–974. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hubbard WB, Joseph B, Spry M, Vekaria HJ, Saatman KE and Sullivan PG: Acute mitochondrial impairment underlies prolonged cellular dysfunction after repeated mild traumatic brain injuries. J Neurotrauma. 36:1252–1263. 2019. View Article : Google Scholar | |
McAlpin BR, Mahalingam R, Singh AK, Dharmaraj S, Chrisikos TT, Boukelmoune N, Kavelaars A and Heijnen CJ: HDAC6 inhibition reverses long-term doxorubicin-induced cognitive dysfunction by restoring microglia homeostasis and synaptic integrity. Theranostics. 12:603–619. 2022. View Article : Google Scholar : PubMed/NCBI | |
Raut S, Patel R and Al-Ahmad AJ: Presence of a mutation in PSEN1 or PSEN2 gene is associated with an impaired brain endothelial cell phenotype in vitro. Fluids Barriers CNS. 18:32021. View Article : Google Scholar : PubMed/NCBI | |
Algieri C, Trombetti F, Pagliarani A, Ventrella V and Nesci S: The mitochondrial F1FO -ATPase exploits the dithiol redox state to modulate the permeability transition pore. Arch Biochem Biophys. 712:1090272021. View Article : Google Scholar | |
Sun C, Liu X, Wang B, Wang Z, Liu Y, Di C, Si J, Li H, Wu Q, Xu D, et al: Endocytosis-mediated mitochondrial transplantation: Transferring normal human astrocytic mitochondria into glioma cells rescues aerobic respiration and enhances radiosensitivity. Theranostics. 9:3595–3607. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sun JY, Zhao SJ, Wang HB, Hou YJ, Mi QJ, Yang MF, Yuan H, Ni QB, Sun BL and Zhang ZY: Ifenprodil improves long-term neurologic deficits through antagonizing glutamate-induced excitotoxicity after experimental subarachnoid hemorrhage. Transl Stroke Res. 12:1067–1080. 2021. View Article : Google Scholar : PubMed/NCBI | |
Boyman L, Karbowski M and Lederer WJ: Regulation of mitochondrial ATP production: Ca2+ signaling and quality control. Trends Mol Med. 26:21–39. 2020. View Article : Google Scholar | |
Bravo-Sagua R, Parra V, López-Crisosto C, Díaz P, Quest AF and Lavandero S: Calcium transport and signaling in mitochondria. Compr Physiol. 7:623–634. 2017. View Article : Google Scholar : PubMed/NCBI | |
Marchi S, Patergnani S, Missiroli S, Morciano G, Rimessi A, Wieckowski MR, Giorgi C and Pinton P: Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium. 69:62–72. 2018. View Article : Google Scholar | |
Chow J, Rahman J, Achermann JC, Dattani MT and Rahman S: Mitochondrial disease and endocrine dysfunction. Nat Rev Endocrinol. 13:92–104. 2017. View Article : Google Scholar | |
Cieluch A, Uruska A and Zozulinska-Ziolkiewicz D: Can we prevent mitochondrial dysfunction and diabetic cardiomyopathy in type 1 diabetes mellitus? Pathophysiology and treatment options. Int J Mol Sci. 21:28522020. View Article : Google Scholar : | |
Ding XW, Robinson M, Li R, Aldhowayan H, Geetha T and Babu JR: Mitochondrial dysfunction and beneficial effects of mitochondria-targeted small peptide SS-31 in diabetes mellitus and Alzheimer's disease. Pharmacol Res. 171:1057832021. View Article : Google Scholar : PubMed/NCBI | |
Fisher JJ, Vanderpeet CL, Bartho LA, McKeating DR, Cuffe JSM, Holland OJ and Perkins AV: Mitochondrial dysfunction in placental trophoblast cells experiencing gestational diabetes mellitus. J Physiol. 599:1291–1305. 2021. View Article : Google Scholar | |
Jelenik T and Roden M: Mitochondrial plasticity in obesity and diabetes mellitus. Antioxid Redox Signal. 19:258–268. 2013. View Article : Google Scholar : | |
Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M and Victor VM: Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biol. 11:637–645. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Li T, Wang K, Zhao F, Chen J, Xu G, Zhao J, Li T, Chen L, Li L, et al: AMPK-mediated activation of MCU stimulates mitochondrial Ca2+ entry to promote mitotic progression. Nat Cell Biol. 21:476–486. 2019. View Article : Google Scholar : PubMed/NCBI | |
Calvo-Rodriguez M, Hou SS, Snyder AC, Kharitonova EK, Russ AN, Das S, Fan Z, Muzikansky A, Garcia-Alloza M, Serrano-Pozo A, et al: Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer's disease. Nat Commun. 11:21462020. View Article : Google Scholar : PubMed/NCBI | |
Bhatti JS, Bhatti GK and Reddy PH: Mitochondrial dysfunction and oxidative stress in metabolic disorders-a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 1863:1066–1077. 2017. View Article : Google Scholar | |
Guo Q, Bi J, Wang H and Zhang X: Mycobacterium tuberculosis ESX-1-secreted substrate protein EspC promotes mycobacterial survival through endoplasmic reticulum stress-mediated apoptosis. Emerg Microbes Infect. 10:19–36. 2021. View Article : Google Scholar : | |
Galla L, Vajente N, Pendin D, Pizzo P, Pozzan T and Greotti E: Generation and characterization of a new FRET-Based Ca2+ sensor targeted to the nucleus. Int J Mol Sci. 22:99452021. View Article : Google Scholar | |
Isshiki M, Nishimoto M, Mizuno R and Fujita T: FRET-based sensor analysis reveals caveolae are spatially distinct Ca2+ stores in endothelial cells. Cell Calcium. 54:395–403. 2013. View Article : Google Scholar : PubMed/NCBI | |
Laskaratou D, Fernández GS, Coucke Q, Fron E, Rocha S, Hofkens J, Hendrix J and Mizuno H: Quantification of FRET-induced angular displacement by monitoring sensitized acceptor anisotropy using a dim fluorescent donor. Nat Commun. 12:25412021. View Article : Google Scholar : PubMed/NCBI | |
Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K and Miyawaki A: A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol. 20:87–90. 2002. View Article : Google Scholar | |
Ucar H, Watanabe S, Noguchi J, Morimoto Y, Iino Y, Yagishita S, Takahashi N and Kasai H: Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis. Nature. 600:686–689. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yoon S, Pan Y, Shung K and Wang Y: FRET-based Ca2+ biosensor single cell imaging interrogated by high-frequency ultrasound. Sensors (Basel). 20. pp. 49982020, View Article : Google Scholar | |
Chen J, Qiu M, Zhang S, Li B, Li D, Huang X, Qian Z, Zhao J, Wang Z and Tang D: A calcium phosphate drug carrier loading with 5-fluorouracil achieving a synergistic effect for pancreatic cancer therapy. J Colloid Interface Sci. 605:263–273. 2022. View Article : Google Scholar | |
Fan Y and Simmen T: Mechanistic connections between endoplasmic reticulum (ER) Redox Control And Mitochondrial Metabolism. Cells. 8:10712019. View Article : Google Scholar : | |
Shoshan-Barmatz V, Nahon-Crystal E, Shteinfer-Kuzmine A and Gupta R: VDAC1, mitochondrial dysfunction, and Alzheimer's disease. Pharmacol Res. 131:87–101. 2018. View Article : Google Scholar : PubMed/NCBI | |
Country MW and Jonz MG: Mitochondrial KATP channels stabilize intracellular Ca2+ during hypoxia in retinal horizontal cells of goldfish (Carassius auratus). J Exp Biol. 224:jeb2426342021. View Article : Google Scholar : PubMed/NCBI | |
Davidson SM, Padró T, Bollini S, Vilahur G, Duncker DJ, Evans PC, Guzik T, Hoefer IE, Waltenberger J, Wojta J and Weber C: Progress in cardiac research: From rebooting cardiac regeneration to a complete cell atlas of the heart. Cardiovasc Res. 117:2161–2174. 2021. View Article : Google Scholar : PubMed/NCBI | |
Leduc-Gaudet JP, Hussain SNA, Barreiro E and Gouspillou G: Mitochondrial dynamics and mitophagy in skeletal muscle health and aging. Int J Mol Sci. 22:81792021. View Article : Google Scholar : PubMed/NCBI | |
Li S, Chen J, Liu M, Chen Y, Wu Y, Li Q, Ma T, Gao J, Xia Y, Fan M, et al: Protective effect of HINT2 on mitochondrial function via repressing MCU complex activation attenuates cardiac microvascular ischemia-reperfusion injury. Basic Res Cardiol. 116:652021. View Article : Google Scholar : PubMed/NCBI | |
Mollazadeh H, Tavana E, Fanni G, Bo S, Banach M, Pirro M, von Haehling S, Jamialahmadi T and Sahebkar A: Effects of statins on mitochondrial pathways. J Cachexia Sarcopenia Muscle. 12:237–251. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nakamura T, Ogawa M, Kojima K, Takayanagi S, Ishihara S, Hattori K, Naguro I and Ichijo H: The mitochondrial Ca2+ uptake regulator, MICU1, is involved in cold stress-induced ferroptosis. EMBO Rep. 22:e515322021. View Article : Google Scholar | |
Chen M, Mu L, Wang S, Cao X, Liang S, Wang Y, She G, Yang J, Wang Y and Shi W: A single silicon nanowire-based ratiometric biosensor for Ca2+ at various locations in a neuron. ACS Chem Neurosci. 11:1283–1290. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Fang Y, Ye Y, Xu X, Wang B, Gu J, Aschner M, Chen J and Lu R: Anti-cancer effects of 3,3'-diindolylmethane on human hepatocellular carcinoma cells is enhanced by calcium ionophore: The role of cytosolic Ca2+ and p38 MAPK. Front Pharmacol. 10:11672019. View Article : Google Scholar | |
Mata-Martínez E, Sánchez-Tusie AA, Darszon A, Mayorga LS, Treviño CL and De Blas GA: Epac activation induces an extracellular Ca2+-independent Ca2+ wave that triggers acrosome reaction in human spermatozoa. Andrology. 9:1227–1241. 2021. View Article : Google Scholar | |
Wacquier B, Combettes L and Dupont G: Dual dynamics of mitochondrial permeability transition pore opening. Sci Rep. 10:39242020. View Article : Google Scholar : PubMed/NCBI | |
Nesci S, Trombetti F, Ventrella V and Pagliarani A: From the Ca2+-activated F1FO-ATPase to the mitochondrial permeability transition pore: An overview. Biochimie. 152:85–93. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Pan M, Ma J, Song X, Cao W and Zhang P: Recent progress in the use of mitochondrial membrane permeability transition pore in mitochondrial dysfunction-related disease therapies. Mol Cell Biochem. 476:493–506. 2021. View Article : Google Scholar | |
