1
|
Martel-Pelletier J, Barr AJ, Cicuttini FM,
Conaghan PG, Cooper C, Goldring MB, Goldring SR, Jones G, Teichtahl
AJ and Pelletier JP: Osteoarthritis. Nat Rev Dis Primers.
2:160722016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Loeser RF, Goldring SR, Scanzello CR and
Goldring MB: Osteoarthritis: A disease of the joint as an organ.
Arthritis Rheum. 64:1697–1707. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bijlsma JW, Berenbaum F and Lafeber FP:
Osteoarthritis: An update with relevance for clinical practice.
Lancet. 377:2115–2126. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Glyn-Jones S, Palmer AJR, Agricola R,
Price AJ, Vincent TL, Weinans H and Carr AJ: Osteoarthritis.
Lancet. 386:376–387. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kapoor M, Martel-Pelletier J, Lajeunesse
D, Pelletier JP and Fahmi H: Role of proinflammatory cytokines in
the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 7:33–42.
2011. View Article : Google Scholar
|
6
|
Chow YY and Chin KY: The role of
inflammation in the pathogenesis of osteoarthritis. Mediators
Inflamm. 2020:82939212020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yang B, Kang X, Xing Y, Dou C, Kang F, Li
J, Quan Y and Dong S: Effect of microRNA-145 on IL-1beta-induced
cartilage degradation in human chondrocytes. FEBS Lett.
588:2344–2352. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Eymard F, Pigenet A, Citadelle D,
Flouzat-Lachaniette CH, Poignard A, Benelli C, Berenbaum F,
Chevalier X and Houard X: Induction of an inflammatory and
prodegradative phenotype in autologous fibroblast-like synoviocytes
by the infrapatellar fat pad from patients with knee
osteoarthritis. Arthritis Rheumatol. 66:2165–2174. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tu C, Huang X, Xiao Y, Song M, Ma Y, Yan
J, You H and Wu H: Schisandrin A inhibits the IL-1β-induced
inflammation and cartilage degradation via suppression of MAPK and
NF-κB signal pathways in rat chondrocytes. Front Pharmacol.
10:412019. View Article : Google Scholar
|
10
|
Chabane N, Zayed N, Afif H, Mfuna-Endam L,
Benderdour M, Boileau C, Martel-Pelletier J, Pelletier JP, Duval N
and Fahmi H: Histone deacetylase inhibitors suppress
interleukin-1beta-induced nitric oxide and prostaglandin E2
production in human chondrocytes. Osteoarthritis Cartilage.
16:1267–1274. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Khan NM, Haseeb A, Ansari MY, Devarapalli
P, Haynie S and Haqqi TM: Wogonin, a plant derived small molecule,
exerts potent anti-inflammatory and chondroprotective effects
through the activation of ROS/ERK/Nrf2 signaling pathways in human
Osteoarthritis chondrocytes. Free Radic Biol Med. 106:288–301.
2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Shuai C, Liu G, Yang Y, Qi F, Peng S, Yang
W, He C, Wang G and Qian G: A strawberry-like Ag-decorated barium
titanate enhances piezoelectric and antibacterial activities of
polymer scaffold. Nano Energy. 74:1048252020. View Article : Google Scholar
|
13
|
Shuai C, Xu Y, Feng P, Wang G, Xiong S and
Peng S: Antibacterial polymer scaffold based on mesoporous
bioactive glass loaded with in situ grown silver. Chemical
Engineering J. 374:304–315. 2019. View Article : Google Scholar
|
14
|
Wu H, Zhang M, Li W, Zhu S and Zhang D:
Stachydrine attenuates IL-1beta-induced inflammatory response in
osteoarthritis chondrocytes through the NF-κB signaling pathway.
Chem Biol Interact. 326:1091362020. View Article : Google Scholar
|
15
|
Hu X, Li R, Sun M, Kong Y, Zhu H, Wang F
and Wan Q: Isovitexin depresses osteoarthritis progression via the
Nrf2/NF-kappaB pathway: An in vitro study. J Inflamm Res.
