Physiological and pathological roles of Hic‑5 in several organs (Review)
- Authors:
- Shun Yao
- Zhen Tu
- Xingyue Yang
- Li Zhang
- Yuling Zhong
- Liming Zheng
- Hui Wang
- Zhiqiang Yi
- Jiaxing An
- Hai Jin
- Guorong Wen
- Biguang Tuo
-
Affiliations: Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China, Department of Urological Surgery, People's Hospital of Yuechi County, Guang'an, Sichuan 638300, P.R. China - Published online on: October 10, 2022 https://doi.org/10.3892/ijmm.2022.5194
- Article Number: 138
-
Copyright: © Yao et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 4.0].
This article is mentioned in:
Abstract
Shibanuma M, Mashimo J, Kuroki T and Nose K: Characterization of the TGF beta 1-inducible hic-5 gene that encodes a putative novel zinc finger protein and its possible involvement in cellular senescence. J Biol Chem. 269:26767–26774. 1994. View Article : Google Scholar : PubMed/NCBI | |
Shibanuma M, Mori K and Nose K: HIC-5: A mobile molecular scaffold regulating the anchorage dependence of cell growth. Int J Cell Biol. 2012:4261382012. View Article : Google Scholar | |
Kim-Kaneyama JR, Lei XF, Arita S, Miyauchi A, Miyazaki T and Miyazaki A: Hydrogen peroxide-inducible clone 5 (Hic-5) as a potential therapeutic target for vascular and other disorders. J Atheroscler Thromb. 19:601–607. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Guerrero J, Hong H, DeFranco DB and Stallcup MR: Interaction of the tau2 transcriptional activation domain of glucocorticoid receptor with a novel steroid receptor coactivator, Hic-5, which localizes to both focal adhesions and the nuclear matrix. Mol Biol Cell. 11:2007–2018. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kim-Kaneyama JR, Shibanuma M and Nose K: Transcriptional activation of the c-fos gene by a LIM protein, Hic-5. Biochem Biophys Res Commun. 299:360–365. 2002. View Article : Google Scholar : PubMed/NCBI | |
Shibanuma M, Kim-Kaneyama JR, Sato S and Nose K: A LIM protein, Hic-5, functions as a potential coactivator for Sp1. J Cell Biochem. 91:633–645. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lei XF, Fu W, Kim-Kaneyama JR, Omoto T, Miyazaki T, Li B and Miyazaki A: Hic-5 deficiency attenuates the activation of hepatic stellate cells and liver fibrosis through upregulation of Smad7 in mice. J Hepatol. 64:110–117. 2016. View Article : Google Scholar | |
Matsuya M, Sasaki H, Aoto H, Mitaka T, Nagura K, Ohba T, Ishino M, Takahashi S, Suzuki R and Sasaki T: Cell adhesion kinase beta forms a complex with a new member, Hic-5, of proteins localized at focal adhesions. J Biol Chem. 273:1003–1014. 1998. View Article : Google Scholar : PubMed/NCBI | |
Nishiya N, Shirai T, Suzuki W and Nose K: Hic-5 interacts with GIT1 with a different binding mode from paxillin. J Biochem. 132:279–289. 2002. View Article : Google Scholar : PubMed/NCBI | |
Fujita H, Kamiguchi K, Cho D, Shibanuma M, Morimoto C and Tachibana K: Interaction of Hic-5, A senescence-related protein, with focal adhesion kinase. J Biol Chem. 273:26516–26521. 1998. View Article : Google Scholar : PubMed/NCBI | |
Hornigold N, Craven RA, Keen JN, Johnson T, Banks RE and Mooney AF: Upregulation of Hic-5 in glomerulosclerosis and its regulation of mesangial cell apoptosis. Kidney Int. 77:329–338. 2010. View Article : Google Scholar | |
Mestayer C, Blanchère M, Jaubert F, Dufour B and Mowszowicz I: Expression of androgen receptor coactivators in normal and cancer prostate tissues and cultured cell lines. Prostate. 56:192–200. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kim-Kaneyama JR, Takeda N, Sasai A, Miyazaki A, Sata M, Hirabayashi T, Shibanuma M, Yamada G and Nose K: Hic-5 deficiency enhances mechanosensitive apoptosis and modulates vascular remodeling. J Mol Cell Cardiol. 50:77–86. 2011. View Article : Google Scholar | |