Chinopoulos C: Mitochondrial permeability transition pore: Back to the drawing board. Neurochem Int. 117:49–54. 2018. View Article : Google Scholar | |
Briston T, Selwood DL, Szabadkai G and Duchen MR: Mitochondrial permeability transition: A molecular lesion with multiple drug targets. Trends Pharmacol Sci. 40:50–70. 2019. View Article : Google Scholar | |
Rottenberg H and Hoek JB: The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell. 16:943–955. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhou B, Kreuzer J, Kumsta C, Wu L, Kamer KJ, Cedillo L, Zhang Y, Li S, Kacergis MC, Webster CM, et al: Mitochondrial permeability uncouples elevated autophagy and lifespan extension. Cell. 177:299–314.e16. 2019. View Article : Google Scholar : PubMed/NCBI | |
Baines CP and Gutiérrez-Aguilar M: The still uncertain identity of the channel-forming unit(s) of the mitochondrial permeability transition pore. Cell Calcium. 73:121–130. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ying Z, Xiang G, Zheng L, Tang H, Duan L, Lin X, Zhao Q, Chen K, Wu Y, Xing G, et al: Short-term mitochondrial permeability transition pore opening modulates histone lysine methylation at the early phase of somatic cell reprogramming. Cell Metab. 28:935–945.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
Burke PJ: Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer. 3:857–870. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pérez MJ, Ponce DP, Aranguiz A, Behrens MI and Quintanilla RA: Mitochondrial permeability transition pore contributes to mitochondrial dysfunction in fibroblasts of patients with sporadic Alzheimer's disease. Redox Biol. 19:290–300. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kalani K, Yan SF and Yan SS: Mitochondrial permeability transition pore: A potential drug target for neurodegeneration. Drug Discov Today. 23:1983–1989. 2018. View Article : Google Scholar : PubMed/NCBI | |
Naryzhnaya NV, Maslov LN and Oeltgen PR: Pharmacology of mitochondrial permeability transition pore inhibitors. Drug Dev Res. 80:1013–1030. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shah SS, Lannon H, Dias L, Zhang JY, Alper SL, Pollak MR and Friedman DJ: APOL1 kidney risk variants induce cell death via mitochondrial translocation and opening of the mitochondrial permeability transition pore. J Am Soc Nephrol. 30:2355–2368. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gao G, Wang Z, Lu L, Duan C, Wang X and Yang H: Morphological analysis of mitochondria for evaluating the toxicity of α-synuclein in transgenic mice and isolated preparations by atomic force microscopy. Biomed Pharmacother. 96:1380–1388. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ghosh P, Bhoumik A, Saha S, Mukherjee S, Azmi S, Ghosh JK and Dungdung SR: Spermicidal efficacy of VRP, a synthetic cationic antimicrobial peptide, inducing apoptosis and membrane disruption. J Cell Physiol. 233:1041–1050. 2018. View Article : Google Scholar | |
Jiang S, Zu Y, Wang Z, Zhang Y and Fu Y: Involvement of mitochondrial permeability transition pore opening in 7-xylosyl-10-deacetylpaclitaxel-induced apoptosis. Planta Med. 77:1005–1012. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tricaud N, Gautier B, Berthelot J, Gonzalez S and Van Hameren G: Traumatic and diabetic schwann cell demyelination is triggered by a transient mitochondrial calcium release through voltage dependent anion channel 1. Biomedicines. 10:14472022. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee R, Mareninova OA, Odinokova IV, Huang W, Murphy J, Chvanov M, Javed MA, Wen L, Booth DM, Cane MC, et al: Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: Inhibition prevents acute pancreatitis by protecting production of ATP. Gut. 65:1333–1346. 2016. View Article : Google Scholar | |
Urbani A, Giorgio V, Carrer A, Franchin C, Arrigoni G, Jiko C, Abe K, Maeda S, Shinzawa-Itoh K, Bogers JFM, et al: Purified F-ATP synthase forms a Ca2+-dependent high-conductance channel matching the mitochondrial permeability transition pore. Nat Commun. 10:43412019. View Article : Google Scholar | |
Aqawi M, Sionov RV, Gallily R, Friedman M and Steinberg D: Anti-bacterial properties of cannabigerol toward streptococcus mutans. Front Microbiol. 12:6564712021. View Article : Google Scholar : | |
Asperti M, Bellini S, Grillo E, Gryzik M, Cantamessa L, Ronca R, Maccarinelli F, Salvi A, De Petro G, Arosio P, et al: H-ferritin suppression and pronounced mitochondrial respiration make hepatocellular carcinoma cells sensitive to RSL3-induced ferroptosis. Free Radic Biol Med. 169:294–303. 2021. View Article : Google Scholar : PubMed/NCBI | |
Daniyal M, Liu Y, Yang Y, Xiao F, Fan J, Yu H, Qiu Y, Liu B, Wang W and Yuhui Q: Anti-gastric cancer activity and mechanism of natural compound 'Heilaohulignan C' isolated from Kadsura coccinea. Phytother Res. 35:3977–3987. 2021. View Article : Google Scholar : PubMed/NCBI | |
Datki Z, Acs E, Balazs E, Sovany T, Csoka I, Zsuga K, Kalman J and Galik-Olah Z: Exogenic production of bioactive filamentous biopolymer by monogonant rotifers. Ecotoxicol Environ Saf. 208:1116662021. View Article : Google Scholar : PubMed/NCBI | |
Ge Y, Wang C, Zhang W, Lai S, Wang D and Wang L: Coassembly behavior and rheological properties of a β-hairpin peptide with dicarboxylates. Langmuir. 37:11657–11664. 2021. View Article : Google Scholar : PubMed/NCBI | |
He A, Wang L, Wang Q, Luan W and Qi F: Protective effects of micronized fat against ultraviolet B-induced photoaging. Plast Reconstr Surg. 145:712–720. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jiang Q, Su DY, Wang ZZ, Liu C, Sun YN, Cheng H, Li XM and Yan B: Retina as a window to cerebral dysfunction following studies with circRNA signature during neurodegeneration. Theranostics. 11:1814–1827. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kirk NM, Vieson MD, Selting KA and Reinhart JM: Cytotoxicity of cultured canine primary hepatocytes exposed to itraconazole is decreased by pre-treatment with glutathione. Front Vet Sci. 8:6217322021. View Article : Google Scholar : PubMed/NCBI | |
Lan HY, An P, Liu QP, Chen YY, Yu YY, Luan X, Tang JY and Zhang H: Aidi injection induces apoptosis of hepatocellular carcinoma cells through the mitochondrial pathway. J Ethnopharmacol. 274:1140732021. View Article : Google Scholar : PubMed/NCBI | |
Li C, Sun G, Chen B, Xu L, Ye Y, He J, Bao Z, Zhao P, Miao Z, Zhao L, et al: Nuclear receptor coactivator 4-mediated ferritinophagy contributes to cerebral ischemia-induced ferroptosis in ischemic stroke. Pharmacol Res. 174:1059332021. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Xing S, Xu Y, Chen R, Lin C and Guo L: 3-Amino-1,2,4-triazole-derived graphitic carbon nitride for photodynamic therapy. Spectrochim Acta A Mol Biomol Spectrosc. 250:1193632021. View Article : Google Scholar : PubMed/NCBI | |
Suo L, Liu C, Zhang QY, Yao MD, Ma Y, Yao J, Jiang Q and Yan B: METTL3-mediated N 6-methyladenosine modification governs pericyte dysfunction during diabetes-induced retinal vascular complication. Theranostics. 12:277–289. 2022. View Article : Google Scholar : | |
Panel M, Ruiz I, Brillet R, Lafdil F, Teixeira-Clerc F, Nguyen CT, Calderaro J, Gelin M, Allemand F, Guichou JF, et al: Small-molecule inhibitors of cyclophilins block opening of the mitochondrial permeability transition pore and protect mice from hepatic ischemia/reperfusion injury. Gastroenterology. 157:1368–1382. 2019. View Article : Google Scholar : PubMed/NCBI | |
Winquist RJ and Gribkoff VK: Targeting putative components of the mitochondrial permeability transition pore for novel therapeutics. Biochem Pharmacol. 177:1139952020. View Article : Google Scholar : PubMed/NCBI | |
Yu CH, Davidson S, Harapas CR, Hilton JB, Mlodzianoski MJ, Laohamonthonkul P, Louis C, Low RRJ, Moecking J, De Nardo D, et al: TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell. 183:636–649.e18. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu S and Zou MH: AMPK, mitochondrial function, and cardiovascular disease. Int J Mol Sci. 21:49872020. View Article : Google Scholar : | |
Lee P, Chandel NS and Simon MC: Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 21:268–283. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tan KY, Li CY, Li YF, Fei J, Yang B, Fu YJ and Li F: Real-time monitoring ATP in mitochondrion of living cells: A specific fluorescent probe for ATP by dual recognition sites. Anal Chem. 89:1749–1756. 2017. View Article : Google Scholar : PubMed/NCBI | |
Arai S, Kriszt R, Harada K, Looi LS, Matsuda S, Wongso D, Suo S, Ishiura S, Tseng YH, Raghunath M, et al: RGB-color intensiometric indicators to visualize spatiotemporal dynamics of ATP in single cells. Angew Chem Int Ed Engl. 57:10873–10878. 2018. View Article : Google Scholar : PubMed/NCBI | |
Potter M, Newport E and Morten KJ: The Warburg effect: 80 Years on. Biochem Soc Trans. 44:1499–1505. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nesci S, Pagliarani A, Algieri C and Trombetti F: Mitochondrial F-type ATP synthase: multiple enzyme functions revealed by the membrane-embedded FO structure. Crit Rev Biochem Mol Biol. 55:309–321. 2020. View Article : Google Scholar : PubMed/NCBI | |
Schönfeld P and Wojtczak L: Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. J Lipid Res. 57:943–954. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chistiakov DA, Shkurat TP, Melnichenko AA, Grechko AV and Orekhov AN: The role of mitochondrial dysfunction in cardiovascular disease: A brief review. Ann Med. 50:121–127. 2018. View Article : Google Scholar | |
Costa R, Peruzzo R, Bachmann M, Montà GD, Vicario M, Santinon G, Mattarei A, Moro E, Quintana-Cabrera R, Scorrano L, et al: Impaired mitochondrial ATP production downregulates Wnt signaling via ER stress induction. Cell Rep. 28:1949–1960.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rambold AS and Pearce EL: Mitochondrial dynamics at the interface of immune cell metabolism and function. Trends Immunol. 39:6–18. 2018. View Article : Google Scholar | |
