1
|
Ren SC, Mao N, Yi S, Ma X, Zou JQ, Tang X
and Fan JM: Vascular calcification in chronic kidney disease: An
update and perspective. Aging Dis. 13:673–697. 2022. View Article : Google Scholar : PubMed/NCBI
|
2
|
Nelson AJ, Raggi P, Wolf M, Gold AM,
Chertow GM and Roe MT: Targeting vascular calcification in chronic
kidney disease. JACC Basic Transl Sci. 5:398–412. 2020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Denker M, Boyle S, Anderson AH, Appel LJ,
Chen J, Fink JC, Flack J, Go AS, Horwitz E, Hsu CY, et al: Chronic
renal insufficiency cohort study (CRIC): Overview and summary of
selected findings. Clin J Am Soc Nephrol. 10:2073–2083. 2015.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Dube P, DeRiso A, Patel M, Battepati D,
Khatib-Shahidi B, Sharma H, Gupta R, Malhotra D, Dworkin L, Haller
S and Kennedy D: Vascular calcification in chronic kidney disease:
Diversity in the vessel wall. Biomedicines. 9:4042021. View Article : Google Scholar : PubMed/NCBI
|
5
|
Düsing P, Zietzer A, Goody PR, Hosen MR,
Kurts C, Nickenig G and Jansen F: Vascular pathologies in chronic
kidney disease: Pathophysiological mechanisms and novel therapeutic
approaches. J Mol Med (Berl). 99:335–348. 2021. View Article : Google Scholar
|
6
|
Wang XR, Zhang JJ, Xu XX and Wu YG:
Prevalence of coronary artery calcification and its association
with mortality, cardiovascular events in patients with chronic
kidney disease: A systematic review and meta-analysis. Ren Fail.
41:244–256. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lanzer P, Boehm M, Sorribas V, Thiriet M,
Janzen J, Zeller T, St Hilaire C and Shanahan C: Medial vascular
calcification revisited: Review and perspectives. Eur Heart J.
35:1515–1525. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yamada S and Giachelli CM: Vascular
calcification in CKD-MBD: Roles for phosphate, FGF23, and Klotho.
Bone. 100:87–93. 2017. View Article : Google Scholar :
|
9
|
Raggi P: Cardiovascular calcification in
end stage renal disease. Contrib Nephrol. 149:272–278. 2005.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Chen J, Budoff MJ, Reilly MP, Yang W,
Rosas SE, Rahman M, Zhang X, Roy JA, Lustigova E, Nessel L, et al:
Coronary artery calcification and risk of cardiovascular disease
and death among patients with chronic kidney disease. JAMA Cardiol.
2:635–643. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Fang Y, Ginsberg C, Sugatani T,
Monier-Faugere MC, Malluche H and Hruska KA: Early chronic kidney
disease-mineral bone disorder stimulates vascular calcification.
Kidney Int. 85:142–150. 2014. View Article : Google Scholar
|
12
|
Toussaint ND, Pedagogos E, Tan SJ, Badve
SV, Hawley CM, Perkovic V and Elder GJ: Phosphate in early chronic
kidney disease: Associations with clinical outcomes and a target to
reduce cardiovascular risk. Nephrology (Carlton). 17:433–444. 2012.
View Article : Google Scholar
|
13
|
Kapustin AN, Chatrou ML, Drozdov I, Zheng
Y, Davidson SM, Soong D, Furmanik M, Sanchis P, De Rosales RT,
Alvarez-Hernandez D, et al: Vascular smooth muscle cell
calcification is mediated by regulated exosome secretion. Circ Res.
116:1312–1323. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Qin Z, Liao R, Xiong Y, Jiang L, Li J,
Wang L, Han M, Sun S, Geng J, Yang Q, et al: A narrative review of
exosomes in vascular calcification. Ann Transl Med. 9:5792021.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Pan W, Liang J, Tang H, Fang X, Wang F,
Ding Y, Huang H and Zhang H: Differentially expressed microRNA
profiles in exosomes from vascular smooth muscle cells associated
with coronary artery calcification. Int J Biochem Cell Biol.
