The impact of diet upon mitochondrial physiology (Review)
- Authors:
- Ioannis D. Kyriazis
- Eleni Vassi
- Maria Alvanou
- Christos Angelakis
- Zoi Skaperda
- Fotios Tekos
- Venkata Naga Srikanth Garikipati
- Demetrios A. Spandidos
- Demetrios Kouretas
-
Affiliations: Laboratory of Animal Physiology, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece, Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece - Published online on: September 16, 2022 https://doi.org/10.3892/ijmm.2022.5191
- Article Number: 135
-
Copyright: © Kyriazis et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Jornayvaz FR and Shulman GI: Regulation of mitochondrial biogenesis. Essays Biochem. 47:69–84. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dorn GW II, Vega RB and Kelly DP: Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev. 29:1981–1991. 2015. View Article : Google Scholar : PubMed/NCBI | |
Qiu Z, Wei Y, Song Q, Du B, Wang H, Chu Y and Hu Y: The role of myocardial mitochondrial quality control in heart failure. Front Pharmacol. 10:14042019. View Article : Google Scholar : PubMed/NCBI | |
Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, et al: CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature. 413:179–183. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Huang X, Feng Y, Handschin C, Feng Y, Gullicksen PS, Bare O, Labow M, Spiegelman B and Stevenson SC: Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1alpha transcription and mitochondrial biogenesis in muscle cells. Proc Natl Acad Sci USA. 103:14379–14384. 2006. View Article : Google Scholar : PubMed/NCBI | |
Au HC and Scheffler IE: Promoter analysis of the human succinate dehydrogenase iron-protein gene-both nuclear respiratory factors NRF-1 and NRF-2 are required. Eur J Biochem. 251:164–174. 1998. View Article : Google Scholar : PubMed/NCBI | |
Scarpulla RC: Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta. 1576:1–14. 2002. View Article : Google Scholar : PubMed/NCBI | |
Goffart S and Wiesner RJ: Regulation and co-ordination of nuclear gene expression during mitochondrial biogenesis. Exp Physiol. 88:33–40. 2003. View Article : Google Scholar : PubMed/NCBI | |
Vega RB, Huss JM and Kelly DP: The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol. 20:1868–1876. 2000. View Article : Google Scholar : PubMed/NCBI | |
Puigserver P, Wu Z, Park CW, Graves R, Wright M and Spiegelman BM: A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 92:829–839. 1998. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC and Spiegelman BM: Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 98:115–124. 1999. View Article : Google Scholar : PubMed/NCBI | |
Handschin C, Rhee J, Lin J, Tarr PT and Spiegelman BM: An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci USA. 100:7111–7116. 2003. View Article : Google Scholar : PubMed/NCBI | |
Akimoto T, Sorg BS and Yan Z: Real-time imaging of peroxisome proliferator-activated receptor-gamma coactivator-1alpha promoter activity in skeletal muscles of living mice. Am J Physiol Cell Physiol. 287:C790–C796. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ and Shulman GI: AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci USA. 99:15983–15987. 2002. View Article : Google Scholar : PubMed/NCBI | |
Daitoku H, Sakamaki J and Fukamizu A: Regulation of FoxO transcription factors by acetylation and protein-protein interactions. Biochim Biophys Acta. 1813:1954–1960. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM and Puigserver P: Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 434:113–118. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liu YJ, McIntyre RL, Janssens GE and Houtkooper RH: Mitochondrial fission and fusion: A dynamic role in aging and potential target for age-related disease. Mech Ageing Dev. 186:1112122020. View Article : Google Scholar : PubMed/NCBI | |
Tilokani L, Nagashima S, Paupe V and Prudent J: Mitochondrial dynamics: Overview of molecular mechanisms. Essays Biochem. 62:341–360. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mitra K, Wunder C, Roysam B, Lin G and Lippincott-Schwartz J: A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc Natl Acad Sci USA. 106:11960–11965. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sharma A, Ahmad S, Ahmad T, Ali S and Syed MA: Mitochondrial dynamics and mitophagy in lung disorders. Life Sci. 284:1198762021. View Article : Google Scholar : PubMed/NCBI | |
Margineantu DH, Gregory Cox W, Sundell L, Sherwood SW, Beechem JM and Capaldi RA: Cell cycle dependent morphology changes and associated mitochondrial DNA redistribution in mitochondria of human cell lines. Mitochondrion. 1:425–435. 2002. View Article : Google Scholar | |
Mitra K: Mitochondrial fission-fusion as an emerging key regulator of cell proliferation and differentiation. Bioessays. 35:955–964. 2013. View Article : Google Scholar : PubMed/NCBI | |
Amiri M and Hollenbeck PJ: Mitochondrial biogenesis in the axons of vertebrate peripheral neurons. Dev Neurobiol. 68:1348–1361. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mizushima N: Autophagy: Process and function. Genes Dev. 21:2861–2873. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bursch W, Ellinger A, Kienzl H, Török L, Pandey S, Sikorska M, Walker R and Hermann RS: Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: The role of autophagy. Carcinogenesis. 17:1595–1607. 1996. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Strandberg L and Lenardo MJ: The selectivity of autophagy and its role in cell death and survival. Autophagy. 4:567–573. 2008. View Article : Google Scholar : PubMed/NCBI | |
Petrovski G and Das DK: Does autophagy take a front seat in lifespan extension? J Cell Mol Med. 14:2543–2551. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Kroemer G and Kepp O: Mitophagy: An emerging role in aging and age-associated diseases. Front Cell Dev Biol. 8:2002020. View Article : Google Scholar : PubMed/NCBI | |
Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M and Ohsumi Y: A unified nomenclature for yeast autophagy-related genes. Dev Cell. 5:539–545. 2003. View Article : Google Scholar : PubMed/NCBI | |