14:1403–1414. 2021. View Article : Google Scholar :
|
16
|
Rigoglou S and Papavassiliou AG: The NF-κB
signalling pathway in osteoarthritis. Int J Biochem Cell Biol.
45:2580–2584. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zeng J, Chen Y, Ding R, Feng L, Fu Z, Yang
S, Deng X, Xie Z and Zheng S: Isoliquiritigenin alleviates early
brain injury after experimental intracerebral hemorrhage via
suppressing ROS- and/or NF-κB-mediated NLRP3 inflammasome
activation by promoting Nrf2 antioxidant pathway. J
Neuroinflammation. 14:1192017. View Article : Google Scholar
|
18
|
Saha S, Buttari B, Panieri E, Profumo E
and Saso L: An overview of Nrf2 signaling pathway and its role in
inflammation. Molecules. 25:54742020. View Article : Google Scholar :
|
19
|
Khan NM, Ahmad I and Haqqi TM: Nrf2/ARE
pathway attenuates oxidative and apoptotic response in human
osteoarthritis chondrocytes by activating ERK1/2/ELK1-P70S6K-P90RSK
signaling axis. Free Radic Biol Med. 116:159–171. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Shao Z, Pan Z, Lin J, Zhao Q, Wang Y, Ni
L, Feng S, Tian N, Wu Y, Sun L, et al: S-allyl cysteine reduces
osteoarthritis pathology in the tert-butyl hydroperoxide-treated
chondrocytes and the destabilization of the medial meniscus model
mice via the Nrf2 signaling pathway. Aging (Albany NY).
12:19254–19272. 2020. View Article : Google Scholar
|
21
|
Cai D, Yin S, Yang J, Jiang Q and Cao W:
Histone deacetylase inhibition activates Nrf2 and protects against
osteoarthritis. Arthritis Res Ther. 17:2692015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wu J, Omene C, Karkoszka J, Bosland M,
Eckard J, Klein CB and Frenkel K: Caffeic acid phenethyl ester
(CAPE), derived from a honeybee product propolis, exhibits a
diversity of anti-tumor effects in pre-clinical models of human
breast cancer. Cancer Lett. 308:43–53. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Murtaza G, Karim S, Akram MR, Khan SA,
Azhar S, Mumtaz A and Asad MHH: Caffeic acid phenethyl ester and
therapeutic potentials. Biomed Res Int. 2014:1453422014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tolba MF, Omar HA, Azab SS, Khalifa AE,
Abdel-Naim AB and Abdel-Rahman SZ: Caffeic acid phenethyl ester: A
review of its antioxidant activity, protective effects against
ischemiareperfusion injury and drug adverse reactions. Crit Rev
Food Sci Nutr. 56:2183–2190. 2016. View Article : Google Scholar
|
25
|
Hao R, Song X, Li F, Tan X, Sun-Waterhouse
D and Li D: Caffeic acid phenethyl ester reversed cadmium-induced
cell death in hippocampus and cortex and subsequent cognitive
disorders in mice: Involvements of AMPK/SIRT1 pathway and
amyloid-tau-neuroinflammation axis. Food Chem Toxicol.
144:1116362020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu M, Li F, Huang Y, Zhou T, Chen S, Li
G, Shi J, Dong N and Xu K: Caffeic acid phenethyl ester ameliorates
calcification by inhibiting activation of the AKT/NF-kappaB/NLRP3
inflammasome pathway in human aortic valve interstitial cells.
Front Pharmacol. 11:8262020. View Article : Google Scholar
|
27
|
Lee HE, Yang G, Kim ND, Jeong S, Jung Y,
Choi JY, Park HH and Lee JY: Targeting ASC in NLRP3 inflammasome by
caffeic acid phenethyl ester: A novel strategy to treat acute gout.