Roger AJ, Muñoz-Gómez SA and Kamikawa R: The origin and diversification of mitochondria. Curr Biol. 27:R1177–R1192. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guntur AR, Gerencser AA, Le PT, DeMambro VE, Bornstein SA, Mookerjee SA, Maridas DE, Clemmons DE, Brand MD and Rosen CJ: Osteoblast-like MC3T3-E1 cells prefer glycolysis for ATP production but adipocyte-like 3T3-L1 cells prefer oxidative phosphorylation. J Bone Miner Res. 33:1052–1065. 2018. View Article : Google Scholar : PubMed/NCBI | |
Depaoli MR, Karsten F, Madreiter-Sokolowski CT, Klec C, Gottschalk B, Bischof H, Eroglu E, Waldeck-Weiermair M, Simmen T, Graier WF and Malli R: Real-time imaging of mitochondrial ATP dynamics reveals the metabolic setting of single cells. Cell Rep. 25:501–512.e3. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hampl V, Čepička I and Eliáš M: Was the mitochondrion necessary to start eukaryogenesis? Trends Microbiol. 27:96–104. 2019. View Article : Google Scholar | |
Beamer E, Conte G and Engel T: ATP release during seizures-a critical evaluation of the evidence. Brain Res Bull. 151:65–73. 2019. View Article : Google Scholar : PubMed/NCBI | |
Buckel W, Hetzel M and Kim J: ATP-driven electron transfer in enzymatic radical reactions. Curr Opin Chem Biol. 8:462–467. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chen H and Zhang YPJ: Enzymatic regeneration and conservation of ATP: Challenges and opportunities. Crit Rev Biotechnol. 41:16–33. 2021. View Article : Google Scholar | |
Dorr BM and Fuerst DE: Enzymatic amidation for industrial applications. Curr Opin Chem Biol. 43:127–133. 2018. View Article : Google Scholar : PubMed/NCBI | |
Finley D and Prado MA: The proteasome and its network: Engineering for adaptability. Cold Spring Harb Perspect Biol. 12:a0339852020. View Article : Google Scholar | |
Hammler D, Marx A and Zumbusch A: Fluorescencelifetime-sensitive probes for monitoring ATP cleavage. Chemistry. 24:15329–15335. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ishida A, Yamada Y and Kamidate T: Colorimetric method for enzymatic screening assay of ATP using Fe(III)-xylenol orange complex formation. Anal Bioanal Chem. 392:987–994. 2008. View Article : Google Scholar : PubMed/NCBI | |
Midelfort CF and Rose IA: A stereochemical method for detection of ATP terminal phosphate transfer in enzymatic reactions. Glutamine synthetase J Biol Chem. 251:5881–5887. 1976. View Article : Google Scholar | |
Ušaj M, Moretto L, Vemula V, Salhotra A and Månsson A: Single molecule turnover of fluorescent ATP by myosin and actomyosin unveil elusive enzymatic mechanisms. Commun Biol. 4:642021. View Article : Google Scholar : PubMed/NCBI | |
Vasta JD, Corona CR, Wilkinson J, Zimprich CA, Hartnett JR, Ingold MR, Zimmerman K, Machleidt T, Kirkland TA, Huwiler KG, et al: Quantitative, wide-spectrum kinase profiling in live cells for assessing the effect of cellular ATP on target engagement. Cell Chem Biol. 25:206–214.e11. 2018. View Article : Google Scholar : | |
Klier PEZ, Martin JG and Miller EW: Imaging reversible mitochondrial membrane potential dynamics with a masked rhodamine voltage reporter. J Am Chem Soc. 143:4095–4099. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mita M, Sugawara I, Harada K, Ito M, Takizawa M, Ishida K, Ueda H, Kitaguchi T and Tsuboi T: Development of red genetically encoded biosensor for visualization of intracellular glucose dynamics. Cell Chem Biol. 29:98–108.e4. 2022. View Article : Google Scholar | |
Murata O, Shindo Y, Ikeda Y, Iwasawa N, Citterio D, Oka K and Hiruta Y: Near-infrared fluorescent probes for imaging of intracellular Mg2+ and application to multi-color imaging of Mg2+, ATP, and mitochondrial membrane potential. Anal Chem. 92:966–974. 2020. View Article : Google Scholar | |
Billingham LK, Stoolman JS, Vasan K, Rodriguez AE, Poor TA, Szibor M, Jacobs HT, Reczek CR, Rashidi A, Zhang P, et al: Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat Immunol. 23:692–704. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fernström J, Mellon SH, McGill MA, Picard M, Reus VI, Hough CM, Lin J, Epel ES, Wolkowitz OM and Lindqvist D: Blood-based mitochondrial respiratory chain function in major depression. Transl Psychiatry. 11:5932021. View Article : Google Scholar : PubMed/NCBI | |
Spinelli JB, Rosen PC, Sprenger HG, Puszynska AM, Mann JL, Roessler JM, Cangelosi AL, Henne A, Condon KJ, Zhang T, et al: Fumarate is a terminal electron acceptor in the mammalian electron transport chain. Science. 374:1227–1237. 2021. View Article : Google Scholar : PubMed/NCBI | |
Vercellino I and Sazanov LA: The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol. 23:141–161. 2022. View Article : Google Scholar | |
Colaço HG, Barros A, Neves-Costa A, Seixas E, Pedroso D, Velho T, Willmann KL, Faisca P, Grabmann G, Yi HS, et al: Tetracycline antibiotics induce host-dependent disease tolerance to infection. Immunity. 54:53–67.e7. 2021. View Article : Google Scholar : | |
Dennerlein S, Wang C and Rehling P: Plasticity of mitochondrial translation. Trends Cell Biol. 27:712–721. 2017. View Article : Google Scholar : PubMed/NCBI | |
Diebold LP, Gil HJ, Gao P, Martinez CA, Weinberg SE and Chandel NS: Mitochondrial complex III is necessary for endothelial cell proliferation during angiogenesis. Nat Metab. 1:158–171. 2019. View Article : Google Scholar : PubMed/NCBI | |
Flønes IH, Ricken G, Klotz S, Lang A, Ströbel T, Dölle C, Kovacs GG and Tzoulis C: Mitochondrial respiratory chain deficiency correlates with the severity of neuropathology in sporadic Creutzfeldt-Jakob disease. Acta Neuropathol Commun. 8:502020. View Article : Google Scholar : PubMed/NCBI | |
Manczak M, Kandimalla R, Yin X and Reddy PH: Mitochondrial division inhibitor 1 reduces dynamin-related protein 1 and mitochondrial fission activity. Hum Mol Genet. 28:177–199. 2019. View Article : Google Scholar : | |
Markevich NI, Galimova MH and Markevich LN: Hysteresis and bistability in the succinate-CoQ reductase activity and reactive oxygen species production in the mitochondrial respiratory complex II. Redox Biol. 37:1016302020. View Article : Google Scholar : PubMed/NCBI | |
Mazat JP, Devin A and Ransac S: Modelling mitochondrial ROS production by the respiratory chain. Cell Mol Life Sci. 77:455–465. 2020. View Article : Google Scholar | |
Timón-Gómez A, Garlich J, Stuart RA, Ugalde C and Barrientos A: Distinct roles of mitochondrial HIGD1A and HIGD2A in respiratory complex and supercomplex biogenesis. Cell Rep. 31:1076072020. View Article : Google Scholar : PubMed/NCBI | |
Grünewald A, Kumar KR and Sue CM: New insights into the complex role of mitochondria in Parkinson's disease. Prog Neurobiol. 177:73–93. 2019. View Article : Google Scholar | |
Ansó E, Weinberg SE, Diebold LP, Thompson BJ, Malinge S, Schumacker PT, Liu X, Zhang Y, Shao Z, Steadman M, et al: The mitochondrial respiratory chain is essential for haematopoietic stem cell function. Nat Cell Biol. 19:614–625. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang HW, Zhu SQ, Liu J, Miao CY, Zhang Y and Zhou BH: Fluoride-induced renal dysfunction via respiratory chain complex abnormal expression and fusion elevation in mice. Chemosphere. 238:1246072020. View Article : Google Scholar | |
Weiland D, Brachvogel B, Hornig-Do HT, Neuhaus JFG, Holzer T, Tobin DJ, Niessen CM, Wiesner RJ and Baris OR: Imbalance of mitochondrial respiratory chain complexes in the epidermis induces severe skin inflammation. J Invest Dermatol. 138:132–140. 2018. View Article : Google Scholar | |
Weinberg SE, Singer BD, Steinert EM, Martinez CA, Mehta MM, Martínez-Reyes I, Gao P, Helmin KA, Abdala-Valencia H, Sena LA, et al: Mitochondrial complex III is essential for suppressive function of regulatory T cells. Nature. 565:495–499. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Gu J, Zong S, Guo R, Liu T and Yang M: Research journey of respirasome. Protein Cell. 11:318–338. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yamada S, Ozaki H and Noguchi K: The mitochondrial respiratory chain maintains the photosynthetic electron flow in Arabidopsis thaliana leaves under high-light stress. Plant Cell Physiol. 61:283–295. 2020. View Article : Google Scholar | |
Yamashita K, Miyazaki T, Fukuda Y, Mitsuyama J, Saijo T, Shimamura S, Yamamoto K, Imamura Y, Izumikawa K, Yanagihara K, et al: The novel arylamidine T-2307 selectively disrupts yeast mitochondrial function by inhibiting respiratory chain complexes. Antimicrob Agents Chemother. 63:e00374–19. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fernandez-Vizarra E and Zeviani M: Mitochondrial disorders of the OXPHOS system. FEBS Lett. 595:1062–1106. 2021. View Article : Google Scholar | |
Hernansanz-Agustín P, Choya-Foces C, Carregal-Romero S, Ramos E, Oliva T, Villa-Piña T, Moreno L, Izquierdo-Álvarez A, Cabrera-García JD, Cortés A, et al: Na+ controls hypoxic signalling by the mitochondrial respiratory chain. Nature. 586:287–291. 2020. View Article : Google Scholar | |
Kobayashi A, Azuma K, Ikeda K and Inoue S: Mechanisms underlying the regulation of mitochondrial respiratory chain complexes by nuclear steroid receptors. Int J Mol Sci. 21:66832020. View Article : Google Scholar : | |
Martínez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, Kihshen H, Reczek CR, Weinberg SE, Gao P, et al: Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature. 585:288–292. 2020. View Article : Google Scholar : PubMed/NCBI | |