Nakatogawa H, Suzuki K, Kamada Y and Ohsumi Y: Dynamics and diversity in autophagy mechanisms: Lessons from yeast. Nat Rev Mol Cell Biol. 10:458–467. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rogov VV, Suzuki H, Marinković M, Lang V, Kato R, Kawasaki M, Buljubašić M, Šprung M, Rogova N, Wakatsuki S, et al: Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins. Sci Rep. 7:11312017. View Article : Google Scholar : PubMed/NCBI | |
Ding WX, Ni HM, Li M, Liao Y, Chen X, Stolz DB, Dorn GW II and Yin XM: Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J Biol Chem. 285:27879–27890. 2010. View Article : Google Scholar : PubMed/NCBI | |
Springer W and Kahle PJ: Regulation of PINK1-Parkin-mediated mitophagy. Autophagy. 7:266–278. 2011. View Article : Google Scholar | |
Itakura E, Kishi-Itakura C, Koyama-Honda I and Mizushima N: Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J Cell Sci. 125:1488–1499. 2012.PubMed/NCBI | |
Chaanine AH, Kohlbrenner E, Gamb SI, Guenzel AJ, Klaus K, Fayyaz AU, Nair KS, Hajjar RJ and Redfield MM: FOXO3a regulates BNIP3 and modulates mitochondrial calcium, dynamics, and function in cardiac stress. Am J Physiol Heart Circ Physiol. 311:H1540–H1559. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, et al: FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 6:458–471. 2007. View Article : Google Scholar : PubMed/NCBI | |
Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, et al: Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27:433–446. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tait SW and Green DR: Mitochondria and cell signalling. J Cell Sci. 125:807–815. 2012. View Article : Google Scholar : PubMed/NCBI | |
Navale AM and Paranjape AN: Glucose transporters: Physiological and pathological roles. Biophys Rev. 8:5–9. 2016. View Article : Google Scholar : PubMed/NCBI | |
McCommis KS and Finck BN: Mitochondrial pyruvate transport: A historical perspective and future research directions. Biochem J. 466:443–454. 2015. View Article : Google Scholar : PubMed/NCBI | |
Glancy B, Kane DA, Kavazis AN, Goodwin ML, Willis WT and Gladden LB: Mitochondrial lactate metabolism: History and implications for exercise and disease. J Physiol. 599:863–888. 2021. View Article : Google Scholar | |
Yoo HC, Yu YC, Sung Y and Han JM: Glutamine reliance in cell metabolism. Exp Mol Med. 52:1496–1516. 2020. View Article : Google Scholar : PubMed/NCBI | |
Stefano GB, Challenger S and Kream RM: Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders. Eur J Nutr. 55:2339–2345. 2016. View Article : Google Scholar : PubMed/NCBI | |
Melser S, Lavie J and Bénard G: Mitochondrial degradation and energy metabolism. Biochim Biophys Acta. 1853:2812–2821. 2015. View Article : Google Scholar : PubMed/NCBI | |
King KL, Stanley WC, Rosca M, Kerner J, Hoppel CL and Febbraio M: Fatty acid oxidation in cardiac and skeletal muscle mitochondria is unaffected by deletion of CD36. Arch Biochem Biophys. 467:234–238. 2007. View Article : Google Scholar : PubMed/NCBI | |
Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E and Sul HS: Regulation of lipolysis in adipocytes. Annu Rev Nutr. 27:79–101. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lodhi IJ and Semenkovich CF: Peroxisomes: A nexus for lipid metabolism and cellular signaling. Cell Metab. 19:380–392. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fillmore N and Lopaschuk GD: Targeting mitochondrial oxidative metabolism as an approach to treat heart failure. Biochim Biophys Acta. 1833:857–865. 2013. View Article : Google Scholar | |
Aon MA, Bhatt N and Cortassa SC: Mitochondrial and cellular mechanisms for managing lipid excess. Front Physiol. 5:2822014. View Article : Google Scholar : PubMed/NCBI | |
Carley AN, Taegtmeyer H and Lewandowski ED: Matrix revisited: Mechanisms linking energy substrate metabolism to the function of the heart. Circ Res. 114:717–729. 2014. View Article : Google Scholar : PubMed/NCBI | |
Keys A, Menotti A, Karvonen MJ, Aravanis C, Blackburn H, Buzina R, Djordjevic BS, Dontas AS, Fidanza F, Keys MH, et al: The diet and 15-year death rate in the seven countries study. Am J Epidemiol. 124:903–915. 1986. View Article : Google Scholar : PubMed/NCBI | |
Schwingshackl L and Hoffmann G: Comparison of effects of long-term low-fat vs high-fat diets on blood lipid levels in over-weight or obese patients: A systematic review and meta-analysis. J Acad Nutr Diet. 113:1640–1661. 2013. View Article : Google Scholar : PubMed/NCBI | |
Casper RC, Sullivan EL and Tecott L: Relevance of animal models to human eating disorders and obesity. Psychopharmacology (Berl). 199:313–329. 2008. View Article : Google Scholar | |
Della Vedova MC, Muñoz MD, Santillan LD, Plateo-Pignatari MG, Germanó MJ, Rinaldi Tosi ME, Garcia S, Gomez NN, Fornes MW, Gomez Mejiba SE and Ramirez DC: A mouse model of diet-induced obesity resembling most features of human metabolic syndrome. Nutr Metab Insights. 9:93–102. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schrauwen P, Schrauwen-Hinderling V, Hoeks J and Hesselink MK: Mitochondrial dysfunction and lipotoxicity. Biochim Biophys Acta. 1801:266–271. 2010. View Article : Google Scholar | |
Jo J, Gavrilova O, Pack S, Jou W, Mullen S, Sumner AE, Cushman SW and Periwal V: Hypertrophy and/or hyperplasia: Dynamics of adipose tissue growth. PLoS Comput Biol. 5:e10003242009. View Article : Google Scholar : PubMed/NCBI | |
Yang A and Mottillo EP: Adipocyte lipolysis: From molecular mechanisms of regulation to disease and therapeutics. Biochem J. 477:985–1008. 2020. View Article : Google Scholar : PubMed/NCBI | |
Carracedo A, Cantley LC and Pandolfi PP: Cancer metabolism: Fatty acid oxidation in the limelight. Nat Rev Cancer. 13:227–232. 2013. View Article : Google Scholar : PubMed/NCBI | |