Nishiya N, Iwabuchi Y, Shibanuma M, Côté JF, Tremblay ML and Nose K: Hic-5, a paxillin homologue, binds to the protein-tyrosine phosphatase PEST (PTP-PEST) through its LIM 3 domain. J Biol Chem. 274:9847–9853. 1999. View Article : Google Scholar : PubMed/NCBI | |
López-Colomé AM, Lee-Rivera I, Benavides-Hidalgo R and López E: Paxillin: A crossroad in pathological cell migration. J Hematol Oncol. 10:502017. View Article : Google Scholar : PubMed/NCBI | |
Ma X and Hammes SR: Paxillin actions in the nucleus. Steroids. 133:87–92. 2018. View Article : Google Scholar : | |
Xu W, Alpha KM, Zehrbach NM and Turner CE: Paxillin promotes breast tumor collective cell invasion through maintenance of adherens junction integrity. Mol Biol Cell. 33:ar142022. View Article : Google Scholar : | |
Tanaka N, Minemura C, Asai S, Kikkawa N, Kinoshita T, Oshima S, Koma A, Kasamatsu A, Hanazawa T, Uzawa K and Seki N: Identification of miR-199-5p and miR-199-3p target genes: Paxillin facilities cancer cell aggressiveness in head and neck squamous cell carcinoma. Genes (Basel). 12:19102021. View Article : Google Scholar | |
Ripamonti M, Wehrle-Haller B and de Curtis I: Paxillin: A hub for mechano-transduction from the β3 integrin-talin-kindlin axis. Front Cell Dev Biol. 10:8520162022. View Article : Google Scholar | |
Hagel M, George EL, Kim A, Tamimi R, Opitz SL, Turner CE, Imamoto A and Thomas SM: The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol Cell Biol. 22:901–915. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kim-Kaneyama JR, Suzuki W, Ichikawa K, Ohki T, Kohno Y, Sata M, Nose K and Shibanuma M: Uni-axial stretching regulates intracellular localization of Hic-5 expressed in smooth-muscle cells in vivo. J Cell Sci. 118:937–949. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mashimo J, Shibanuma M, Satoh H, Chida K and Nose K: Genomic structure and chromosomal mapping of the mouse hic-5 gene that encodes a focal adhesion protein. Gene. 249:99–103. 2000. View Article : Google Scholar : PubMed/NCBI | |
Panetti TS, Hannah DF, Avraamides C, Gaughan JP, Marcinkiewicz C, Huttenlocher A and Mosher DF: Extracellular matrix molecules regulate endothelial cell migration stimulated by lysophosphatidic acid. J Thromb Haemost. 2:1645–1656. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hetey SE, Lalonde DP and Turner CE: Tyrosine-phosphorylated Hic-5 inhibits epidermal growth factor-induced lamellipodia formation. Exp Cell Res. 311:147–156. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tumbarello DA, Brown MC and Turner CE: The paxillin LD motifs. FEBS Lett. 513:114–118. 2002. View Article : Google Scholar : PubMed/NCBI | |
Brown MC and Turner CE: Paxillin: Adapting to change. Physiol Rev. 84:1315–1339. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nishiya N, Tachibana K, Shibanuma M, Mashimo JI and Nose K: Hic-5-reduced cell spreading on fibronectin: Competitive effects between paxillin and Hic-5 through interaction with focal adhesion kinase. Mol Cell Biol. 21:5332–5345. 2001. View Article : Google Scholar : PubMed/NCBI | |
Shibanuma M, Kim-Kaneyama JR, Ishino K, Sakamoto N, Hishiki T, Yamaguchi K, Mori K, Mashimo J and Nose K: Hic-5 communicates between focal adhesions and the nucleus through oxidant-sensitive nuclear export signal. Mol Biol Cell. 14:1158–1171. 2003. View Article : Google Scholar : PubMed/NCBI | |
Heitzer MD and DeFranco DB: Hic-5, an adaptor-like nuclear receptor coactivator. Nucl Recept Signal. 4:e0192006. View Article : Google Scholar : PubMed/NCBI | |