118:1056452020. View Article : Google Scholar
|
16
|
Li S, Zhan JK, Wang YJ, Lin X, Zhong JY,
Wang Y, Tan P, He JY, Cui XJ, Chen YY, et al: Exosomes from
hyperglycemia-stimulated vascular endothelial cells contain
versican that regulate calcification/senescence in vascular smooth
muscle cells. Cell Biosci. 9:12019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Huang A, Guo G, Yu Y and Yao L: The roles
of collagen in chronic kidney disease and vascular calcification. J
Mol Med (Berl). 99:75–92. 2021. View Article : Google Scholar
|
18
|
Song X, Yang B, Qiu F, Jia M and Fu G:
High glucose and free fatty acids induce endothelial progenitor
cell senescence via PGC-1α/SIRT1 signaling pathway. Cell Biol Int.
41:1146–1159. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu H, Yuan L, Xu S and Wang K:
Endothelial cell and macro-phage regulation of vascular smooth
muscle cell calcification modulated by cholestane-3beta, 5alpha,
6beta-triol. Cell Biol Int. 31:900–907. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lin X, Li S, Wang YJ, Wang Y, Zhong JY, He
JY, Cui XJ, Zhan JK and Liu YS: Exosomal Notch3 from high
glucose-stimulated endothelial cells regulates vascular smooth
muscle cells calcification/aging. Life Sci. 232:1165822019.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Luo Z, Sun Y, Qi B, Lin J, Chen Y, Xu Y
and Chen J: Human bone marrow mesenchymal stem cell-derived
extracellular vesicles inhibit shoulder stiffness via let-7a/Tgfbr1
axis. Bioact Mater. 17:344–359. 2022. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang C, Wang XY, Zhang P, He TC, Han JH,
Zhang R, Lin J, Fan J, Lu L, Zhu WW, et al: Cancer-derived exosomal
HSPC111 promotes colorectal cancer liver metastasis by
reprogramming lipid metabolism in cancer-associated fibroblasts.
Cell Death Dis. 13:572022. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lee JH, Song J, Kim IG, You G, Kim H, Ahh
JH and Mok H: Exosome-mediated delivery of transforming growth
factor-β receptor 1 kinase inhibitors and toll-like receptor 7/8
agonists for combination therapy of tumors. Acta Biomater.
141:354–363. 2022. View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
25
|
Yang W, Zou B, Hou Y, Yan W, Chen T and Qu
S: Extracellular vesicles in vascular calcification. Clin Chim
Acta. 499:118–122. 2019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kalluri R and LeBleu VS: The biology,
function, and biomedical applications of exosomes. Science.
367:eaau69772020. View Article : Google Scholar :
|
27
|
Bano S, Tandon S and Tandon C: Emerging
role of exosomes in arterial and renal calcification. Hum Exp
Toxicol. 40:1385–1402. 2021. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liberman M and Marti LC: Vascular
calcification regulation by exosomes in the vascular wall. Adv Exp
Med Biol. 998:151–160. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bobryshev YV, Killingsworth MC, Huynh TG,
Lord RS, Grabs AJ and Valenzuela SM: Are calcifying matrix vesicles
in atherosclerotic lesions of cellular origin? Basic Res Cardiol.