Roy C, Paglialunga S, Fisette A, Schrauwen P, Moonen-Kornips E, St-Onge J, Hesselink MK, Richard D, Joanisse DR and Cianflone K: Shift in metabolic fuel in acylation-stimulating protein-deficient mice following a high-fat diet. Am J Physiol Endocrinol Metab. 294:E1051–E1059. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Tao S, Li X and Yao Q: Resistin destroys mitochondrial biogenesis by inhibiting the PGC-1α/NRF1/TFAM signaling pathway. Biochem Biophys Res Commun. 504:13–18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Blanquer-Rosselló MM, Santandreu FM, Oliver J, Roca P and Valle A: Leptin modulates mitochondrial function, dynamics and biogenesis in MCF-7 cells. J Cell Biochem. 116:2039–2048. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yamauchi T and Kadowaki T: Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases. Int J Obes (Lond). 32(Suppl 7): S13–S18. 2008. View Article : Google Scholar | |
Ouchi N, Parker JL, Lugus JJ and Walsh K: Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 11:85–97. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cantó C and Auwerx J: PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol. 20:98–105. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sparks LM, Xie H, Koza RA, Mynatt R, Hulver MW, Bray GA and Smith SR: A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes. 54:1926–1933. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Li X, Zhang L, Zhu M and Gao L: A high-fat diet impairs mitochondrial biogenesis, mitochondrial dynamics, and the respiratory chain complex in rat myocardial tissues. J Cell Biochem. 119:96022018. View Article : Google Scholar : PubMed/NCBI | |
Kang KW, Kim OS, Chin JY, Kim WH, Park SH, Choi YJ, Shin JH, Jung KT, Lim DS and Lee SK: Diastolic dysfunction induced by a high-fat diet is associated with mitochondrial abnormality and adenosine triphosphate levels in rats. Endocrinol Metab (Seoul). 30:557–568. 2015. View Article : Google Scholar | |
Turner N, Bruce CR, Beale SM, Hoehn KL, So T, Rolph MS and Cooney GJ: Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: Evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes. 56:2085–2092. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hancock CR, Han DH, Chen M, Terada S, Yasuda T, Wright DC and Holloszy JO: High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci USA. 105:7815–7820. 2008. View Article : Google Scholar : PubMed/NCBI | |
Battiprolu PK, Hojayev B, Jiang N, Wang ZV, Luo X, Iglewski M, Shelton JM, Gerard RD, Rothermel BA, Gillette TG, et al: Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice. J Clin Invest. 122:1109–1118. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kyriazis ID, Hoffman M, Gaignebet L, Lucchese AM, Markopoulou E, Palioura D, Wang C, Bannister TD, Christofidou-Solomidou M, Oka SI, et al: KLF5 is induced by FOXO1 and causes oxidative stress and diabetic cardiomyopathy. Circ Res. 128:335–357. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li N, Li HP, Zhang BY, Zhang L, Shen JM and Li QY: Effect of high-fat diet on respiratory function and diaphragm fibers in mice and its mitochondrial mechanism. Zhonghua Yi Xue Za Zhi. 101:2893–2899. 2021.In Chinese. PubMed/NCBI | |
Kang YS, Seong D, Kim JC and Kim SH: Low-intensity exercise training additionally increases mitochondrial dynamics caused by high-fat diet (HFD) but has no additional effect on mitochondrial biogenesis in fast-twitch muscle by HFD. Int J Environ Res Public Health. 17:54612020. View Article : Google Scholar : | |
Heo JW, No MH, Cho J, Choi Y, Cho EJ, Park DH, Kim TW, Kim CJ, Seo DY, Han J, et al: Moderate aerobic exercise training ameliorates impairment of mitochondrial function and dynamics in skeletal muscle of high-fat diet-induced obese mice. FASEB J. 35:e213402021. View Article : Google Scholar : PubMed/NCBI | |
Tarpey MD, Davy KP, McMillan RP, Bowser SM, Halliday TM, Boutagy NE, Davy BM, Frisard MI and Hulver MW: Skeletal muscle autophagy and mitophagy in endurance-trained runners before and after a high-fat meal. Mol Metab. 6:1597–1609. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tong M, Saito T, Zhai P, Oka SI, Mizushima W, Nakamura M, Ikeda S, Shirakabe A and Sadoshima J: Mitophagy is essential for maintaining cardiac function during high fat diet-induced diabetic cardiomyopathy. Circ Res. 124:1360–1371. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shao D, Kolwicz SC Jr, Wang P, Roe ND, Villet O, Nishi K, Hsu YA, Flint GV, Caudal A, Wang W, et al: Increasing fatty acid oxidation prevents high-fat diet-induced cardiomyopathy through regulating parkin-mediated mitophagy. Circulation. 142:983–997. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rous P: The influence of diet on transplanted and spontaneous mouse tumors. J Exp Med. 20:433–451. 1914. View Article : Google Scholar : PubMed/NCBI | |
Fontana L and Partridge L: Promoting health and longevity through diet: From model organisms to humans. Cell. 161:106–118. 2015. View Article : Google Scholar : PubMed/NCBI | |
Holloszy JO and Fontana L: Caloric restriction in humans. Exp Gerontol. 42:709–712. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pignatti C, D'Adamo S, Stefanelli C, Flamigni F and Cetrullo S: Nutrients and pathways that regulate health span and life span. Geriatrics (Basel). 5:952020. View Article : Google Scholar | |
Ruetenik A and Barrientos A: Dietary restriction, mitochondrial function and aging: From yeast to humans. Biochim Biophys Acta. 1847:1434–1447. 2015. View Article : Google Scholar : PubMed/NCBI | |
Comfort A: Effect of delayed and resumed growth on the longevity of a fish (lebistes reticulatus, peters) in captivity. Gerontologia. 49:150–155. 1963. View Article : Google Scholar : PubMed/NCBI | |
Romey-Glüsing R, Li Y, Hoffmann J, von Frieling J, Knop M, Pfefferkorn R, Bruchhaus I, Fink C and Roeder T: Nutritional regimens with periodically recurring phases of dietary restriction extend lifespan in Drosophila. FASEB J. 32:1993–2003. 2018. View Article : Google Scholar | |
Colman RJ, Beasley TM, Kemnitz JW, Johnson SC, Weindruch R and Anderson RM: Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun. 5:35572014. View Article : Google Scholar : PubMed/NCBI | |