Chodankar R, Wu DY, Schiller BJ, Yamamoto KR and Stallcup MR: Hic-5 is a transcription coregulator that acts before and/or after glucocorticoid receptor genome occupancy in a gene-selective manner. Proc Natl Acad Sci USA. 111:4007–4012. 2014. View Article : Google Scholar : PubMed/NCBI | |
Heitzer MD and DeFranco DB: Hic-5/ARA55, a LIM domain-containing nuclear receptor coactivator expressed in prostate stromal cells. Cancer Res. 66:7326–7333. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ghogomu SM, van Venrooy S, Ritthaler M, Wedlich D and Gradl D: HIC-5 is a novel repressor of lymphoid enhancer factor/T-cell factor-driven transcription. J Biol Chem. 281:1755–1764. 2006. View Article : Google Scholar | |
Drori S, Girnun GD, Tou L, Szwaya JD, Mueller E, Xia K, Shivdasani RA and Spiegelman BM: Hic-5 regulates an epithelial program mediated by PPARgamma. Genes Dev. 19:362–375. 2005. View Article : Google Scholar : PubMed/NCBI | |
Heitzer MD and DeFranco DB: Mechanism of action of Hic-5/androgen receptor activator 55, a LIM domain-containing nuclear receptor coactivator. Mol Endocrinol. 20:56–64. 2006. View Article : Google Scholar | |
Deakin NO and Turner CE: Distinct roles for paxillin and Hic-5 in regulating breast cancer cell morphology, invasion, and metastasis. Mol Biol Cell. 22:327–341. 2011. View Article : Google Scholar : | |
Vohnoutka RB, Gulvady AC, Goreczny G, Alpha K, Handelman SK, Sexton JZ and Turner CE: The focal adhesion scaffold protein Hic-5 regulates vimentin organization in fibroblasts. Mol Biol Cell. 30:3037–3056. 2019. View Article : Google Scholar : PubMed/NCBI | |
Paul J, Singh AK, Kathania M, Elviche TL, Zeng M, Basrur V, Theiss AL and Venuprasad K: IL-17-driven intestinal fibrosis is inhibited by Itch-mediated ubiquitination of HIC-5. Mucosal Immunol. 11:427–436. 2018. View Article : Google Scholar | |
Lei XF, Kim-Kaneyama JR, Arita-Okubo S, Offermanns S, Itabe H, Miyazaki T and Miyazaki A: Identification of Hic-5 as a novel scaffold for the MKK4/p54 JNK pathway in the development of abdominal aortic aneurysms. J Am Heart Assoc. 3:e0007472014. View Article : Google Scholar : PubMed/NCBI | |
Frangogiannis N: Transforming growth factor-β in tissue fibrosis. J Exp Med. 217:e201901032020. View Article : Google Scholar | |
Peng D, Fu M, Wang M, Wei Y and Wei X: Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer. 21:1042022. View Article : Google Scholar | |
Gao L, Lei XF, Miyauchi A, Noguchi M, Omoto T, Haraguchi S, Miyazaki T, Miyazaki A and Kim-Kaneyama JR: Hic-5 is required for activation of pancreatic stellate cells and development of pancreatic fibrosis in chronic pancreatitis. Sci Rep. 10:191052020. View Article : Google Scholar : PubMed/NCBI | |
Shola DT, Wang H, Wahdan-Alaswad R and Danielpour D: Hic-5 controls BMP4 responses in prostate cancer cells through inter-acting with Smads 1,5 and 8. Oncogene. 31:2480–2490. 2012. View Article : Google Scholar | |
Sha L, Ma D and Chen C: Exosome-mediated Hic-5 regulates proliferation and apoptosis of osteosarcoma via Wnt/β-catenin signal pathway. Aging (Albany NY). 12:23598–23608. 2020. View Article : Google Scholar | |
Chen H, Tan P, Qian B, Du Y, Wang A, Shi H, Huang Z, Huang S, Liang T and Fu W: Hic-5 deficiency protects cerulein-induced chronic pancreatitis via down-regulation of the NF-κB (p65)/IL-6 signalling pathway. J Cell Mol Med. 24:1488–1503. 2020. View Article : Google Scholar | |
Gao L, Qian B, Chen H, Wang A, Li Q, Li J, Tan P, Xia X, Du Y and Fu W: Hic-5 deficiency attenuates hepatic ischemia reperfusion injury through TLR4/NF-κB signaling pathways. Life Sci. 249:1175172020. View Article : Google Scholar | |