Sci Rep. 6:386222016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Natarajan K, Singh S, Burke TR Jr,
Grunberger D and Aggarwal BB: Caffeic acid phenethyl ester is a
potent and specific inhibitor of activation of nuclear
transcription factor NF-kappa B. Proc Natl Acad Sci USA.
93:9090–9095. 1996. View Article : Google Scholar : PubMed/NCBI
|
29
|
Liang Y, Feng G, Wu L, Zhong S, Gao X,
Tong Y, Cui W, Qin Y, Xu W, Xiao X, et al: Caffeic acid phenethyl
ester suppressed growth and metastasis of nasopharyngeal carcinoma
cells by inactivating the NF-κB pathway. Drug Des Devel Ther.
13:1335–1345. 2019. View Article : Google Scholar :
|
30
|
Lim KM, Bae S, Koo JE, Kim ES, Bae ON and
Lee JY: Suppression of skin inflammation in keratinocytes and
acute/chronic disease models by caffeic acid phenethyl ester. Arch
Dermatol Res. 307:219–227. 2015. View Article : Google Scholar
|
31
|
Morroni F, Sita G, Graziosi A, Turrini E,
Fimognari C, Tarozzi A and Hrelia P: Neuroprotective effect of
caffeic acid phenethyl ester in A mouse model of Alzheimer's
disease involves Nrf2/HO-1 pathway. Aging Dis. 9:605–622. 2018.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Khan MN, Lane ME, McCarron PA and
Tambuwala MM: Caffeic acid phenethyl ester is protective in
experimental ulcerative colitis via reduction in levels of
pro-inflammatory mediators and enhancement of epithelial barrier
function. Inflammopharmacology. 26:561–569. 2018. View Article : Google Scholar :
|
33
|
Elmali N, Ayan I, Türköz Y, Mizrak B,
Germen B and Bora A: Effect of caffeic acid phenethyl ester on
cartilage in experimental osteoarthritis. Rheumatol Int.
22:222–226. 2002. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lu H, Fu C, Kong S, Wang X, Sun L, Lin Z,
Luo P and Jin H: Maltol prevents the progression of osteoarthritis
by targeting PI3K/Akt/NF-κB pathway: In vitro and in vivo studies.
J Cell Mol Med. 25:499–509. 2021. View Article : Google Scholar
|
35
|
Glasson SS, Blanchet TJ and Morris EA: The
surgical destabilization of the medial meniscus (DMM) model of
osteoarthritis in the 129/SvEv mouse. Osteoarthritis Cartilage.
15:1061–1069. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
37
|
Glasson SS, Chambers MG, Van Den Berg WB
and Little CB: The OARSI histopathology initiative-recommendations
for histological assessments of osteoarthritis in the mouse.
Osteoarthritis Cartilage. 18(Suppl 3): pp. S17–S23. 2010,
View Article : Google Scholar
|
38
|
Gu M, Jin J, Ren C, Chen X, Gao W, Wang X,
Wu Y, Tian N, Pan Z, Wu A, et al: Akebia Saponin D suppresses
inflammation in chondrocytes via the NRF2/HO-1/NF-κB axis and
ameliorates osteoarthritis in mice. Food Funct. 11:10852–10863.
2020. View Article : Google Scholar : PubMed/NCBI
|
39
|
da Costa BR, Reichenbach S, Keller N,
Nartey L, Wandel S, Jüni P and Trelle S: Effectiveness of
non-steroidal anti-inflammatory drugs for the treatment of pain in
knee and hip osteoarthritis: A network meta-analysis. Lancet.
390:e21–e33. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Berenbaum F: Osteoarthritis as an
inflammatory disease (osteoarthritis is not osteoarthrosis!).