Seyfried TN: Ketone strong: Emerging evidence for a therapeutic role of ketone bodies in neurological and neurodegenerative diseases. J Lipid Res. 55:1815–1817. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA and Sartorelli V: Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell. 14:661–673. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xiong S, Salazar G, Patrushev N and Alexander RW: FoxO1 mediates an autofeedback loop regulating SIRT1 expression. J Biol Chem. 286:5289–5299. 2011. View Article : Google Scholar : | |
López-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, Cascajo MV, Allard J, Ingram DK, Navas P and de Cabo R: Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci USA. 103:1768–1773. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hempenstall S, Page MM, Wallen KR and Selman C: Dietary restriction increases skeletal muscle mitochondrial respiration but not mitochondrial content in C57BL/6 mice. Mech Ageing Dev. 133:37–45. 2012. View Article : Google Scholar : PubMed/NCBI | |
Palacios OM, Carmona JJ, Michan S, Chen KY, Manabe Y, Ward JL III, Goodyear LJ and Tong Q: Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging (Albany NY). 1:771–783. 2009. View Article : Google Scholar | |
Picca A, Pesce V, Fracasso F, Joseph AM, Leeuwenburgh C and Lezza AM: Aging and calorie restriction oppositely affect mitochondrial biogenesis through TFAM binding at both origins of mitochondrial DNA replication in rat liver. PLoS One. 8:e746442013. View Article : Google Scholar : PubMed/NCBI | |
Zhu M, Miura J, Lu LX, Bernier M, DeCabo R, Lane MA, Roth GS and Ingram DK: Circulating adiponectin levels increase in rats on caloric restriction: The potential for insulin sensitization. Exp Gerontol. 39:1049–1059. 2004. View Article : Google Scholar : PubMed/NCBI | |
Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, Smith SR and Ravussin E; CALERIE Pennington Team: Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 4:e762007. View Article : Google Scholar : PubMed/NCBI | |
Herzig S and Shaw RJ: AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 19:121–135. 2018. View Article : Google Scholar : | |
López-Lluch G and Navas P: Calorie restriction as an intervention in ageing. J Physiol. 594:2043–2060. 2016. View Article : Google Scholar : | |
Feldman JL, Dittenhafer-Reed KE and Denu JM: Sirtuin catalysis and regulation. J Biol Chem. 287:42419–42427. 2012. View Article : Google Scholar : PubMed/NCBI | |
Desai VG, Weindruch R, Hart RW and Feuers RJ: Influences of age and dietary restriction on gastrocnemius electron transport system activities in mice. Arch Biochem Biophys. 333:145–151. 1996. View Article : Google Scholar : PubMed/NCBI | |
Hepple RT, Baker DJ, McConkey M, Murynka T and Norris R: Caloric restriction protects mitochondrial function with aging in skeletal and cardiac muscles. Rejuvenation Res. 9:219–222. 2006. View Article : Google Scholar : PubMed/NCBI | |
Colom B, Oliver J, Roca P and Garcia-Palmer FJ: Caloric restriction and gender modulate cardiac muscle mitochondrial H2O2 production and oxidative damage. Cardiovasc Res. 74:456–465. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hepple RT, Baker DJ, Kaczor JJ and Krause DJ: Long-term caloric restriction abrogates the age-related decline in skeletal muscle aerobic function. FASEB J. 19:1320–1322. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sreekumar R, Unnikrishnan J, Fu A, Nygren J, Short KR, Schimke J, Barazzoni R and Nair KS: Effects of caloric restriction on mitochondrial function and gene transcripts in rat muscle. Am J Physiol Endocrinol Metab. 283:E38–E43. 2002. View Article : Google Scholar : PubMed/NCBI | |
Drew B, Phaneuf S, Dirks A, Selman C, Gredilla R, Lezza A, Barja G and Leeuwenburgh C: Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart. Am J Physiol Regul Integr Comp Physiol. 284:R474–R480. 2003. View Article : Google Scholar | |
Lam YY, Ghosh S, Civitarese AE and Ravussin E: Six-month calorie restriction in overweight individuals elicits transcriptomic response in subcutaneous adipose tissue that is distinct from effects of energy deficit. J Gerontol A Biol Sci Med Sci. 71:1258–1265. 2016. View Article : Google Scholar | |
Menshikova EV, Ritov VB, Dube JJ, Amati F, Stefanovic-Racic M, Toledo FGS, Coen PM and Goodpaster BH: Calorie restriction-induced weight loss and exercise have differential effects on skeletal muscle mitochondria despite similar effects on insulin sensitivity. J Gerontol A Biol Sci Med Sci. 73:81–87. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bagherniya M, Butler AE, Barreto GE and Sahebkar A: The effect of fasting or calorie restriction on autophagy induction: A review of the literature. Ageing Res Rev. 47:183–197. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gutiérrez-Casado E, Khraiwesh H, López-Domínguez JA, Montero-Guisado J, López-Lluch G, Navas P, de Cabo R, Ramsey JJ, González-Reyes JA and Villalba JM: The impact of aging, calorie restriction and dietary fat on autophagy markers and mitochondrial ultrastructure and dynamics in mouse skeletal muscle. J Gerontol A Biol Sci Med Sci. 74:760–769. 2019. View Article : Google Scholar : | |
Cui J, Shi S, Sun X, Cai G, Cui S, Hong Q, Chen X and Bai XY: Mitochondrial autophagy involving renal injury and aging is modulated by caloric intake in aged rat kidneys. PLoS One. 8:e697202013. View Article : Google Scholar : PubMed/NCBI | |
Kim I and Lemasters JJ: Mitochondrial degradation by autophagy (mitophagy) in GFP-LC3 transgenic hepatocytes during nutrient deprivation. Am J Physiol Cell Physiol. 300:C308–C317. 2011. View Article : Google Scholar : | |
Rodríguez-López S, López-Bellón S, González-Reyes JA, Burón MI, de Cabo R and Villalba JM: Mitochondrial adaptations in liver and skeletal muscle to pro-longevity nutritional and genetic interventions: The crosstalk between calorie restriction and CYB5R3 overexpression in transgenic mice. Geroscience. 42:977–994. 2020. View Article : Google Scholar : PubMed/NCBI | |
Faitg J, Leduc-Gaudet JP, Reynaud O, Ferland G, Gaudreau P and Gouspillou G: Effects of aging and caloric restriction on fiber type composition, mitochondrial morphology and dynamics in rat oxidative and glycolytic muscles. Front Physiol. 10:4202019. View Article : Google Scholar : PubMed/NCBI | |