Wu JR, Hu CT, You RI, Pan SM, Cheng CC, Lee MC, Wu CC, Chang YJ, Lin SC, Chen CS, et al: Hydrogen peroxide inducible clone-5 mediates reactive oxygen species signaling for hepatocellular carcinoma progression. Oncotarget. 6:32526–32544. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tumbarello DA and Turner CE: Hic-5 contributes to epithelial-mesenchymal transformation through a RhoA/ROCK-dependent pathway. J Cell Physiol. 211:736–747. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sheta R, Wang ZQ, Bachvarova M, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Gobeil S, Morin C, Macdonald E, et al: Hic-5 regulates epithelial to mesenchymal transition in ovarian cancer cells in a TGFβ1-independent manner. Oncotarget. 8:82506–82530. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yuminamochi T, Yatomi Y, Osada M, Ohmori T, Ishii Y, Nakazawa K, Hosogaya S and Ozaki Y: Expression of the LIM proteins paxillin and Hic-5 in human tissues. J Histochem Cytochem. 51:513–521. 2003. View Article : Google Scholar : PubMed/NCBI | |
Komorowsky C, Samarin J, Rehm M, Guidolin D and Goppelt-Struebe M: Hic-5 as a regulator of endothelial cell morphology and connective tissue growth factor gene expression. J Mol Med (Berl). 88:623–631. 2010. View Article : Google Scholar | |
Dave JM, Abbey CA, Duran CL, Seo H, Johnson GA and Bayless KJ: Hic-5 mediates the initiation of endothelial sprouting by regulating a key surface metalloproteinase. J Cell Sci. 129:743–756. 2016.PubMed/NCBI | |
Kim-Kaneyama JR, Miyauchi A, Lei XF, Arita S, Mino T, Takeda N, Kou K, Eto K, Yoshida T, Miyazaki T, et al: Identification of Hic-5 as a novel regulatory factor for integrin αIIbβ3 activation and platelet aggregation in mice. J Thromb Haemost. 10:1867–1874. 2012. View Article : Google Scholar : PubMed/NCBI | |
Popp M, Thielmann I, Nieswandt B and Stegner D: Normal platelet integrin function in mice lacking hydrogen peroxide-induced clone-5 (Hic-5). PLoS One. 10:e01334292015. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Huang M, Lai J, Mao K, Sun P, Cao Z, Hu Y, Zhang Y, Schulte ML, Jin C, et al: Kindlin supports platelet integrin αIIbβ3 activation by interacting with paxillin. J Cell Sci. 130:3764–3775. 2017.PubMed/NCBI | |
Kim-Kaneyama JR, Wachi N, Sata M, Enomoto S, Fukabori K, Koh K, Shibanuma M and Nose K: Hic-5, an adaptor protein expressed in vascular smooth muscle cells, modulates the arterial response to injury in vivo. Biochem Biophys Res Commun. 376:682–687. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vergallo R and Crea F: Atherosclerotic plaque healing. N Engl J Med. 383:846–857. 2020. View Article : Google Scholar : PubMed/NCBI | |
Almeida SO and Budoff M: Effect of statins on atherosclerotic plaque. Trends Cardiovasc Med. 29:451–455. 2019. View Article : Google Scholar : PubMed/NCBI | |
Arita-Okubo S, Kim-Kaneyama JR, Lei XF, Fu WG, Ohnishi K, Takeya M, Miyauchi A, Honda H, Itabe H, Miyazaki T and Miyazaki A: Role of Hic-5 in the formation of microvilli-like structures and the monocyte-endothelial interaction that accelerates atherosclerosis. Cardiovasc Res. 105:361–371. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yund EE, Hill JA and Keller RS: Hic-5 is required for fetal gene expression and cytoskeletal organization of neonatal cardiac myocytes. J Mol Cell Cardiol. 47:520–527. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ji J, Yu F, Ji Q, Li Z, Wang K, Zhang J, Lu J, Chen L, E Q, Zeng Y and Ji Y: Comparative proteomic analysis of rat hepatic stellate cell activation: A comprehensive view and suppressed immune response. Hepatology. 56:332–349. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vege SS and Chari ST: Chronic pancreatitis. N Engl J Med. 386:869–878. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jamba A, Kondo S, Urushihara M, Nagai T, Kim-Kaneyama JR, Miyazaki A and Kagami S: Hydrogen peroxide-inducible clone-5 regulates mesangial cell proliferation in proliferative glomerulonephritis in mice. PLoS One. 10:e01227732015. View Article : Google Scholar : PubMed/NCBI | |