Osteoarthritis Cartilage. 21:16–21. 2013. View Article : Google Scholar
|
41
|
Deligiannidou GE, Papadopoulos RE,
Kontogiorgis C, Detsi A, Bezirtzoglou E and Constantinides T:
Unraveling natural products' role in osteoarthritis management-an
overview. Antioxidants (Basel). 9:3482020. View Article : Google Scholar
|
42
|
Balaha M, Filippis BD, Cataldi A and di
Giacomo V: CAPE and neuroprotection: A review. Biomolecules.
11:1762021. View Article : Google Scholar : PubMed/NCBI
|
43
|
Menezes da Silveira CCS, Luz DA, da Silva
CCS, Prediger RDS, Martins MD, Martins MAT, Fontes-Júnior EA and
Maia CSF: Propolis: A useful agent on psychiatric and neurological
disorders? A focus on CAPE and pinocembrin components. Med Res Rev.
41:1195–1215. 2021. View Article : Google Scholar
|
44
|
Murtaza G, Sajjad A, Mehmood Z, Shah SH
and Siddiqi AR: Possible molecular targets for therapeutic
applications of caffeic acid phenethyl ester in inflammation and
cancer. J Food Drug Anal. 23:11–18. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Liu-Bryan R and Terkeltaub R: Emerging
regulators of the inflammatory process in osteoarthritis. Nat Rev
Rheumatol. 11:35–44. 2015. View Article : Google Scholar :
|
46
|
Toyoda T, Tsukamoto T, Takasu S, Shi L,
Hirano N, Ban H, Kumagai T and Tatematsu M: Anti-inflammatory
effects of caffeic acid phenethyl ester (CAPE), a nuclear
factor-kappaB inhibitor, on Helicobacter pylori-induced gastritis
in Mongolian gerbils. Int J Cancer. 125:1786–1795. 2009. View Article : Google Scholar : PubMed/NCBI
|
47
|
Dai G, Jiang Z, Sun B, Liu C, Meng Q, Ding
K, Jing W and Ju W: Caffeic acid phenethyl ester prevents
colitis-associated cancer by inhibiting NLRP3 inflammasome. Front
Oncol. 10:7212020. View Article : Google Scholar : PubMed/NCBI
|
48
|
Guilak F, Nims RJ, Dicks A, Wu CL and
Meulenbelt I: Osteoarthritis as a disease of the cartilage
pericellular matrix. Matrix Biol. 71-72:40–50. 2018. View Article : Google Scholar : PubMed/NCBI
|
49
|
Lu G, Li L, Wang B and Kuang L:
LINC00623/miR-101/HRAS axis modulates IL-1β-mediated ECM
degradation, apoptosis and senescence of osteoarthritis
chondrocytes. Aging (Albany NY). 12:3218–3237. 2020. View Article : Google Scholar
|
50
|
Boehme KA and Rolauffs B: Onset and
progression of human osteoarthritis-can growth factors,
inflammatory cytokines, or differential mirna expression
concomitantly induce proliferation, ECM degradation, and
inflammation in articular cartilage? Int J Mol Sci. 19:22822018.
View Article : Google Scholar
|
51
|
Rahmati M, Nalesso G, Mobasheri A and
Mozafari M: Aging and osteoarthritis: Central role of the
extracellular matrix. Ageing Res Rev. 40:20–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
52
|
Choi MC, Jo J, Park J, Kang HK and Park Y:
NF-κB signaling pathways in osteoarthritic cartilage destruction.
Cells. 8:7342019. View Article : Google Scholar
|
53
|
Lepetsos P, Papavassiliou KA and
Papavassiliou AG: Redox and NF-κB signaling in osteoarthritis. Free
Radic Biol Med. 132:90–100. 2019. View Article : Google Scholar
|
54
|
Saito T and Tanaka S: Molecular mechanisms
underlying osteoarthritis development: Notch and NF-κB. Arthritis
Res Ther. 19:942017. View Article : Google Scholar
|
55
|
Tonelli C, Chio IIC and Tuveson DA:
Transcriptional regulation by Nrf2. Antioxid Redox Signal.