Khraiwesh H, López-Domínguez JA, Fernández del Río L, Gutierrez-Casado E, López-Lluch G, Navas P, de Cabo R, Ramsey JJ, Burón MI, Villalba JM and González-Reyes JA: Mitochondrial ultrastructure and markers of dynamics in hepatocytes from aged, calorie restricted mice fed with different dietary fats. Exp Gerontol. 56:77–88. 2014. View Article : Google Scholar : PubMed/NCBI | |
Khraiwesh H, López-Domínguez JA, López-Lluch G, Navas P, de Cabo R, Ramsey JJ, Villalba JM and González-Reyes JA: Alterations of ultrastructural and fission/fusion markers in hepatocyte mitochondria from mice following calorie restriction with different dietary fats. J Gerontol A Biol Sci Med Sci. 68:1023–1034. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kitaoka Y, Nakazato K and Ogasawara R: Combined effects of resistance training and calorie restriction on mitochondrial fusion and fission proteins in rat skeletal muscle. J Appl Physiol (1985). 121:806–810. 2016. View Article : Google Scholar | |
Pattanakuhar S, Sutham W, Sripetchwandee J, Minta W, Mantor D, Palee S, Pratchayasakul W, Chattipakorn N and Chattipakorn SC: Combined exercise and calorie restriction therapies restore contractile and mitochondrial functions in skeletal muscle of obese-insulin resistant rats. Nutrition. 62:74–84. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kang HC, Lee YM, Kim HD, Lee JS and Slama A: Safe and effective use of the ketogenic diet in children with epilepsy and mitochondrial respiratory chain complex defects. Epilepsia. 48:82–88. 2007. View Article : Google Scholar : PubMed/NCBI | |
Qu C, Keijer J, Adjobo-Hermans MJW, van de Wal M, Schirris T, van Karnebeek C, Pan Y and Koopman WJH: The ketogenic diet as a therapeutic intervention strategy in mitochondrial disease. Int J Biochem Cell Biol. 138:1060502021. View Article : Google Scholar : PubMed/NCBI | |
Dhamija R, Eckert S and Wirrell E: Ketogenic diet. Can J Neurol Sci. 40:158–167. 2013. View Article : Google Scholar : PubMed/NCBI | |
Olgac A, İnci A, Okur İ, Biberoğlu G, Oğuz D, Ezgü FS, Kasapkara ÇS, Aktaş E and Tümer L: Beneficial effects of modified atkins diet in glycogen storage disease type IIIa. Ann Nutr Metab. 76:233–241. 2020. View Article : Google Scholar : PubMed/NCBI | |
Augustin K, Khabbush A, Williams S, Eaton S, Orford M, Cross JH, Heales SJR, Walker MC and Williams RSB: Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol. 17:84–93. 2018. View Article : Google Scholar | |
Morris G, Maes M, Berk M, Carvalho AF and Puri BK: Nutritional ketosis as an intervention to relieve astrogliosis: Possible therapeutic applications in the treatment of neurodegenerative and neuroprogressive disorders. Eur Psychiatry. 63:e82020. View Article : Google Scholar : PubMed/NCBI | |
Miller VJ, Villamena FA and Volek JS: Nutritional ketosis and mitohormesis: Potential implications for mitochondrial function and human health. J Nutr Metab. 2018:51576452018. View Article : Google Scholar : PubMed/NCBI | |
Milder J and Patel M: Modulation of oxidative stress and mitochondrial function by the ketogenic diet. Epilepsy Res. 100:295–303. 2012. View Article : Google Scholar : | |
Hutfles LJ, Wilkins HM, Koppel SJ, Weidling IW, Selfridge JE, Tan E, Thyfault JP, Slawson C, Fenton AW, Zhu H and Swerdlow RH: A bioenergetics systems evaluation of ketogenic diet liver effects. Appl Physiol Nutr Metab. 42:955–962. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hyatt HW, Kephart WC, Holland AM, Mumford P, Mobley CB, Lowery RP, Roberts MD, Wilson JM and Kavazis AN: A ketogenic diet in rodents elicits improved mitochondrial adaptations in response to resistance exercise training compared to an isocaloric western diet. Front Physiol. 7:5332016. View Article : Google Scholar : PubMed/NCBI | |
Kennedy AR, Pissios P, Out H, Roberson R, Xue B, Asakura K, Furukawa N, Marino FE, Liu FF, Kahn BB, et al: A high-fat, ketogenic diet induces a unique metabolic state in mice. Am J Physiol Endocrinol Metab. 292:E1724–E1739. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wallace MA, Aguirre NW, Marcotte GR, Marshall AG, Baehr LM, Hughes DC, Hamilton KL, Roberts MN, Lopez-Dominguez JA, Miller BF, et al: The ketogenic diet preserves skeletal muscle with aging in mice. Aging Cell. 20:e133222021. View Article : Google Scholar : PubMed/NCBI | |
Parry HA, Kephart WC, Mumford PW, Romero MA, Mobley CB, Zhang Y, Roberts MD and Kavazis AN: Ketogenic diet increases mitochondria volume in the liver and skeletal muscle without altering oxidative stress markers in rats. Heliyon. 4:e009752018. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Hagopian K, López-Domínguez JA, Kim K, Jasoliya M, Roberts MN, Cortopassi GA, Showalter MR, Roberts BS, González-Reyes JA, et al: A ketogenic diet impacts markers of mitochondrial mass in a tissue specific manner in aged mice. Aging (Albany NY). 13:7914–7930. 2021. View Article : Google Scholar | |
Kephart WC, Mumford PW, Mao X, Romero MA, Hyatt HW, Zhang Y, Mobley CB, Quindry JC, Young KC, Beck DT, et al: The 1-week and 8-month effects of a ketogenic diet or ketone salt supplementation on multi-organ markers of oxidative stress and mitochondrial function in rats. Nutrients. 9:10192017. View Article : Google Scholar : | |
Xu S, Tao H, Cao W, Cao L, Lin Y, Zhao SM, Xu W, Cao J and Zhao JY: Ketogenic diets inhibit mitochondrial biogenesis and induce cardiac fibrosis. Signal Transduct Target Ther. 6:542021. View Article : Google Scholar : PubMed/NCBI | |
Santra S, Gilkerson RW, Davidson M and Schon EA: Ketogenic treatment reduces deleted mitochondrial DNAs in cultured human cells. Ann Neurol. 56:662–669. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ahn Y, Sabouny R, Villa BR, Yee NC, Mychasiuk R, Uddin GM, Rho JM and Shutt TE: Aberrant mitochondrial morphology and function in the BTBR mouse model of autism is improved by two weeks of ketogenic diet. Int J Mol Sci. 21:32662020. View Article : Google Scholar : | |
Miller VJ, LaFountain RA, Barnhart E, Sapper TS, Short J, Arnold WD, Hyde PN, Crabtree CD, Kackley ML, Kraemer WJ, et al: A ketogenic diet combined with exercise alters mitochondrial function in human skeletal muscle while improving metabolic health. Am J Physiol Endocrinol Metab. 319:E995–E1007. 2020. View Article : Google Scholar : PubMed/NCBI | |