Castellana S, Biagini T, Petrizzelli F, Parca L, Panzironi N, Caputo V, Vescovi AL, Carella M and Mazza T: MitImpact 3: Modeling the residue interaction network of the respiratory chain subunits. Nucleic Acids Res. 49(D1): D1282–D1288. 2021. View Article : Google Scholar : | |
Wang M, Ren X, Wang L, Lu X, Han L, Zhang X and Feng J: A functional analysis of mitochondrial respiratory chain cytochrome bc1 complex in gaeumannomyces tritici by RNA silencing as a possible target of carabrone. Mol Plant Pathol. 21:1529–1544. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mirali S, Botham A, Voisin V, Xu C, St-Germain J, Sharon D, Hoff FW, Qiu Y, Hurren R, Gronda M, et al: The mitochondrial peptidase, neurolysin, regulates respiratory chain supercomplex formation and is necessary for AML viability. Sci Transl Med. 12:eaaz82642020. View Article : Google Scholar : PubMed/NCBI | |
Heyman E, Daussin F, Wieczorek V, Caiazzo R, Matran R, Berthon P, Aucouturier J, Berthoin S, Descatoire A, Leclair E, et al: Muscle oxygen supply and use in type 1 diabetes, from ambient air to the mitochondrial respiratory chain: Is there a limiting step? Diabetes Care. 43:209–218. 2020. View Article : Google Scholar | |
Lobo-Jarne T, Pérez-Pérez R, Fontanesi F, Timón-Gómez A, Wittig I, Peñas A, Serrano-Lorenzo P, García-Consuegra I, Arenas J, Martín MA, et al: Multiple pathways coordinate assembly of human mitochondrial complex IV and stabilization of respiratory supercomplexes. EMBO J. 39:e1039122020. View Article : Google Scholar : PubMed/NCBI | |
Mohanraj K, Wasilewski M, Benincá C, Cysewski D, Poznanski J, Sakowska P, Bugajska Z, Deckers M, Dennerlein S, Fernandez-Vizarra E, et al: Inhibition of proteasome rescues a pathogenic variant of respiratory chain assembly factor COA7. EMBO Mol Med. 11:e95612019. View Article : Google Scholar : PubMed/NCBI | |
Formosa LE, Dibley MG, Stroud DA and Ryan MT: Building a complex complex: Assembly of mitochondrial respiratory chain complex I. Semin Cell Dev Biol. 76:154–162. 2018. View Article : Google Scholar | |
Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB and Jiang X: Role of mitochondria in ferroptosis. Mol Cell. 73:354–363.e3. 2019. View Article : Google Scholar : | |
Maclean AE, Hertle AP, Ligas J, Bock R, Balk J and Meyer EH: Absence of complex I is associated with diminished respiratory chain function in european mistletoe. Curr Biol. 28:1614–1619.e3. 2018. View Article : Google Scholar : PubMed/NCBI | |
Senkler J, Rugen N, Eubel H, Hegermann J and Braun HP: Absence of complex I implicates rearrangement of the respiratory chain in European mistletoe. Curr Biol. 28:1606–1613.e4. 2018. View Article : Google Scholar : PubMed/NCBI | |
Signes A and Fernandez-Vizarra E: Assembly of mammalian oxidative phosphorylation complexes I-V and supercomplexes. Essays Biochem. 62:255–270. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kazak L, Chouchani ET, Stavrovskaya IG, Lu GZ, Jedrychowski MP, Egan DF, Kumari M, Kong X, Erickson BK, Szpyt J, et al: UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction. Proc Natl Acad Sci USA. 114:7981–7986. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kozlov AV, Lancaster JR Jr, Meszaros AT and Weidinger A: Mitochondria-meditated pathways of organ failure upon inflammation. Redox Biol. 13:170–181. 2017. View Article : Google Scholar : PubMed/NCBI | |
Letts JA and Sazanov LA: Clarifying the supercomplex: The higher-order organization of the mitochondrial electron transport chain. Nat Struct Mol Biol. 24:800–808. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guo R, Zong S, Wu M, Gu J and Yang M: Architecture of Human Mitochondrial Respiratory Megacomplex I2III2IV2. Cell. 170:1247–1257.e12. 2017. View Article : Google Scholar | |
Jian C, Xu F, Hou T, Sun T, Li J, Cheng H and Wang X: Deficiency of PHB complex impairs respiratory supercomplex formation and activates mitochondrial flashes. J Cell Sci. 130:2620–2630. 2017.PubMed/NCBI | |
Ndi M, Marin-Buera L, Salvatori R, Singh AP and Ott M: Biogenesis of the bc1 complex of the mitochondrial respiratory chain. J Mol Biol. 430:3892–3905. 2018. View Article : Google Scholar : PubMed/NCBI | |
Priesnitz C and Becker T: Pathways to balance mitochondrial translation and protein import. Genes Dev. 32:1285–1296. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lin KH, Xie A, Rutter JC, Ahn YR, Lloyd-Cowden JM, Nichols AG, Soderquist RS, Koves TR, Muoio DM, MacIver NJ, et al: Systematic dissection of the metabolic-apoptotic interface in AML reveals heme biosynthesis to be a regulator of drug sensitivity. Cell Metab. 29:1217–1231.e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lobo-Jarne T and Ugalde C: Respiratory chain supercomplexes: Structures, function and biogenesis. Semin Cell Dev Biol. 76:179–190. 2018. View Article : Google Scholar : | |
Tsai YL, Coady TH, Lu L, Zheng D, Alland I, Tian B, Shneider NA and Manley JL: ALS/FTD-associated protein FUS induces mitochondrial dysfunction by preferentially sequestering respiratory chain complex mRNAs. Genes Dev. 34:785–805. 2020. View Article : Google Scholar : PubMed/NCBI | |
Balsa E, Soustek MS, Thomas A, Cogliati S, García-Poyatos C, Martín-García E, Jedrychowski M, Gygi SP, Enriquez JA and Puigserver P: ER and nutrient stress promote assembly of respiratory chain supercomplexes through the PERK-eIF2α axis. Mol Cell. 74:877–890e6. 2019. View Article : Google Scholar | |
Chinopoulos C: Acute sources of mitochondrial NAD+ during respiratory chain dysfunction. Exp Neurol. 327:1132182020. View Article : Google Scholar | |
Cogliati S, Lorenzi I, Rigoni G, Caicci F and Soriano ME: Regulation of mitochondrial electron transport chain assembly. J Mol Biol. 430:4849–4873. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nagao T, Shintani Y, Hayashi T, Kioka H, Kato H, Nishida Y, Yamazaki S, Tsukamoto O, Yashirogi S, Yazawa I, et al: Higd1a improves respiratory function in the models of mitochondrial disorder. FASEB J. 34:1859–1871. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vankayala R and Hwang KC: Near-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines: An emerging paradigm for cancer treatment. Adv Mater. 30:e17063202018. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Zhang Z, Wei S, He F, Li Z, Wang HH, Huang Y and Nie Z: Near-infrared light-controllable MXene hydrogel for tunable on-demand release of therapeutic proteins. Acta Biomater. 130:138–148. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Weinberg S, DeBerge M, Gainullina A, Schipma M, Kinchen JM, Ben-Sahra I, Gius DR, Yvan-Charvet L, Chandel NS, et al: Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair. Cell Metab. 29:443–456.e5. 2019. View Article : Google Scholar : PubMed/NCBI | |
Luo X, Gong X, Su L, Lin H, Yang Z, Yan X and Gao J: Activatable mitochondria-targeting organoarsenic prodrugs for bioenergetic cancer therapy. Angew Chem Int Ed Engl. 60:1403–1410. 2021. View Article : Google Scholar | |
Jiang H, Zhang XW, Liao QL, Wu WT, Liu YL and Huang WH: Electrochemical monitoring of paclitaxel-induced ROS release from mitochondria inside single cells. Small. 15:e19017872019. View Article : Google Scholar : PubMed/NCBI | |
Kaplan P, Tatarkova Z, Sivonova MK, Racay P and Lehotsky J: Homocysteine and mitochondria in cardiovascular and cerebrovascular systems. Int J Mol Sci. 21:76982020. View Article : Google Scholar : | |
Koch RE, Josefson CC and Hill GE: Mitochondrial function, ornamentation, and immunocompetence. Biol Rev Camb Philos Soc. 92:1459–1474. 2017. View Article : Google Scholar | |
Zhang L, Wang X, Cueto R, Effi C, Zhang Y, Tan H, Qin X, Ji Y, Yang X and Wang H: Biochemical basis and metabolic interplay of redox regulation. Redox Biol. 26:1012842019. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Liu G, Bu Y, Zhang J, Wang L, Tian Y, Yu J, Wu Z and Zhou H: In situ monitoring of mitochondria regulating cell viability by the RNA-specific fluorescent photosensitizer. Anal Chem. 92:10815–10821. 2020. View Article : Google Scholar : PubMed/NCBI | |
Blanco FJ, Valdes AM and Rego-Pérez I: Mitochondrial DNA variation and the pathogenesis of osteoarthritis phenotypes. Nat Rev Rheumatol. 14:327–340. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fuhrmann DC and Brüne B: Mitochondrial composition and function under the control of hypoxia. Redox Biol. 12:208–215. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee JH and Paull TT: Mitochondria at the crossroads of ATM-mediated stress signaling and regulation of reactive oxygen species. Redox Biol. 32:1015112020. View Article : Google Scholar : PubMed/NCBI | |
Madreiter-Sokolowski CT, Thomas C and Ristow M: Interrelation between ROS and Ca2+ in aging and age-related diseases. Redox Biol. 36:1016782020. View Article : Google Scholar | |
Angelova PR, Esteras N and Abramov AY: Mitochondria and lipid peroxidation in the mechanism of neurodegeneration: Finding ways for prevention. Med Res Rev. 41:770–784. 2021. View Article : Google Scholar | |
van der Reest J, Nardini Cecchino G, Haigis MC and Kordowitzki P: Mitochondria: Their relevance during oocyte ageing. Ageing Res Rev. 70:1013782021. View Article : Google Scholar : PubMed/NCBI | |
Martins WK, Santos NF, Rocha CS, Bacellar IOL, Tsubone TM, Viotto AC, Matsukuma AY, Abrantes ABP, Siani P, Dias LG and Baptista MS: Parallel damage in mitochondria and lysosomes is an efficient way to photoinduce cell death. Autophagy. 15:259–279. 2019. View Article : Google Scholar : | |
Kleih M, Böpple K, Dong M, Gaißler A, Heine S, Olayioye MA, Aulitzky WE and Essmann F: Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells. Cell Death Dis. 10:8512019. View Article : Google Scholar : PubMed/NCBI | |