29:1727–1745. 2018. View Article : Google Scholar :
|
56
|
Sivandzade F, Prasad S, Bhalerao A and
Cucullo L: NRF2 and NF-B interplay in cerebrovascular and
neurodegenerative disorders: Molecular mechanisms and possible
therapeutic approaches. Redox Biol. 21:1010592019. View Article : Google Scholar
|
57
|
Lee Y, Shin DH, Kim JH, Hong S, Choi D,
Kim YJ, Kwak MK and Jung Y: Caffeic acid phenethyl ester-mediated
Nrf2 activation and IkappaB kinase inhibition are involved in
NFkappaB inhibitory effect: Structural analysis for NFkappaB
inhibition. Eur J Pharmacol. 643:21–28. 2010. View Article : Google Scholar : PubMed/NCBI
|
58
|
Alcaraz MJ and Ferrandiz ML: Relevance of
Nrf2 and heme oxygenase-1 in articular diseases. Free Radic Biol
Med. 157:83–93. 2020. View Article : Google Scholar
|
59
|
Chen X, Huang C, Sun H, Hong H, Jin J, Bei
C, Lu Z and Zhang X: Puerarin suppresses inflammation and ECM
degradation through Nrf2/HO-1 axis in chondrocytes and alleviates
pain symptom in osteoarthritic mice. Food Funct. 12:2075–2089.
2021. View Article : Google Scholar : PubMed/NCBI
|
60
|
Li JW, Wang RL, Xu J, Sun KY, Jiang HM,
Sun ZY, Lv ZY, Xu XQ, Wu R, Guo H, et al: Methylene blue prevents
osteoarthritis progression and relieves pain in rats via
upregulation of Nrf2/PRDX1. Acta Pharmacol Sin. 43:417–428. 2022.
View Article : Google Scholar :
|
61
|
Kim H, Kim W, Yum S, Hong S, Oh JE, Lee
JW, Kwak MK, Park EJ, Na DH and Jung Y: Caffeic acid phenethyl
ester activation of Nrf2 pathway is enhanced under oxidative state:
Structural analysis and potential as a pathologically targeted
therapeutic agent in treatment of colonic inflammation. Free Radic
Biol Med. 65:552–562. 2013. View Article : Google Scholar : PubMed/NCBI
|
62
|
Stahli A, Maheen CU, Strauss FJ, Eick S,
Sculean A and Gruber R: Caffeic acid phenethyl ester protects
against oxidative stress and dampens inflammation via heme
oxygenase 1. Int J Oral Sci. 11:62019. View Article : Google Scholar : PubMed/NCBI
|
63
|
Li M, Wang XF, Shi JJ, Li YP, Yang N, Zhai
S and Dang SS: Caffeic acid phenethyl ester inhibits liver fibrosis
in rats. World J Gastroenterol. 21:3893–3903. 2015. View Article : Google Scholar : PubMed/NCBI
|
64
|
Bellezza I, Giambanco I, Minelli A and
Donato R: Nrf2-Keap1 signaling in oxidative and reductive stress.
Biochim Biophys Acta Mol Cell Res. 1865:721–733. 2018. View Article : Google Scholar : PubMed/NCBI
|
65
|
Pichler KM, Weinmann D, Schmidt S, Kubista
B, Lass R, Martelanz L, Alphonsus J, Windhager R, Gabius HJ and
Toegel S: The dysregulated galectin network activates nf-kappaB to
induce disease markers and matrix degeneration in 3D pellet
cultures of osteoarthritic chondrocytes. Calcif Tissue Int.
108:377–390. 2021. View Article : Google Scholar
|
66
|
Wang Y, Li DL, Zhang XB, Duan YH, Wu ZH,
Hao DS, Chen BS and Qiu GX: Increase of TNFalpha-stimulated
osteoarthritic chondrocytes apoptosis and decrease of matrix
metalloproteinases 9 by NF-κB inhibition. Biomed Environ Sci.
26:277–283. 2013.PubMed/NCBI
|