Hornigold N and Mooney A: Extracellular matrix-induced Hic-5 expression in glomerular mesangial cells leads to a prosclerotic phenotype independent of TGF-β. FASEB J. 29:4956–4967. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li X, Martinez-Ferrer M, Botta V, Uwamariya C, Banerjee J and Bhowmick NA: Epithelial Hic-5/ARA55 expression contributes to prostate tumorigenesis and castrate responsiveness. Oncogene. 30:167–177. 2011. View Article : Google Scholar : | |
Cárdenas S, Colombero C, Panelo L, Dakarapu R, Falck JR, Costas MA and Nowicki S: GPR75 receptor mediates 20-HETE-signaling and metastatic features of androgen-insensitive prostate cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids. 1865:1585732020. View Article : Google Scholar : | |
Lee BH and Stallcup MR: Different chromatin and DNA sequence characteristics define glucocorticoid receptor binding sites that are blocked or not blocked by coregulator Hic-5. PLoS One. 13:e01969652018. View Article : Google Scholar : PubMed/NCBI | |
Leach DA, Need EF, Trotta AP, Grubisha MJ, DeFranco DB and Buchanan G: Hic-5 influences genomic and non-genomic actions of the androgen receptor in prostate myofibroblasts. Mol Cell Endocrinol. 384:185–199. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li P, Yu X, Ge K, Melamed J, Roeder RG and Wang Z: Heterogeneous expression and functions of androgen receptor co-factors in primary prostate cancer. Am J Pathol. 161:1467–1474. 2002. View Article : Google Scholar : PubMed/NCBI | |
Solomon JD, Heitzer MD, Liu TT, Beumer JH, Parise RA, Normolle DP, Leach DA, Buchanan G and DeFranco DB: VDR activity is differentially affected by Hic-5 in prostate cancer and stromal cells. Mol Cancer Res. 12:1166–1180. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng C, Yu X and Shi S: Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol Cancer. 20:1312021. View Article : Google Scholar : PubMed/NCBI | |
Gulvady AC, Dubois F, Deakin NO, Goreczny GJ and Turner CE: Hic-5 expression is a major indicator of cancer cell morphology, migration, and plasticity in three-dimensional matrices. Mol Biol Cell. 29:1704–1717. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shen T and Guo Q: Role of Pyk2 in human cancers. Med Sci Monit. 24:8172–8182. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun CK, Ng KT, Lim ZX, Cheng Q, Lo CM, Poon RT, Man K, Wong N and Fan ST: Proline-rich tyrosine kinase 2 (Pyk2) promotes cell motility of hepatocellular carcinoma through induction of epithelial to mesenchymal transition. PLoS One. 6:e188782011. View Article : Google Scholar : PubMed/NCBI | |
Qian B, Wei L, Yang Z, He Q, Chen H, Wang A, Yang D, Li Q, Li J, Zheng S and Fu W: Hic-5 in pancreatic stellate cells affects proliferation, apoptosis, migration, invasion of pancreatic cancer cells and postoperative survival time of pancreatic cancer. Biomed Pharmacother. 121:1093552020. View Article : Google Scholar | |
Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI | |
Biffi G and Tuveson DA: Diversity and biology of cancer-associated fibroblasts. Physiol Rev. 101:147–176. 2021. View Article : Google Scholar : | |
Sun X, He X, Zhang Y, Hosaka K, Andersson P, Wu J, Wu J, Jing X, Du Q, Hui X, et al: Inflammatory cell-derived CXCL3 promotes pancreatic cancer metastasis through a novel myofibroblast-hijacked cancer escape mechanism. Gut. 71:129–147. 2022. View Article : Google Scholar | |