Sidlauskaite E, Gibson JW, Megson IL, Whitfield PD, Tovmasyan A, Batinic-Haberle I, Murphy MP, Moult PR and Cobley JN: Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning. Redox Biol. 16:344–351. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Chen Z, Liu N and Chen Y: Ribosomal protein L10 in mitochondria serves as a regulator for ROS level in pancreatic cancer cells. Redox Biol. 19:158–165. 2018. View Article : Google Scholar : PubMed/NCBI | |
Erard M, Dupré-Crochet S and Nüße O: Biosensors for spatiotemporal detection of reactive oxygen species in cells and tissues. Am J Physiol Regul Integr Comp Physiol. 314:R667–R683. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Wang L, Carroll SL, Chen J, Wang MC and Wang J: Challenges and opportunities for small-molecule fluorescent probes in redox biology applications. Antioxid Redox Signal. 29:518–540. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ortega-Villasante C, Burén S, Barón-Sola Á, Martínez F and Hernández LE: In vivo ROS and redox potential fluorescent detection in plants: Present approaches and future perspectives. Methods. 109:92–104. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ortega-Villasante C, Burén S, Blázquez-Castro A, Barón-Sola Á and Hernández LE: Fluorescent in vivo imaging of reactive oxygen species and redox potential in plants. Free Radic Biol Med. 122:202–220. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dragišić Maksimović J, Mojović M, Vučinić Ž and Maksimović V: Spatial distribution of apoplastic antioxidative constituents in maize root. Physiol Plant. 173:818–828. 2021. View Article : Google Scholar | |
Emoto MC, Sato-Akaba H, Hamaue N, Kawanishi K, Koshino H, Shimohama S and Fujii HG: Early detection of redox imbalance in the APPswe/PS1dE9 mouse model of Alzheimer's disease by in vivo electron paramagnetic resonance imaging. Free Radic Biol Med. 172:9–18. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gotham JP, Li R, Tipple TE, Lancaster JR Jr, Liu T and Li Q: Quantitation of spin probe-detectable oxidants in cells using electron paramagnetic resonance spectroscopy: To probe or to trap? Free Radic Biol Med. 154:84–94. 2020. View Article : Google Scholar : PubMed/NCBI | |
He L, Li MX, Chen F, Yang SS, Ding J, Ding L and Ren NQ: Novel coagulation waste-based Fe-containing carbonaceous catalyst as peroxymonosulfate activator for pollutants degradation: Role of ROS and electron transfer pathway. J Hazard Mater. 417:1261132021. View Article : Google Scholar : PubMed/NCBI | |
Hinoshita M, Abe T, Sato A, Maeda Y and Takeyoshi M: Development of a new photosafety test method based on singlet oxygen generation detected using electron spin resonance. J Appl Toxicol. 41:247–255. 2021. View Article : Google Scholar | |
Matsumoto KI, Ueno M, Shoji Y and Nakanishi I: Heavy-ion beam-induced reactive oxygen species and redox reactions. Free Radic Res. 55:450–460. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mendoza C, Désert A, Khrouz L, Páez CA, Parola S and Heinrichs B: Heterogeneous singlet oxygen generation: In-operando visible light EPR spectroscopy. Environ Sci Pollut Res Int. 28:25124–25129. 2021. View Article : Google Scholar | |
Okazaki Y, Ishidzu Y, Ito F, Tanaka H, Hori M and Toyokuni S: L-Dehydroascorbate efficiently degrades non-thermal plasma-induced hydrogen peroxide. Arch Biochem Biophys. 700:1087622021. View Article : Google Scholar : PubMed/NCBI | |
Prasad A, Manoharan RR, Sedlářová M and Pospíšil P: Free radical-mediated protein radical formation in differentiating monocytes. Int J Mol Sci. 22:99632021. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi M, Ma T, Tadaki D, Hirano-Iwata A, Watanabe Y, Kanetaka H, Fujimori H, Takemoto E and Niwano M: Bactericidal activity of bulk nanobubbles through active oxygen species generation. Langmuir. Aug 2–2021.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Deng R, Teng X, Li Y, Sun Y, Ren X and Li J: Direct visualization of single-nucleotide variation in mtDNA using a CRISPR/Cas9-mediated proximity ligation assay. J Am Chem Soc. 140:11293–11301. 2018. View Article : Google Scholar : PubMed/NCBI | |
Moriyama M, Koshiba T and Ichinohe T: Influenza A virus M2 protein triggers mitochondrial DNA-mediated antiviral immune responses. Nat Commun. 10:46242019. View Article : Google Scholar : PubMed/NCBI | |
Baumann K: mtDNA robs nuclear dNTPs. Nat Rev Mol Cell Biol. 20:6632019. View Article : Google Scholar : PubMed/NCBI | |
Lazo S, Noren Hooten N, Green J, Eitan E, Mode NA, Liu QR, Zonderman AB, Ezike N, Mattson MP, Ghosh P and Evans MK: Mitochondrial DNA in extracellular vesicles declines with age. Aging Cell. 20:e132832021. View Article : Google Scholar : | |
Li D, Du X, Guo X, Zhan L, Li X, Yin C, Chen C, Li M, Li B, Yang H and Xing J: Site-specific selection reveals selective constraints and functionality of tumor somatic mtDNA mutations. J Exp Clin Cancer Res. 36:1682017. View Article : Google Scholar : PubMed/NCBI | |
Medeiros TC and Graef M: Autophagy determines mtDNA copy number dynamics during starvation. Autophagy. 15:178–179. 2019. View Article : Google Scholar | |
Fontana GA and Gahlon HL: Mechanisms of replication and repair in mitochondrial DNA deletion formation. Nucleic Acids Res. 48:11244–11258. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wanrooij PH, Tran P, Thompson LJ, Carvalho G, Sharma S, Kreisel K, Navarrete C, Feldberg AL, Watt DL, Nilsson AK, et al: Elimination of rNMPs from mitochondrial DNA has no effect on its stability. Proc Natl Acad Sci USA. 117:14306–14313. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wei W and Chinnery PF: Inheritance of mitochondrial DNA in humans: Implications for rare and common diseases. J Intern Med. 287:634–644. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ignatenko O, Chilov D, Paetau I, de Miguel E, Jackson CB, Capin G, Paetau A, Terzioglu M, Euro L and Suomalainen A: Loss of mtDNA activates astrocytes and leads to spongiotic encephalopathy. Nat Commun. 9:702018. View Article : Google Scholar : PubMed/NCBI | |
Kasahara T and Kato T: What can mitochondrial DNA analysis tell us about mood disorders? Biol Psychiatry. 83:731–738. 2018. View Article : Google Scholar | |
Larsson NG and Wedell A: Mitochondria in human disease. J Intern Med. 287:589–591. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bagge EK, Fujimori-Tonou N, Kubota-Sakashita M, Kasahara T and Kato T: Unbiased PCR-free spatio-temporal mapping of the mtDNA mutation spectrum reveals brain region-specific responses to replication instability. BMC Biol. 18:1502020. View Article : Google Scholar : PubMed/NCBI | |
Chiang JL, Shukla P, Pagidas K, Ahmed NS, Karri S, Gunn DD, Hurd WW and Singh KK: Mitochondria in ovarian aging and reproductive longevity. Ageing Res Rev. 63:1011682020. View Article : Google Scholar : PubMed/NCBI | |
Li H, Slone J, Fei L and Huang T: Mitochondrial DNA variants and common diseases: A mathematical model for the diversity of age-related mtDNA mutations. Cells. 8:6082019. View Article : Google Scholar : | |
Nissanka N and Moraes CT: Mitochondrial DNA heteroplasmy in disease and targeted nuclease-based therapeutic approaches. EMBO Rep. 21:e496122020. View Article : Google Scholar : PubMed/NCBI | |
West AP and Shadel GS: Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol. 17:363–375. 2017. View Article : Google Scholar : PubMed/NCBI | |
Asfaram S, Fakhar M, Mohebali M, Ziaei Hezarjaribi H, Mardani A, Ghezelbash B, Akhoundi B, Zarei Z and Moazeni M: A convenient and sensitive kDNA-PCR for screening of leishmania infantum latent infection among blood donors in a highly endemic focus, northwestern Iran. Acta Parasitol. 67:842–850. 2022. View Article : Google Scholar : PubMed/NCBI | |
Semerikov VL, Semerikova SA, Khrunyk YY and Putintseva YA: Sequence capture of mitochondrial genome with PCR-generated baits provides new insights into the biogeography of the genus abies mill. Plants (Basel). 11. pp. 7622022, View Article : Google Scholar | |
Tay E, Chen SC, Green W, Lopez R and Halliday CL: Development of a real-time PCR assay to identify and distinguish between cryptococcus neoformans and cryptococcus gattii species complexes. J Fungi (Basel). 8:4622022. View Article : Google Scholar | |
Wang J, Balciuniene J, Diaz-Miranda MA, McCormick EM, Aref-Eshghi E, Muir AM, Cao K, Troiani J, Moseley A, Fan Z, et al: Advanced approach for comprehensive mtDNA genome testing in mitochondrial disease. Mol Genet Metab. 135:93–101. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Slone J and Huang T: Next-generation sequencing to characterize mitochondrial genomic DNA heteroplasmy. Curr Protoc. 2:e4122022. View Article : Google Scholar : PubMed/NCBI | |
Allouche J, Rachmin I, Adhikari K, Pardo LM, Lee JH, McConnell AM, Kato S, Fan S, Kawakami A, Suita Y, et al: NNT mediates redox-dependent pigmentation via a UVB- and MITF-independent mechanism. Cell. 184:4268–4283.e20. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cornman RS, McKenna JE Jr and Fike JA: Composition and distribution of fish environmental DNA in an adirondack watershed. PeerJ. 9:e105392021. View Article : Google Scholar : PubMed/NCBI | |
Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, Abeliovich H, Abildgaard MH, Abudu YP, Acevedo-Arozena A, et al: Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1. Autophagy. 17:1–382. 2021. View Article : Google Scholar : PubMed/NCBI | |
Matsui H, Ito J, Matsui N, Uechi T, Onodera O and Kakita A: Cytosolic dsDNA of mitochondrial origin induces cytotoxicity and neurodegeneration in cellular and zebrafish models of Parkinson's disease. Nat Commun. 12:31012021. View Article : Google Scholar : PubMed/NCBI | |
Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, Koren S, Uliano-Silva M, Chow W, Fungtammasan A, Kim J, et al: Towards complete and error-free genome assemblies of all vertebrate species. Nature. 592:737–746. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rossmann MP, Hoi K, Chan V, Abraham BJ, Yang S, Mullahoo J, Papanastasiou M, Wang Y, Elia I, Perlin JR, et al: Cell-specific transcriptional control of mitochondrial metabolism by TIF1γ drives erythropoiesis. Science. 372:716–721. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wiessner M, Maroofian R, Ni MY, Pedroni A, Müller JS, Stucka R, Beetz C, Efthymiou S, Santorelli FM, Alfares AA, et al: Biallelic variants in HPDL cause pure and complicated hereditary spastic paraplegia. Brain. 144:1422–1434. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wong HH, Seet SH, Maier M, Gurel A, Traspas RM, Lee C, Zhang S, Talim B, Loh AYT, Chia CY, et al: Loss of C2orf69 defines a fatal autoinflammatory syndrome in humans and zebrafish that evokes a glycogen-storage-associated mitochondriopathy. Am J Hum Genet. 108:1301–1317. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang DG, Zhao T, Hogstrand C, Ye HM, Xu XJ and Luo Z: Oxidized fish oils increased lipid deposition via oxidative stress-mediated mitochondrial dysfunction and the CREB1-Bcl2-Beclin1 pathway in the liver tissues and hepatocytes of yellow catfish. Food Chem. 360:1298142021. View Article : Google Scholar : PubMed/NCBI | |
Borsche M, König IR, Delcambre S, Petrucci S, Balck A, Brüggemann N, Zimprich A, Wasner K, Pereira SL, Avenali M, et al: Mitochondrial damage-associated inflammation highlights biomarkers in PRKN/PINK1 parkinsonism. Brain. 143:3041–3051. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fernström J, Ohlsson L, Asp M, Lavant E, Holck A, Grudet C, Westrin Å and Lindqvist D: Plasma circulating cell-free mitochondrial DNA in depressive disorders. PLoS One. 16:e02595912021. View Article : Google Scholar : PubMed/NCBI | |
Gonçalves VF, Mendes-Silva AP, Koyama E, Vieira E, Kennedy JL and Diniz B: Increased levels of circulating cell-free mtDNA in plasma of late life depression subjects. J Psychiatr Res. 139:25–29. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zhou K, Guo S, Wang Y, Ji X, Yuan Q, Su L, Guo X, Gu X and Xing J: NGS-based accurate and efficient detection of circulating cell-free mitochondrial DNA in cancer patients. Mol Ther Nucleic Acids. 23:657–666. 2021. View Article : Google Scholar : PubMed/NCBI | |
Maresca A, Del Dotto V, Romagnoli M, La Morgia C, Di Vito L, Capristo M, Valentino ML and Carelli V; ER-MITO Study Group: Expanding and validating the biomarkers for mitochondrial diseases. J Mol Med (Berl). 98:1467–1478. 2020. View Article : Google Scholar | |
Nie S, Lu J, Wang L and Gao M: Pro-inflammatory role of cell-free mitochondrial DNA in cardiovascular diseases. IUBMB Life. 72:1879–1890. 2020. View Article : Google Scholar : PubMed/NCBI | |
Valenti D, Vacca RA, Moro L and Atlante A: Mitochondria can cross cell boundaries: An overview of the biological relevance, pathophysiological implications and therapeutic perspectives of intercellular mitochondrial transfer. Int J Mol Sci. 22:83122021. View Article : Google Scholar : PubMed/NCBI | |
Zhong XY, Guo Y and Fan Z: Increased level of free-circulating MtDNA in maintenance hemodialysis patients: Possible role in systemic inflammation. J Clin Lab Anal. 36:e245582022. View Article : Google Scholar : PubMed/NCBI | |
Zhou G, Li Y, Li S, Liu H, Xu F, Lai X, Zhang Q, Xu J and Wan S: Circulating cell-free mtDNA content as a non-invasive prognostic biomarker in HCC patients receiving TACE and traditional Chinese medicine. Front Genet. 12:7194512021. View Article : Google Scholar : PubMed/NCBI | |
Angelova PR, Andruska KM, Midei MG, Barilani M, Atwal P, Tucher O, Milner P, Heerinckx F and Shchepinov MS: RT001 in progressive supranuclear palsy-clinical and in-vitro observations. Antioxidants (Basel). 10. pp. 10212021, View Article : Google Scholar | |
Bjørklund G, Tinkov AA, Hosnedlová B, Kizek R, Ajsuvakova OP, Chirumbolo S, Skalnaya MG, Peana M, Dadar M, El-Ansary A, et al: The role of glutathione redox imbalance in autism spectrum disorder: A review. Free Radic Biol Med. 160:149–162. 2020. View Article : Google Scholar : PubMed/NCBI | |
Blotto BL, Lyra ML, Cardoso MCS, Trefaut Rodrigues M, R Dias I, Marciano-Jr E, Dal Vechio F, Orrico VGD, Brandão RA, Lopes de Assis C, et al: The phylogeny of the casque-headed treefrogs (Hylidae: Hylinae: Lophyohylini). Cladistics. 37:36–72. 2021. View Article : Google Scholar : PubMed/NCBI | |
Langton AK, Ayer J, Griffiths TW, Rashdan E, Naidoo K, Caley MP, Birch-Machin MA, O'Toole EA, Watson REB and Griffiths CEM: Distinctive clinical and histological characteristics of atrophic and hypertrophic facial photoageing. J Eur Acad Dermatol Venereol. 35:762–768. 2021. View Article : Google Scholar : | |
Luo ZL, Sun HY, Wu XB, Cheng L and Ren JD: Epigallocatechin-3-gallate attenuates acute pancreatitis induced lung injury by targeting mitochondrial reactive oxygen species triggered NLRP3 inflammasome activation. Food Funct. 12:5658–5667. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rebelo AP, Eidhof I, Cintra VP, Guillot-Noel L, Pereira CV, Timmann D, Traschütz A, Schöls L, Coarelli G, Durr A, et al: Biallelic loss-of-function variations in PRDX3 cause cerebellar ataxia. Brain. 144:1467–1481. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu HC, Rérolle D, Berthier C, Hleihel R, Sakamoto T, Quentin S, Benhenda S, Morganti C, Wu C, Conte L, et al: Actinomycin D targets NPM1c-primed mitochondria to restore PML-driven senescence in AML therapy. Cancer Discov. 11:3198–3213. 2021. View Article : Google Scholar : PubMed/NCBI | |
Feng B, Wang K, Liu J, Mao G, Cui J, Xuan X, Jiang K and Zhang H: Ultrasensitive apurinic/apyrimidinic site-specific ratio fluorescent rotor for real-time highly selective evaluation of mtDNA oxidative damage in living cells. Anal Chem. 91:13962–13969. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dabravolski SA, Nikiforov NG, Zhuravlev AD, Orekhov NA, Grechko AV and Orekhov AN: Role of the mtDNA mutations and mitophagy in inflammaging. Int J Mol Sci. 23:13232022. View Article : Google Scholar : PubMed/NCBI | |
Hamel Y, Mauvais FX, Madrange M, Renard P, Lebreton C, Nemazanyy I, Pellé O, Goudin N, Tang X, Rodero MP, et al: Compromised mitochondrial quality control triggers lipin1-related rhabdomyolysis. Cell Rep Med. 2:1003702021. View Article : Google Scholar : PubMed/NCBI | |
Karshovska E, Wei Y, Subramanian P, Mohibullah R, Geißler C, Baatsch I, Popal A, Corbalán Campos J, Exner N and Schober A: HIF-1α (hypoxia-inducible factor-1α) promotes macrophage necroptosis by regulating miR-210 and miR-383. Arterioscler Thromb Vasc Biol. 40:583–596. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gao F, Li L, Fan J, Cao J, Li Y, Chen L and Peng X: An off-on two-photon carbazole-based fluorescent probe: Highly targeting and super-resolution imaging of mtDNA. Anal Chem. 91:3336–3341. 2019. View Article : Google Scholar : PubMed/NCBI | |
Grady JP, Pickett SJ, Ng YS, Alston CL, Blakely EL, Hardy SA, Feeney CL, Bright AA, Schaefer AM, Gorman GS, et al: mtDNA heteroplasmy level and copy number indicate disease burden in m.3243A>G mitochondrial disease. EMBO Mol Med. 10:e82622018. View Article : Google Scholar : | |
Bozi LHM, Campos JC, Zambelli VO, Ferreira ND and Ferreira JCB: Mitochondrially-targeted treatment strategies. Mol Aspects Med. 71:1008362020. View Article : Google Scholar | |
Jing X, Yang F, Shao C, Wei K, Xie M, Shen H and Shu Y: Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 18:1572019. View Article : Google Scholar : PubMed/NCBI | |
Amore G, Romagnoli M, Carbonelli M, Barboni P, Carelli V and La Morgia C: Therapeutic options in hereditary optic neuropathies. Drugs. 81:57–86. 2021. View Article : Google Scholar : | |
Chen JJ and Bhatti MT: Gene therapy for leber hereditary optic neuropathy: Is vision truly RESCUED? Ophthalmology. 128:661–662. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mejia-Vergara AJ, Seleme N, Sadun AA and Karanjia R: Pathophysiology of conversion to symptomatic leber hereditary optic neuropathy and therapeutic implications: A review. Curr Neurol Neurosci Rep. 20:112020. View Article : Google Scholar : PubMed/NCBI | |
Newman NJ, Yu-Wai-Man P, Carelli V, Moster ML, Biousse V, Vignal-Clermont C, Sergott RC, Klopstock T, Sadun AA, Barboni P, et al: Efficacy and safety of intravitreal gene therapy for leber hereditary optic neuropathy treated within 6 months of disease onset. Ophthalmology. 128:649–660. 2021. View Article : Google Scholar : PubMed/NCBI | |
Stenton SL, Sheremet NL, Catarino CB, Andreeva NA, Assouline Z, Barboni P, Barel O, Berutti R, Bychkov I, Caporali L, et al: Impaired complex I repair causes recessive leber's hereditary optic neuropathy. J Clin Invest. 131:e1382672021. View Article : Google Scholar | |
Wang L, Ding H, Chen BT, Fan K, Tian Q, Long M, Liang M, Shi D, Yu C and Qin W: Occult primary white matter impairment in leber hereditary optic neuropathy. Eur J Neurol. 28:2871–2881. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yu-Wai-Man P, Newman NJ, Carelli V, Moster ML, Biousse V, Sadun AA, Klopstock T, Vignal-Clermont C, Sergott RC, Rudolph G, et al: Bilateral visual improvement with unilateral gene therapy injection for leber hereditary optic neuropathy. Sci Transl Med. 12:eaaz74232020. View Article : Google Scholar : PubMed/NCBI | |
Heighton JN, Brady LI, Sadikovic B, Bulman DE and Tarnopolsky MA: Genotypes of chronic progressive external ophthalmoplegia in a large adult-onset cohort. Mitochondrion. 49:227–231. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Kang L, Wu HL, Hou Y and Wang ZX: Optical coherence tomography findings in chronic progressive external ophthalmoplegia. Chin Med J (Engl). 132:1202–1207. 2019. View Article : Google Scholar | |