Parker BA, Walton CM, Carr ST, Andrus JL, Cheung ECK, Duplisea MJ, Wilson EK, Draney C, Lathen DR, Kenner KB, et al: β-Hydroxybutyrate elicits favorable mitochondrial changes in skeletal muscle. Int J Mol Sci. 19:22472018. View Article : Google Scholar | |
Guo Y, Zhang C, Shang FF, Luo M, You Y, Zhai Q, Xia Y and Suxin L: Ketogenic diet ameliorates cardiac dysfunction via balancing mitochondrial dynamics and inhibiting apoptosis in type 2 diabetic mice. Aging Dis. 11:229–240. 2020. View Article : Google Scholar : PubMed/NCBI | |
Krebs P, Fan W, Chen YH, Tobita K, Downes MR, Wood MR, Sun L, Li X, Xia Y, Ding N, et al: Lethal mitochondrial cardiomyopathy in a hypomorphic Med30 mouse mutant is ameliorated by ketogenic diet. Proc Natl Acad Sci USA. 108:19678–19682. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ahola-Erkkilä S, Carroll CJ, Peltola-Mjösund K, Tulkki V, Mattila I, Seppänen-Laakso T, Oresic M, Tyynismaa H and Suomalainen A: Ketogenic diet slows down mitochondrial myopathy progression in mice. Hum Mol Genet. 19:1974–1984. 2010. View Article : Google Scholar : PubMed/NCBI | |
Srivastava S, Kashiwaya Y, King MT, Baxa U, Tam J, Niu G, Chen X, Clarke K and Veech RL: Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet. FASEB J. 26:2351–2362. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sullivan PG, Rippy NA, Dorenbos K, Concepcion RC, Agarwal AK and Rho JM: The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Ann Neurol. 55:576–580. 2004. View Article : Google Scholar : PubMed/NCBI | |
Moore MP, Cunningham RP, Kelty TJ, Boccardi LR, Nguyen NY, Booth FW and Rector RS: Ketogenic diet in combination with voluntary exercise impacts markers of hepatic metabolism and oxidative stress in male and female Wistar rats. Appl Physiol Nutr Metab. 45:35–44. 2020. View Article : Google Scholar | |
Jornayvaz FR, Jurczak MJ, Lee HY, Birkenfeld AL, Frederick DW, Zhang D, Zhang XM, Samuel VT and Shulman GI: A high-fat, ketogenic diet causes hepatic insulin resistance in mice, despite increasing energy expenditure and preventing weight gain. Am J Physiol Endocrinol Metab. 299:E808–E815. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang TY, Linden MA, Fuller SE, Goldsmith FR, Simon J, Batdorf HM, Scott MC, Essajee NM, Brown JM and Noland RC: Combined effects of a ketogenic diet and exercise training alter mitochondrial and peroxisomal substrate oxidative capacity in skeletal muscle. Am J Physiol Endocrinol Metab. 320:E1053–E1067. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, Shaw R, Smith Y, Geiger JD and Dingledine RJ: Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol. 60:223–235. 2006. View Article : Google Scholar : PubMed/NCBI | |
Newell C, Shutt TE, Ahn Y, Hittel DS, Khan A, Rho JM and Shearer J: Tissue specific impacts of a ketogenic diet on mitochondrial dynamics in the BTBRT+tf/j mouse. Front Physiol. 7:6542016. View Article : Google Scholar | |
Thai PN, Seidlmayer LK, Miller C, Ferrero M, Dorn GW II, Schaefer S, Bers DM and Dedkova EN: Mitochondrial quality control in aging and heart failure: Influence of ketone bodies and mitofusin-stabilizing peptides. Front Physiol. 10:3822019. View Article : Google Scholar : PubMed/NCBI | |
Guo M, Wang X, Zhao Y, Yang Q, Ding H, Dong Q, Chen X and Cui M: Ketogenic diet improves brain ischemic tolerance and inhibits NLRP3 inflammasome activation by preventing Drp1-mediated mitochondrial fission and endoplasmic reticulum stress. Front Mol Neurosci. 11:862018. View Article : Google Scholar : PubMed/NCBI | |
Anton SD, Moehl K, Donahoo WT, Marosi K, Lee SA, Mainous AG III, Leeuwenburgh C and Mattson MP: Flipping the metabolic switch: Understanding and applying the health benefits of fasting. Obesity (Silver Spring). 26:254–268. 2018. View Article : Google Scholar | |
Liu B, Hutchison AT, Thompson CH, Lange K, Wittert GA and Heilbronn LK: Effects of intermittent fasting or calorie restriction on markers of lipid metabolism in human skeletal muscle. J Clin Endocrinol Metab. 106:e1389–e1399. 2021. View Article : Google Scholar | |
Mattson MP, Longo VD and Harvie M: Impact of intermittent fasting on health and disease processes. Ageing Res Rev. 39:46–58. 2017. View Article : Google Scholar : | |
Ravanidis S, Grundler F, de Toledo FW, Dimitriou E, Tekos F, Skaperda Z, Kouretas D and Doxakis E: Fasting-mediated metabolic and toxicity reprogramming impacts circulating microRNA levels in humans. Food Chem Toxicol. 152:1121872021. View Article : Google Scholar : PubMed/NCBI | |
Grundler F, Mesnage R, Goutzourelas N, Tekos F, Makri S, Brack M, Kouretas D and Wilhelmi de Toledo F: Interplay between oxidative damage, the redox status, and metabolic biomarkers during long-term fasting. Food Chem Toxicol. 145:1117012020. View Article : Google Scholar : PubMed/NCBI | |
Wilhelmi de Toledo F, Grundler F, Goutzourelas N, Tekos F, Vassi E, Mesnage R and Kouretas D: Influence of long-term fasting on blood redox status in humans. Antioxidants (Basel). 9:4962020. View Article : Google Scholar | |
de Cabo R and Mattson MP: Effects of intermittent fasting on health, aging, and disease. N Engl J Med. 381:2541–2551. 2019. View Article : Google Scholar : PubMed/NCBI | |
Klimova N, Long A, Scafidi S and Kristian T: Interplay between NAD+ and acetyl-CoA metabolism in ischemia-induced mitochondrial pathophysiology. Biochim Biophys Acta Mol Basis Dis. 1865:2060–2067. 2019. View Article : Google Scholar | |
Ren Z, He H, Zuo Z, Xu Z, Wei Z and Deng J: The role of different SIRT1-mediated signaling pathways in toxic injury. Cell Mol Biol Lett. 24:362019. View Article : Google Scholar : PubMed/NCBI | |
Antunes F, Erustes AG, Costa AJ, Nascimento AC, Bincoletto C, Ureshino RP, Pereira GJS and Smaili SS: Autophagy and intermittent fasting: The connection for cancer therapy? Clinics (Sao Paulo). 73(Suppl 1): e814s2018. View Article : Google Scholar | |
Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, Alt FW, Wu Z and Puigserver P: Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 26:1913–1923. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lee D, Martinez B, Crocker DE and Ortiz RM: Fasting increases the phosphorylation of AMPK and expression of sirtuin1 in muscle of adult male northern elephant seals (Mirounga angustirostris). Physiol Rep. 5:e131142017. View Article : Google Scholar : | |
Rhee J, Inoue Y, Yoon JC, Puigserver P, Fan M, Gonzalez FJ and Spiegelman BM: Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): Requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc Natl Acad Sci USA. 100:4012–4017. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhang YK, Wu KC and Klaassen CD: Genetic activation of Nrf2 protects against fasting-induced oxidative stress in livers of mice. PLoS One. 8:e591222013. View Article : Google Scholar : PubMed/NCBI | |
Tripathi A, Scaini G, Barichello T, Quevedo J and Pillai A: Mitophagy in depression: Pathophysiology and treatment targets. Mitochondrion. 61:1–10. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cheng A, Wan R, Yang JL, Kamimura N, Son TG, Ouyang X, Luo Y, Okun E and Mattson MP: Involvement of PGC-1α in the formation and maintenance of neuronal dendritic spines. Nat Commun. 3:12502012. View Article : Google Scholar | |
Marosi K, Moehl K, Navas-Enamorado I, Mitchell SJ, Zhang Y, Lehrmann E, Aon MA, Cortassa S, Becker KG and Mattson MP: Metabolic and molecular framework for the enhancement of endurance by intermittent food deprivation. FASEB J. 32:3844–3858. 2018. View Article : Google Scholar : PubMed/NCBI | |
Real-Hohn A, Navegantes C, Ramos K, Ramos-Filho D, Cahuê F, Galina A and Salerno VP: The synergism of high-intensity intermittent exercise and every-other-day intermittent fasting regimen on energy metabolism adaptations includes hexokinase activity and mitochondrial efficiency. PLoS One. 13:e02027842018. View Article : Google Scholar : PubMed/NCBI | |
Rodríguez-Bies E, Santa-Cruz Calvo S, Fontán-Lozano A, Peña Amaro J, Berral de la Rosa FJ, Carrión AM, Navas P and López-Lluch G: Muscle physiology changes induced by every other day feeding and endurance exercise in mice: Effects on physical performance. PLoS One. 5:e139002010. View Article : Google Scholar : PubMed/NCBI | |
Brown-Borg HM and Rakoczy S: Metabolic adaptations to short-term every-other-day feeding in long-living Ames dwarf mice. Exp Gerontol. 48:905–919. 2013. View Article : Google Scholar : PubMed/NCBI | |
Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM and Czaja MJ: Autophagy regulates lipid metabolism. Nature. 458:1131–1135. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wan R, Ahmet I, Brown M, Cheng A, Kamimura N, Talan M and Mattson MP: Cardioprotective effect of intermittent fasting is associated with an elevation of adiponectin levels in rats. J Nutr Biochem. 21:413–417. 2010. View Article : Google Scholar : | |
Kim YH, Lee JH, Yeung JL, Das E, Kim RY, Jiang Y, Moon JH, Jeong H, Thakkar N, Son JE, et al: Thermogenesis-independent metabolic benefits conferred by isocaloric intermittent fasting in ob/ob mice. Sci Rep. 9:24792019. View Article : Google Scholar : PubMed/NCBI | |
Li G, Xie C, Lu S, Nichols RG, Tian Y, Li L, Patel D, Ma Y, Brocker CN, Yan T, et al: Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metab. 26:672–685.e4. 2017. View Article : Google Scholar : | |
Monternier PA, Teulier L, Drai J, Bourguignon A, Collin-Chavagnac D, Hervant F, Rouanet JL and Roussel D: Mitochondrial oxidative phosphorylation efficiency is upregulated during fasting in two major oxidative tissues of ducklings. Comp Biochem Physiol A Mol Integr Physiol. 212:1–8. 2017. View Article : Google Scholar : PubMed/NCBI | |
Roussel D, Boël M and Romestaing C: Fasting enhances mitochondrial efficiency in duckling skeletal muscle by acting on the substrate oxidation system. J Exp Biol. 221:jeb1722132018.PubMed/NCBI | |
Sokolović M, Sokolović A, Wehkamp D, Ver Loren van Themaat E, de Waart DR, Gilhuijs-Pederson LA, Nikolsky Y, van Kampen AH, Hakvoort TB and Lamers WH: The transcriptomic signature of fasting murine liver. BMC Genomics. 9:5282008. View Article : Google Scholar | |
Bouwens M, Afman LA and Müller M: Fasting induces changes in peripheral blood mononuclear cell gene expression profiles related to increases in fatty acid beta-oxidation: Functional role of peroxisome proliferator activated receptor alpha in human peripheral blood mononuclear cells. Am J Clin Nutr. 86:1515–1523. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Hutchison AT, Liu B, Yates CL, Teong XT, Wittert GA, Thompson CH, Nguyen L, Au J, Manoogian ENC, et al: Time-restricted eating improves glycemic control and dampens energy-consuming pathways in human adipose tissue. Nutrition. 96:1115832022. View Article : Google Scholar : PubMed/NCBI | |
Castro-Sepúlveda M, Morio B, Tuñón-Suárez M, Jannas-Vela S, Díaz-Castro F, Rieusset J and Zbinden-Foncea H: The fasting-feeding metabolic transition regulates mitochondrial dynamics. FASEB J. 35:e218912021. View Article : Google Scholar : PubMed/NCBI | |
Theurey P, Tubbs E, Vial G, Jacquemetton J, Bendridi N, Chauvin MA, Alam MR, Le Romancer M, Vidal H and Rieusset J: Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver. J Mol Cell Biol. 8:129–143. 2016. View Article : Google Scholar : PubMed/NCBI | |
Castro-Sepulveda M, Jannas-Vela S, Fernández-Verdejo R, Ávalos-Allele D, Tapia G, Villagrán C, Quezada N and Zbinden-Foncea H: Relative lipid oxidation associates directly with mitochondrial fusion phenotype and mitochondria-sarcoplasmic reticulum interactions in human skeletal muscle. Am J Physiol Endocrinol Metab. 318:E848–E855. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shirakabe A, Fritzky L, Saito T, Zhai P, Miyamoto S, Gustafsson ÅB, Kitsis RN and Sadoshima J: Evaluating mitochondrial autophagy in the mouse heart. J Mol Cell Cardiol. 92:134–139. 2016. View Article : Google Scholar : PubMed/NCBI | |
Glick D, Zhang W, Beaton M, Marsboom G, Gruber M, Simon MC, Hart J, Dorn GW II, Brady MJ and Macleod KF: BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol Cell Biol. 32:2570–2584. 2012. View Article : Google Scholar : PubMed/NCBI | |