Zhang M, Liu ZZ, Aoshima K, Cai WL, Sun H, Xu T, Zhang Y, An Y, Chen JF, Chan LH, et al: CECR2 drives breast cancer metastasis by promoting NF-κB signaling and macrophage-mediated immune suppression. Sci Transl Med. 14:eabf54732022. View Article : Google Scholar | |
Du X, Xu Q, Pan D, Xu D, Niu B, Hong W, Zhang R, Li X and Chen S: HIC-5 in cancer-associated fibroblasts contributes to esophageal squamous cell carcinoma progression. Cell Death Dis. 10:8732019. View Article : Google Scholar : PubMed/NCBI | |
Hernandez-Quiles M, Broekema MF and Kalkhoven E: PPARgamma in metabolism, immunity, and cancer: Unified and diverse mechanisms of action. Front Endocrinol (Lausanne). 12:6241122021. View Article : Google Scholar | |
Omoto T, Kim-Kaneyama JR, Lei XF, Orimo A, Ohnishi K, Yoshihara K, Miyauchi A, Li S, Gao L, Umemoto T, et al: The impact of stromal Hic-5 on the tumorigenesis of colorectal cancer through lysyl oxidase induction and stromal remodeling. Oncogene. 37:1205–1219. 2018. View Article : Google Scholar | |
Goreczny GJ, Ouderkirk-Pecone JL, Olson EC, Krendel M and Turner CE: Hic-5 remodeling of the stromal matrix promotes breast tumor progression. Oncogene. 36:2693–2703. 2017. View Article : Google Scholar : | |
Goreczny GJ, Forsythe IJ and Turner CE: Hic-5 regulates fibrillar adhesion formation to control tumor extracellular matrix remodeling through interaction with tensin1. Oncogene. 37:1699–1713. 2018. View Article : Google Scholar : PubMed/NCBI | |
Noguchi F, Inui S, Nakajima T and Itami S: Hic-5 affects proliferation, migration and invasion of B16 murine melanoma cells. Pigment Cell Melanoma Res. 25:773–782. 2012. View Article : Google Scholar : PubMed/NCBI | |
Caltagarone J, Hamilton RL, Murdoch G, Jing Z, DeFranco DB and Bowser R: Paxillin and hydrogen peroxide-inducible clone 5 expression and distribution in control and Alzheimer disease hippocampi. J Neuropathol Exp Neurol. 69:356–371. 2010. View Article : Google Scholar : PubMed/NCBI | |
Miyauchi A, Kim-Kaneyama JR, Lei XF, Chang SH, Saito T, Haraguchi S, Miyazaki T and Miyazaki A: Alleviation of murine osteoarthritis by deletion of the focal adhesion mechanosensitive adapter, Hic-5. Sci Rep. 9:157702019. View Article : Google Scholar : PubMed/NCBI | |
Inui S, Fukuzato Y, Nakajima T, Kurata S and Itami S: Androgen receptor co-activator Hic-5/ARA55 as a molecular regulator of androgen sensitivity in dermal papilla cells of human hair follicles. J Invest Dermatol. 127:2302–2306. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dabiri G, Tumbarello DA, Turner CE and Van de Water L: Hic-5 promotes the hypertrophic scar myofibroblast phenotype by regulating the TGF-beta1 autocrine loop. J Invest Dermatol. 128:2518–2525. 2008. View Article : Google Scholar : PubMed/NCBI | |
Inui S, Shono F, Noguchi F, Nakajima T, Hosokawa K and Itami S: In vitro and in vivo evidence of pathogenic roles of Hic-5/ARA55 in keloids through Smad pathway and profibrotic transcription. J Dermatol Sci. 58:152–154. 2010. View Article : Google Scholar : PubMed/NCBI | |
Piera-Velazquez S, Fertala J, Huaman-Vargas G, Louneva N and Jiménez SA: Increased expression of the transforming growth factor β-inducible gene HIC-5 in systemic sclerosis skin and fibroblasts: A novel antifibrotic therapeutic target. Rheumatology (Oxford). 59:3092–3098. 2020. View Article : Google Scholar | |
Reina-Torres E, De Ieso ML, Pasquale LR, Madekurozwa M, van Batenburg-Sherwood J, Overby DR and Stamer WD: The vital role for nitric oxide in intraocular pressure homeostasis. Prog Retin Eye Res. 83:1009222021. View Article : Google Scholar : | |