Del Monte F, Angelini F, Villar AM and Gabbarini F: The arrhythmic risk in Kearns-Sayre syndrome: Still many questions unanswered. Europace. 23:980–981. 2021. View Article : Google Scholar : PubMed/NCBI | |
Di Mambro C, Tamborrino PP and Drago F: The arrhythmic risk in Kearns-Sayre syndrome: Still many questions unanswered-Authors' reply. Europace. 23:981–982. 2021. View Article : Google Scholar : PubMed/NCBI | |
Di Nora C, Paldino A, Miani D, Finato N, Pizzolitto S, De Maglio G, Vendramin I, Sponga S, Nalli C, Sinagra G and Livi U: Heart transplantation in Kearns-Sayre syndrome. Transplantation. 103:e393–e394. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nguyen MTB, Micieli J and Margolin E: Teaching neuroImages: Kearns-Sayre syndrome. Neurology. 92:e519–e520. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ashton TM, McKenna WG, Kunz-Schughart LA and Higgins GS: Oxidative phosphorylation as an emerging target in cancer therapy. Clin Cancer Res. 24:2482–2490. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bonora M, Wieckowski MR, Sinclair DA, Kroemer G, Pinton P and Galluzzi L: Targeting mitochondria for cardiovascular disorders: Therapeutic potential and obstacles. Nat Rev Cardiol. 16:33–55. 2019. View Article : Google Scholar : | |
Ni K, Lan G, Veroneau SS, Duan X, Song Y and Lin W: Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy. Nat Commun. 9:43212018. View Article : Google Scholar : PubMed/NCBI | |
Porporato PE, Filigheddu N, Pedro JMB, Kroemer G and Galluzzi L: Mitochondrial metabolism and cancer. Cell Res. 28:265–280. 2018. View Article : Google Scholar : | |
Qi T, Chen B, Wang Z, Du H, Liu D, Yin Q, Liu B, Zhang Q and Wang Y: A pH-activatable nanoparticle for dual-stage precisely mitochondria-targeted photodynamic anticancer therapy. Biomaterials. 213:1192192019. View Article : Google Scholar : PubMed/NCBI | |
Ramachandra CJA, Hernandez-Resendiz S, Crespo-Avilan GE, Lin YH and Hausenloy DJ: Mitochondria in acute myocardial infarction and cardioprotection. EBioMedicine. 57:1028842020. View Article : Google Scholar : PubMed/NCBI | |
Soukas AA, Hao H and Wu L: Metformin as anti-aging therapy: Is it for everyone? Trends Endocrinol Metab. 30:745–755. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bonora E, Chakrabarty S, Kellaris G, Tsutsumi M, Bianco F, Bergamini C, Ullah F, Isidori F, Liparulo I, Diquigiovanni C, et al: Biallelic variants in LIG3 cause a novel mitochondrial neurogastrointestinal encephalomyopathy. Brain. 144:1451–1466. 2021. View Article : Google Scholar : PubMed/NCBI | |
D'Angelo R, Boschetti E, Amore G, Costa R, Pugliese A, Caporali L, Gramegna LL, Papa V, Vizioli L, Capristo M, et al: Liver transplantation in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): Clinical long-term follow-up and pathogenic implications. J Neurol. 267:3702–3710. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hirano M, Carelli V, De Giorgio R, Pironi L, Accarino A, Cenacchi G, D'Alessandro R, Filosto M, Martí R, Nonino F, et al: Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): Position paper on diagnosis, prognosis, and treatment by the MNGIE international network. J Inherit Metab Dis. 44:376–387. 2021. View Article : Google Scholar : | |
Kripps K, Nakayuenyongsuk W, Shayota BJ, Berquist W, Gomez-Ospina N, Esquivel CO, Concepcion W, Sampson JB, Cristin DJ, Jackson WE, et al: Successful liver transplantation in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). Mol Genet Metab. 130:58–64. 2020. View Article : Google Scholar : PubMed/NCBI | |
Parés M, Fornaguera C, Vila-Julià F, Oh S, Fan SHY, Tam YK, Comes N, Vidal F, Martí R, Borrós S and Barquinero J: Preclinical assessment of a gene-editing approach in a mouse model of mitochondrial neurogastrointestinal encephalomyopathy. Hum Gene Ther. 32:1210–1223. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jackson CB, Turnbull DM, Minczuk M and Gammage PA: Therapeutic manipulation of mtDNA heteroplasmy: A shifting perspective. Trends Mol Med. 26:698–709. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jiang Z and Shen H: Mitochondria: Emerging therapeutic strategies for oocyte rescue. Reprod Sci. 29:711–722. 2022. View Article : Google Scholar | |
Mok BY, de Moraes MH, Zeng J, Bosch DE, Kotrys AV, Raguram A, Hsu F, Radey MC, Peterson SB, Mootha VK, et al: A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. 583:631–637. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ng YS, Bindoff LA, Gorman GS, Klopstock T, Kornblum C, Mancuso M, McFarland R, Sue C M, Suomalainen A, Taylor RW, et al: Mitochondrial disease in adults: Recent advances and future promise. Lancet Neurol. 20:573–584. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fang H, Yao S, Chen Q, Liu C, Cai Y, Geng S, Bai Y, Tian Z, Zacharias AL, Takebe T, et al: De novo-designed near-infrared nanoaggregates for super-resolution monitoring of lysosomes in cells, in whole organoids, and in vivo. ACS Nano. 13:14426–14436. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gong X, Pu X, Wang J, Yang L, Cui Y, Li L, Sun X, Liu J, Bai J and Wang Y: Enhancing of nanocatalyst-driven chemodynaminc therapy for endometrial cancer cells through inhibition of PINK1/parkin-mediated mitophagy. Int J Nanomedicine. 16:6661–6679. 2021. View Article : Google Scholar : PubMed/NCBI | |
González LF, Bevilacqua LE and Naves R: Nanotechnology-based drug delivery strategies to repair the mitochondrial function in neuroinflammatory and neurodegenerative diseases. Pharmaceutics. 13:20552021. View Article : Google Scholar : PubMed/NCBI | |
Gu X, Kwok RTK, Lam JWY and Tang BZ: AIEgens for biological process monitoring and disease theranostics. Biomaterials. 146:115–135. 2017. View Article : Google Scholar : PubMed/NCBI | |
He C, Jiang S, Yao H, Zhang L, Yang C, Jiang S, Ruan F, Zhan D, Liu G, Lin Z, et al: High-content analysis for mitophagy response to nanoparticles: A potential sensitive biomarker for nanosafety assessment. Nanomedicine. 15:59–69. 2019. View Article : Google Scholar | |
He G, Pan X, Liu X, Zhu Y, Ma Y, Du C, Liu X and Mao C: HIF-1α-mediated mitophagy determines ZnO nanoparticle-induced human osteosarcoma cell death both in vitro and in vivo. ACS Appl Mater Interfaces. 12:48296–48309. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao M, Liu S, Wang C, Wang Y, Wan M, Liu F, Gong M, Yuan Y, Chen Y, Cheng J, et al: Mesenchymal stem cell-derived extracellular vesicles attenuate mitochondrial damage and inflammation by stabilizing mitochondrial DNA. ACS Nano. 15:1519–1538. 2021. View Article : Google Scholar | |
Macdonald R, Barnes K, Hastings C and Mortiboys H: Mitochondrial abnormalities in Parkinson's disease and Alzheimer's disease: Can mitochondria be targeted therapeutically? Biochem Soc Trans. 46:891–909. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D and Reiter RJ: Mitochondria and chloroplasts as the original sites of melatonin synthesis: A hypothesis related to melatonin's primary function and evolution in eukaryotes. J Pineal Res. 54:127–138. 2013. View Article : Google Scholar | |
Lee JH, Park A, Oh KJ, Lee SC, Kim WK and Bae KH: The role of adipose tissue mitochondria: Regulation of mitochondrial function for the treatment of metabolic diseases. Int J Mol Sci. 20:49242019. View Article : Google Scholar : | |
Wallace DC: Mitochondrial genetic medicine. Nat Genet. 50:1642–1649. 2018. View Article : Google Scholar : PubMed/NCBI | |
Strobbe D and Campanella M: Anxiolytic therapy: A paradigm of successful mitochondrial pharmacology. Trends Pharmacol Sci. 39:437–439. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang XQ, Peng M, Li CX, Zhang Y, Zhang M, Tang Y, Liu MD, Xie BR and Zhang XZ: Real-time imaging of free radicals for mitochondria-targeting hypoxic tumor therapy. Nano Lett. 18:6804–6811. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim HK, Noh YH, Nilius B, Ko KS, Rhee BD, Kim N and Han J: Current and upcoming mitochondrial targets for cancer therapy. Semin Cancer Biol. 47:154–167. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lleonart ME, Grodzicki R, Graifer DM and Lyakhovich A: Mitochondrial dysfunction and potential anticancer therapy. Med Res Rev. 37:1275–1298. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tian J, Huang B, Cui Z, Wang P, Chen S, Yang G and Zhang W: Mitochondria-targeting and ROS-sensitive smart nanoscale supramolecular organic framework for combinational amplified photodynamic therapy and chemotherapy. Acta Biomater. 130:447–459. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kim HJ, Maiti P and Barrientos A: Mitochondrial ribosomes in cancer. Semin Cancer Biol. 47:67–81. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen WW, Freinkman E and Sabatini DM: Rapid immunopurification of mitochondria for metabolite profiling and absolute quantification of matrix metabolites. Nat Protoc. 12:2215–2231. 2017. View Article : Google Scholar | |
Jung HS, Lee JH, Kim K, Koo S, Verwilst P, Sessler JL, Kang C and Kim JS: A mitochondria-targeted cryptocyanine-based photothermogenic photosensitizer. J Am Chem Soc. 139:9972–9978. 2017. View Article : Google Scholar : PubMed/NCBI | |
Roth KG, Mambetsariev I, Kulkarni P and Salgia R: The mitochondrion as an emerging therapeutic target in cancer. Trends Mol Med. 26:119–134. 2020. View Article : Google Scholar : | |
Nash GT, Luo T, Lan G, Ni K, Kaufmann M and Lin W: Nanoscale metal-organic layer isolates phthalocyanines for efficient mitochondria-targeted photodynamic therapy. J Am Chem Soc. 143:2194–2199. 2021. View Article : Google Scholar : PubMed/NCBI | |
Russell OM, Gorman GS, Lightowlers RN and Turnbull DM: Mitochondrial diseases: Hope for the future. Cell. 181:168–188. 2020. View Article : Google Scholar : PubMed/NCBI | |