Islam H, Amato A, Bonafiglia JT, Rahman FA, Preobrazenski N, Ma A, Simpson CA, Quadrilatero J and Gurd BJ: Increasing whole-body energetic stress does not augment fasting-induced changes in human skeletal muscle. Pflugers Arch. 473:241–252. 2021. View Article : Google Scholar : PubMed/NCBI | |
Martínez-González MA and Sánchez-Villegas A: The emerging role of Mediterranean diets in cardiovascular epidemiology: Monounsaturated fats, olive oil, red wine or the whole pattern? Eur J Epidemiol. 19:9–13. 2004. View Article : Google Scholar : PubMed/NCBI | |
Guasch-Ferré M and Willett WC: The Mediterranean diet and health: A comprehensive overview. J Intern Med. 290:549–566. 2021. View Article : Google Scholar : PubMed/NCBI | |
Davis C, Bryan J, Hodgson J and Murphy K: Definition of the Mediterranean diet; a literature review. Nutrients. 7:9139–9153. 2015. View Article : Google Scholar : PubMed/NCBI | |
Martínez-González MA, Salas-Salvadó J, Estruch R, Corella D, Fitó M and Ros E; PREDIMED INVESTIGATORS: Benefits of the Mediterranean diet: Insights from the PREDIMED study. Prog Cardiovasc Dis. 58:50–60. 2015. View Article : Google Scholar : PubMed/NCBI | |
Widmer RJ, Flammer AJ, Lerman LO and Lerman A: The Mediterranean diet, its components, and cardiovascular disease. Am J Med. 128:229–238. 2015. View Article : Google Scholar | |
Duluc L, Jacques C, Soleti R, Andriantsitohaina R and Simard G: Delphinidin inhibits VEGF induced-mitochondrial biogenesis and Akt activation in endothelial cells. Int J Biochem Cell Biol. 53:9–14. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zou Q, Suo Y, Tan X, Yuan T, Liu Z and Liu X: Lycopene ameliorates systemic inflammation-induced synaptic dysfunction via improving insulin resistance and mitochondrial dysfunction in the liver-brain axis. Food Funct. 10:2125–2137. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tsai KL, Hung CH, Chan SH, Hsieh PL, Ou HC, Cheng YH and Chu PM: Chlorogenic acid protects against oxLDL-induced oxidative damage and mitochondrial dysfunction by modulating SIRT1 in endothelial cells. Mol Nutr Food Res. 62:e17009282018. View Article : Google Scholar : PubMed/NCBI | |
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, et al: Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 127:1109–1122. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kalliora C, Kyriazis ID, Oka SI, Lieu MJ, Yue Y, Area-Gomez E, Pol CJ, Tian Y, Mizushima W, Chin A, et al: Dual peroxis ome-proliferator-activated-receptor-α/γ activation inhibits SIRT1-PGC1 α axis and causes cardiac dysfunction. JCI Insight. 5:e1295562019. View Article : Google Scholar | |
Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, et al: Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 444:337–342. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dong YZ, Li L, Espe M, Lu KL and Rahimnejad S: Hydroxytyrosol attenuates hepatic fat accumulation via activating mitochondrial biogenesis and autophagy through the AMPK pathway. J Agric Food Chem. 68:9377–9386. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cao K, Xu J, Zou X, Li Y, Chen C, Zheng A, Li H, Li H, Szeto IM, Shi Y, et al: Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice. Free Radic Biol Med. 67:396–407. 2014. View Article : Google Scholar | |
Deng X, Zhang S, Wu J, Sun X, Shen Z, Dong J and Huang J: Promotion of mitochondrial biogenesis via activation of AMPK-PGC1α signaling pathway by ginger (Zingiber officinale Roscoe) extract, and its major active component 6-gingerol. J Food Sci. 84:2101–2111. 2019. View Article : Google Scholar : PubMed/NCBI | |
Anderson EJ, Thayne KA, Harris M, Shaikh SR, Darden TM, Lark DS, Williams JM, Chitwood WR, Kypson AP and Rodriguez E: Do fish oil omega-3 fatty acids enhance antioxidant capacity and mitochondrial fatty acid oxidation in human atrial myocardium via PPARγ activation? Antioxid Redox Signal. 21:1156–1163. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yoshino J, Smith GI, Kelly SC, Julliand S, Reeds DN and Mittendorfer B: Effect of dietary n-3 PUFA supplementation on the muscle transcriptome in older adults. Physiol Rep. 4:e127852016. View Article : Google Scholar : PubMed/NCBI | |
de Ligt M, Bruls YMH, Hansen J, Habets MF, Havekes B, Nascimento EBM, Moonen-Kornips E, Schaart G, Schrauwen-Hinderling VB, van Marken Lichtenbelt W and Schrauwen P: Resveratrol improves ex vivo mitochondrial function but does not affect insulin sensitivity or brown adipose tissue in first degree relatives of patients with type 2 diabetes. Mol Metab. 12:39–47. 2018. View Article : Google Scholar : PubMed/NCBI | |
Joy JM, Vogel RM, Moon JR, Falcone PH, Mosman MM, Pietrzkowski Z, Reyes T and Kim MP: Ancient peat and apple extracts supplementation may improve strength and power adaptations in resistance trained men. BMC Complement Altern Med. 16:2242016. View Article : Google Scholar : PubMed/NCBI | |
Perez-Ternero C, Werner CM, Nickel AG, Herrera MD, Motilva MJ, Böhm M, Alvarez de Sotomayor M and Laufs U: Ferulic acid, a bioactive component of rice bran, improves oxidative stress and mitochondrial biogenesis and dynamics in mice and in human mononuclear cells. J Nutr Biochem. 48:51–61. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mollica MP, Mattace Raso G, Cavaliere G, Trinchese G, De Filippo C, Aceto S, Prisco M, Pirozzi C, Di Guida F, Lama A, et al: Butyrate regulates liver mitochondrial function, efficiency, and dynamics in insulin-resistant obese mice. Diabetes. 66:1405–1418. 2017. View Article : Google Scholar : PubMed/NCBI | |
Myhrstad MCW, de Mello VD, Dahlman I, Kolehmainen M, Paananen J, Rundblad A, Carlberg C, Olstad OK, Pihlajamäki J, Holven KB, et al: Healthy nordic diet modulates the expression of genes related to mitochondrial function and immune response in peripheral blood mononuclear cells from subjects with metabolic syndrome-A SYSDIET Sub-study. Mol Nutr Food Res. e18014052019.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Brand MD, Orr AL, Perevoshchikova IV and Quinlan CL: The role of mitochondrial function and cellular bioenergetics in ageing and disease. Br J Dermatol. 169(Suppl 2): S1–S8. 2013. View Article : Google Scholar |