Nair KS, Srivastava C, Brown RV, Koli S, Choquet H, Kang HS, Kuo YM, Grimm SA, Sutherland C, Badea A, et al: GLIS1 regulates trabecular meshwork function and intraocular pressure and is associated with glaucoma in humans. Nat Commun. 12:48772021. View Article : Google Scholar : PubMed/NCBI | |
Pattabiraman PP and Rao PV: Hic-5 regulates actin cytoskeletal reorganization and expression of fibrogenic markers and myocilin in trabecular meshwork cells. Invest Ophthalmol Vis Sci. 56:5656–5669. 2015. View Article : Google Scholar : PubMed/NCBI | |
You Q, Duan L, Wang F, Du X and Xiao M: Characterization of the inhibition of vein graft intimal hyperplasia by a biodegradable vascular stent. Cell Biochem Biophys. 59:99–107. 2011. View Article : Google Scholar | |
Low EL, Baker AH and Bradshaw AC: TGFβ, smooth muscle cells and coronary artery disease: A review. Cell Signal. 53:90–101. 2019. View Article : Google Scholar : | |
Bai H, Lee JS, Hu H, Wang T, Isaji T, Liu S, Guo J, Liu H, Wolf K, Ono S, et al: Transforming growth factor-β1 inhibits pseudoaneurysm formation after aortic patch angioplasty. Arterioscler Thromb Vasc Biol. 38:195–205. 2018. View Article : Google Scholar | |
Goumans MJ and Ten Dijke P: TGF-β signaling in control of cardiovascular function. Cold Spring Harb Perspect Biol. 10:a0222102018. View Article : Google Scholar | |
Boers W, Aarrass S, Linthorst C, Pinzani M, Elferink RO and Bosma P: Transcriptional profiling reveals novel markers of liver fibrogenesis: Gremlin and insulin-like growth factor-binding proteins. J Biol Chem. 281:16289–16295. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gough NR, Xiang X and Mishra L: TGF-β signaling in liver, pancreas, and gastrointestinal diseases and cancer. Gastroenterology. 161:434–452.e15. 2021. View Article : Google Scholar | |
Nogueira MA, Coelho AM, Sampietre SN, Patzina RA, Pinheiro da Silva F, D'Albuquerque LA and Machado MC: Beneficial effects of adenosine triphosphate-sensitive K+ channel opener on liver ischemia/reperfusion injury. World J Gastroenterol. 20:15319–15326. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ma C, Kesarwala AH, Eggert T, Medina-Echeverz J, Kleiner DE, Jin P, Stroncek DF, Terabe M, Kapoor V, ElGindi M, et al: NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature. 531:253–257. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shen Y, Wei Y, Wang Z, Jing Y, He H, Yuan J, Li R, Zhao Q, Wei L, Yang T and Lu J: TGF-β regulates hepatocellular carcinoma progression by inducing Treg cell polarization. Cell Physiol Biochem. 35:1623–1632. 2015. View Article : Google Scholar | |
Caja L, Dituri F, Mancarella S, Caballero-Diaz D, Moustakas A, Giannelli G and Fabregat I: TGF-β and the tissue microenvironment: Relevance in fibrosis and cancer. Int J Mol Sci. 19:12942018. View Article : Google Scholar | |
Bansod S, Doijad N and Godugu C: Berberine attenuates severity of chronic pancreatitis and fibrosis via AMPK-mediated inhibition of TGF-β1/Smad signaling and M2 polarization. Toxicol Appl Pharmacol. 403:1151622020. View Article : Google Scholar | |
Gore J, Imasuen-Williams IE, Conteh AM, Craven KE, Cheng M and Korc M: Combined targeting of TGF-β, EGFR and HER2 suppresses lymphangiogenesis and metastasis in a pancreatic cancer model. Cancer Lett. 379:143–153. 2016. View Article : Google Scholar : PubMed/NCBI | |
Song W, Dai WJ, Zhang MH, Wang H and Yang XZ: Comprehensive analysis of the expression of TGF-β signaling regulators and prognosis in human esophageal cancer. Comput Math Methods Med. 2021:18122272021. View Article : Google Scholar | |