Saeb-Parsy K, Martin JL, Summers DM, Watson CJE, Krieg T and Murphy MP: Mitochondria as therapeutic targets in transplantation. Trends Mol Med. 27:185–198. 2021. View Article : Google Scholar | |
Kelly B and Pearce EL: Amino assets: How amino acids support immunity. Cell Metab. 32:154–175. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rahman J and Rahman S: Mitochondrial medicine in the omics era. Lancet. 391:2560–2574. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tabish TA and Narayan RJ: Mitochondria-targeted graphene for advanced cancer therapeutics. Acta Biomater. 129:43–56. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yuan P, Deng FA, Liu YB, Zheng RR, Rao XN, Qiu XZ, Zhang DW, Yu XY, Cheng H and Li SY: Mitochondria targeted O2 economizer to alleviate tumor hypoxia for enhanced photodynamic therapy. Adv Healthc Mater. 10:e21001982021. View Article : Google Scholar | |
Ballarò R, Lopalco P, Audrito V, Beltrà M, Pin F, Angelini R, Costelli P, Corcelli A, Bonetto A, Szeto HH, et al: Targeting mitochondria by SS-31 ameliorates the whole body energy status in cancer- and chemotherapy-induced cachexia. Cancers (Basel). 13. pp. 8502021, View Article : Google Scholar | |
Bhatti JS, Tamarai K, Kandimalla R, Manczak M, Yin X, Ramasubramanian B, Sawant N, Pradeepkiran JA, Vijayan M, Kumar S and Reddy PH: Protective effects of a mitochondria-targeted small peptide SS31 against hyperglycemia-induced mitochondrial abnormalities in the liver tissues of diabetic mice, Tallyho/JngJ mice. Mitochondrion. 58:49–58. 2021. View Article : Google Scholar : PubMed/NCBI | |
Deng HF, Yue LX, Wang NN, Zhou YQ, Zhou W, Liu X, Ni YH, Huang CS, Qiu LZ, Liu H, et al: Mitochondrial iron overload-mediated inhibition of Nrf2-HO-1/GPX4 assisted ALI-induced nephrotoxicity. Front Pharmacol. 11:6245292021. View Article : Google Scholar : PubMed/NCBI | |
Le Gal K, Wiel C, Ibrahim MX, Henricsson M, Sayin VI and Bergo MO: Mitochondria-targeted antioxidants MitoQ and MitoTEMPO Do not influence BRAF-driven malignant melanoma and KRAS-driven lung cancer progression in mice. Antioxidants (Basel). 10:1632021. View Article : Google Scholar | |
Bhatti JS, Thamarai K, Kandimalla R, Manczak M, Yin X, Kumar S, Vijayan M and Reddy PH: Mitochondria-targeted small peptide, SS31 ameliorates diabetes induced mitochondrial dynamics in male TallyHO/JngJ mice. Mol Neurobiol. 58:795–808. 2021. View Article : Google Scholar : | |
Grosser JA, Fehrman RL, Keefe D, Redmon M and Nickells RW: The effects of a mitochondrial targeted peptide (elamipretide/SS31) on BAX recruitment and activation during apoptosis. BMC Res Notes. 14:1982021. View Article : Google Scholar : PubMed/NCBI | |
He Y, Chen Z, Zhang R, Quan Z, Xu Y, He B and Ren Y: Mitochondrial-targeted antioxidant peptide SS31 prevents RPE cell death under oxidative stress. Biomed Res Int. 2022:61803492022. View Article : Google Scholar : PubMed/NCBI | |
He Y, Quan Z, Zhang R, He B, Xu Y, Chen Z, Ren Y and Li K: Preparation of targeted mitochondrion nanoscale-release peptides and their efficiency on eukaryotic cells. J Biomed Nanotechnol. 17:1679–1689. 2021. View Article : Google Scholar : PubMed/NCBI | |
He Y, Zhang R, Quan Z, He B, Xu Y, Chen Z, Ren Y and Liu X: Synthesis, characterization, and specific localization of mitochondrial-targeted antioxidant peptide SS31 probe. Biomed Res Int. 2021:99156992021. View Article : Google Scholar : PubMed/NCBI | |
Sun M, Ma J, Ye J, Fan H, Le J and Zhu J: Protective effect of mitochondria-targeted antioxidant peptide SS-31 in sepsis-induced acute kidney injury. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 33:1418–1422. 2021.In Chinese. | |
Zhu Y, Luo M, Bai X, Li J, Nie P, Li B and Luo P: SS-31, a mitochondria-targeting peptide, ameliorates kidney disease. Oxid Med Cell Longev. 2022:12955092022. View Article : Google Scholar : PubMed/NCBI | |
Olgar Y, Billur D, Tuncay E and Turan B: MitoTEMPO provides an antiarrhythmic effect in aged-rats through attenuation of mitochondrial reactive oxygen species. Exp Gerontol. 136:1109612020. View Article : Google Scholar : PubMed/NCBI | |
Tuncer S, Akkoca A, Celen MC and Dalkilic N: Can MitoTEMPO protect rat sciatic nerve against ischemia-reperfusion injury? Naunyn Schmiedebergs Arch Pharmacol. 394:545–553. 2021. View Article : Google Scholar : PubMed/NCBI | |
Vrijsen S, Besora-Casals L, van Veen S, Zielich J, Van den Haute C, Hamouda NN, Fischer C, Ghesquière B, Tournev I, Agostinis P, et al: ATP13A2-mediated endo-lysosomal polyamine export counters mitochondrial oxidative stress. Proc Natl Acad Sci USA. 117:31198–31207. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhao Y, Wang Z, Sun R, Zou B, Li R, Liu D, Lin M, Zhou J, Ning S, et al: Peroxiredoxin 3 inhibits acetaminophen-induced liver pyroptosis through the regulation of mitochondrial ROS. Front Immunol. 12:6527822021. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Zhan J and Yang Z: Enzyme-instructed self-assembly (EISA) and hydrogelation of peptides. Adv Mater. 32:e18057982020. View Article : Google Scholar | |
Liu C, Liu B, Zhao J, Di Z, Chen D, Gu Z, Li L and Zhao Y: Nd3+-sensitized upconversion metal-organic frameworks for mitochondria-targeted amplified photodynamic therapy. Angew Chem Int Ed Engl. 59:2634–2638. 2020. View Article : Google Scholar | |
Lu M, Qu A, Li S, Sun M, Xu L, Kuang H and Xu C: Mitochondria-targeting plasmonic spiky nanorods increase the elimination of aging cells in vivo. Angew Chem Int Ed Engl. 59:8698–8705. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li C, Zhang W, Liu S, Hu X and Xie Z: Mitochondria-targeting organic nanoparticles for enhanced photodynamic/photothermal therapy. ACS Appl Mater Interfaces. 12:30077–30084. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang CX, Cheng Y, Liu DZ, Liu M, Cui H, Zhang BL, Mei QB and Zhou SY: Mitochondria-targeted cyclosporin A delivery system to treat myocardial ischemia reperfusion injury of rats. J Nanobiotechnology. 17:182019. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Zhang J, Tian J, Virzì GM, Digvijay K, Cueto L, Yin Y, Rosner MH and Ronco C: Mitochondria in sepsis-induced AKI. J Am Soc Nephrol. 30:1151–1161. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang G, Chen C, Zhu Y, Liu Z, Xue Y, Zhong S, Wang C, Gao Y and Zhang W: GSH-activatable NIR nanoplatform with mitochondria targeting for enhancing tumor-specific therapy. ACS Appl Mater Interfaces. 11:44961–44969. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gabandé-Rodríguez E, Gómez de Las Heras MM and Mittelbrunn M: Control of inflammation by calorie restriction mimetics: On the crossroad of autophagy and mitochondria. Cells. 9:822019. View Article : Google Scholar | |
Cho H, Cho YY, Shim MS, Lee JY, Lee HS and Kang HC: Mitochondria-targeted drug delivery in cancers. Biochim Biophys Acta Mol Basis Dis. 1866:1658082020. View Article : Google Scholar : PubMed/NCBI | |
Liu K, Zhou Z, Pan M and Zhang L: Stem cell-derived mitochondria transplantation: A promising therapy for mitochondrial encephalomyopathy. CNS Neurosci Ther. 27:733–742. 2021. View Article : Google Scholar : PubMed/NCBI | |
Deng Y, Jia F, Chen X, Jin Q and Ji J: ATP suppression by pH-activated mitochondria-targeted delivery of nitric oxide nanoplatform for drug resistance reversal and metastasis inhibition. Small. 16:e20017472020. View Article : Google Scholar : PubMed/NCBI | |
Gao C, Wang Y, Sun J, Han Y, Gong W, Li Y, Feng Y, Wang H, Yang M, Li Z, et al: Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer's disease mice. Acta Biomater. 108:285–299. 2020. View Article : Google Scholar : PubMed/NCBI | |
Andrieux P, Chevillard C, Cunha-Neto E and Nunes JPS: Mitochondria as a cellular hub in infection and inflammation. Int J Mol Sci. 22:113382021. View Article : Google Scholar : PubMed/NCBI | |
Zeng WN, Yu QP, Wang D, Liu JL, Yang QJ, Zhou ZK and Zeng YP: Mitochondria-targeting graphene oxide nanocomposites for fluorescence imaging-guided synergistic phototherapy of drug-resistant osteosarcoma. J Nanobiotechnology. 19:792021. View Article : Google Scholar : PubMed/NCBI | |
Nam HY, Hong JA, Choi J, Shin S, Cho SK, Seo J and Lee J: Mitochondria-targeting peptoids. Bioconjug Chem. 29:1669–1676. 2018. View Article : Google Scholar : PubMed/NCBI | |
El-Hattab AW, Zarante AM, Almannai M and Scaglia F: Therapies for mitochondrial diseases and current clinical trials. Mol Genet Metab. 122:1–9. 2017. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Chu X, Cui L, Fu S, Gao C, Li Y and Sun B: Neuronal mitochondria-targeted therapy for Alzheimer's disease by systemic delivery of resveratrol using dual-modified novel biomimetic nanosystems. Drug Deliv. 27:502–518. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mohammadinejad R, Moosavi MA, Tavakol S, Vardar DÖ, Hosseini A, Rahmati M, Dini L, Hussain S, Mandegary A and Klionsky DJ: Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy. 15:4–33. 2019. View Article : Google Scholar | |
Vincent AE, Turnbull DM, Eisner V, Hajnóczky G and Picard M: Mitochondrial nanotunnels. Trends Cell Biol. 27:787–799. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu T, Liang X, Liu X, Li Y, Wang Y, Kong L and Tang M: Induction of ferroptosis in response to graphene quantum dots through mitochondrial oxidative stress in microglia. Part Fibre Toxicol. 17:302020. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Shi W, Zeng D, Huang Q, Xie J, Wen H, Li J, Yu X, Qin L and Zhou Y: pH-activated, mitochondria-targeted, and redox-responsive delivery of paclitaxel nanomicelles to overcome drug resistance and suppress metastasis in lung cancer. J Nanobiotechnology. 19:1522021. View Article : Google Scholar : PubMed/NCBI |