Calon A, Lonardo E, Berenguer-Llergo A, Espinet E, Hernando-Momblona X, Iglesias M, Sevillano M, Palomo-Ponce S, Tauriello DV, Byrom D, et al: Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet. 47:320–329. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, Sevillano M, Ibiza S, Cañellas A, Hernando-Momblona X, et al: TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 554:538–543. 2018. View Article : Google Scholar : PubMed/NCBI | |
Meng XM: Inflammatory mediators and renal fibrosis. Adv Exp Med Biol. 1165:381–406. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gu YY, Liu XS, Huang XR, Yu XQ and Lan HY: Diverse role of TGF-β in kidney disease. Front Cell Dev Biol. 8:1232020. View Article : Google Scholar | |
Wang H, Song K, Krebs TL, Yang J and Danielpour D: Smad7 is inactivated through a direct physical interaction with the LIM protein Hic-5/ARA55. Oncogene. 27:6791–6805. 2008. View Article : Google Scholar : PubMed/NCBI | |
Thompson-Elliott B, Johnson R and Khan SA: Alterations in TGFβ signaling during prostate cancer progression. Am J Clin Exp Urol. 9:318–328. 2021. | |
Mirzaei S, Paskeh MDA, Saghari Y, Zarrabi A, Hamblin MR, Entezari M, Hashemi M, Aref AR, Hushmandi K, Kumar AP, et al: Transforming growth factor-beta (TGF-β) in prostate cancer: A dual function mediator? Int J Biol Macromol. 206:435–452. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang M, Fu M, Wang J, Xia C, Zhang H, Xiong Y, He J, Liu J, Liu B, Pan S and Liu F: TGF-β1-activated cancer-associated fibroblasts promote breast cancer invasion, metastasis and epithelial-mesenchymal transition by autophagy or overexpression of FAP-α. Biochem Pharmacol. 188:1145272021. View Article : Google Scholar | |
Roane BM, Arend RC and Birrer MJ: Review: Targeting the transforming growth factor-beta pathway in ovarian cancer. Cancers (Basel). 11:6682019. View Article : Google Scholar | |
Lamora A, Talbot J, Bougras G, Amiaud J, Leduc M, Chesneau J, Taurelle J, Stresing V, Le Deley MC, Heymann MF, et al: Overexpression of smad7 blocks primary tumor growth and lung metastasis development in osteosarcoma. Clin Cancer Res. 20:5097–5112. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Yang S, Sun G, Huang W and Zhang Y: Transforming growth factor-beta polymorphisms and serum level in the development of osteosarcoma. DNA Cell Biol. 33:802–806. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bu MT, Chandrasekhar P, Ding L and Hugo W: The roles of TGF-β and VEGF pathways in the suppression of antitumor immunity in melanoma and other solid tumors. Pharmacol Ther. 240:1082112022.Epub ahead of print. View Article : Google Scholar | |
Zheng C, Zhou XW and Wang JZ: The dual roles of cytokines in Alzheimer's disease: Update on interleukins, TNF-α, TGF-β and IFN-γ. Transl Neurodegener. 5:72016. View Article : Google Scholar | |
Park JK, Lee KJ, Kim JY and Kim H: The association of blood-based inflammatory factors IL-1β, TGF-β and CRP with cognitive function in Alzheimer's disease and mild cognitive impairment. Psychiatry Investig. 18:11–18. 2021. View Article : Google Scholar : PubMed/NCBI | |
van der Kraan PM: The changing role of TGFβ in healthy, ageing and osteoarthritic joints. Nat Rev Rheumatol. 13:155–163. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kuźnik-Trocha K, Winsz-Szczotka K, Komosińska-Vassev K, Jura-Półtorak A, Kotulska-Kucharz A, Kucharz EJ, Kotyla P and Olczyk K: Plasma glycosaminoglycan profiles in systemic sclerosis: Associations with MMP-3, MMP-10, TIMP-1, TIMP-2, and TGF-beta. Biomed Res Int. 2020:64165142020. View Article : Google Scholar | |
Wu WS, Ling CH, Lee MC, Cheng CC, Chen RF, Lin CF, You RI and Chen YC: Targeting Src-Hic-5 signal cascade for preventing migration of cholangiocarcinoma cell HuCCT1. Biomedicines. 10:10222022. View Article : Google Scholar : PubMed/NCBI |