102:133–143. 2007. View Article : Google Scholar
|
30
|
Bommanavar S, Hosmani J, Togoo RA, Baeshen
HA, Raj AT, Patil S, Bhandi S and Birkhed D: Role of matrix
vesicles and crystal ghosts in bio-mineralization. J Bone Miner
Metab. 38:759–764. 2020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kapustin AN, Davies JD, Reynolds JL,
McNair R, Jones GT, Sidibe A, Schurgers LJ, Skepper JN, Proudfoot
D, Mayr M and Shanahan CM: Calcium regulates key components of
vascular smooth muscle cell-derived matrix vesicles to enhance
mineralization. Circ Res. 109:e1–e12. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Goettsch C, Hutcheson JD, Aikawa M, Iwata
H, Pham T, Nykjaer A, Kjolby M, Rogers M, Michel T, Shibasaki M, et
al: Sortilin mediates vascular calcification via its recruitment
into extracellular vesicles. J Clin Invest. 126:1323–1336. 2016.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Bardeesi ASA, Gao J, Zhang K, Yu S, Wei M,
Liu P and Huang H: A novel role of cellular interactions in
vascular calcification. J Transl Med. 15:952017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Xu F, Zhong JY, Lin X, Shan SK, Guo B,
Zheng MH, Wang Y, Li F, Cui RR, Wu F, et al: Melatonin alleviates
vascular calcification and ageing through exosomal miR-204/miR-211
cluster in a paracrine manner. J Pineal Res. 68:e126312020.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Guo Y, Bao S, Guo W, Diao Z, Wang L, Han
X, Guo W and Liu W: Bone marrow mesenchymal stem cell-derived
exosomes alleviate high phosphorus-induced vascular smooth muscle
cells calcification by modifying microRNA profiles. Funct Integr
Genomics. 19:633–643. 2019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li J, Jiang R, Hou Y and Lin A:
Mesenchymal stem cells-derived exosomes prevent sepsis-induced
myocardial injury by a CircRTN4/miR-497-5p/MG-53 pathway. Biochem
Biophys Res Commun. 618:133–140. 2022. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kim HS and Lee MS: STAT1 as a key
modulator of cell death. Cell Signal. 19:454–465. 2007. View Article : Google Scholar
|
38
|
Xin P, Xu X, Deng C, Liu S, Wang Y, Zhou
X, Ma H, Wei D and Sun S: The role of JAK/STAT signaling pathway
and its inhibitors in diseases. Int Immunopharmacol. 80:1062102020.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Dodington DW, Desai HR and Woo M:
JAK/STAT-emerging players in metabolism. Trends Endocrinol Metab.
29:55–65. 2018. View Article : Google Scholar
|
40
|
Smyth AE, Kaleviste E, Snow A, Kisand K,
McMahon CJ, Cant AJ and Leahy TR: Aortic calcification in a patient
with a gain-of-function STAT1 mutation. J Clin Immunol. 38:468–470.
2018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kunigal S, Kusch A, Tkachuk N, Tkachuk S,
Jerke U, Haller H and Dumler I: Monocyte-expressed urokinase
inhibits vascular smooth muscle cell growth by activating Stat1.
Blood. 102:4377–4383. 2003. View Article : Google Scholar : PubMed/NCBI
|
42
|
Demyanets S, Kaun C, Rychli K,
Pfaffenberger S, Kastl SP, Hohensinner PJ, Rega G, Katsaros KM,
Afonyushkin T, Bochkov VN, et al: Oncostatin M-enhanced vascular
endothelial growth factor expression in human vascular smooth
muscle cells involves PI3K-, p38 MAPK-, Erk1/2- and
STAT1/STAT3-dependent pathways and is attenuated by interferon-γ.
Basic Res Cardiol. 106:217–231. 2011. View Article : Google Scholar
|
43
|
Kirchmer MN, Franco A, Albasanz-Puig A,
Murray J, Yagi M, Gao L, Dong ZM and Wijelath ES: Modulation of
vascular smooth muscle cell phenotype by STAT-1 and STAT-3.
Atherosclerosis. 234:169–175. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Cossetti C, Iraci N, Mercer TR, Leonardi
T, Alpi E, Drago D, Alfaro-Cervello C, Saini HK, Davis MP,
Schaeffer J, et al: Extracellular vesicles from neural stem cells
transfer IFN-γ via Ifngr1 to activate Stat1 signaling in target
cells. Mol Cell. 56:193–204. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Cai M, Shi Y, Zheng T, Hu S, Du K, Ren A,
Jia X, Chen S, Wang J and Lai S: Mammary epithelial cell derived
exosomal MiR-221 mediates M1 macrophage polarization via
SOCS1/STATs to promote inflammatory response. Int Immunopharmacol.
83:1064932020. View Article : Google Scholar : PubMed/NCBI
|
46
|
Buffolo F, Monticone S, Camussi G and
Aikawa E: Role of extracellular vesicles in the pathogenesis of
vascular damage. Hypertension. 79:863–873. 2022. View Article : Google Scholar : PubMed/NCBI
|
47
|
Godo S and Shimokawa H: Endothelial
functions. Arterioscler Thromb Vasc Biol. 37:e108–e114. 2017.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Taguchi K, Hida M, Narimatsu H, Matsumoto
T and Kobayashi T: Glucose and angiotensin II-derived endothelial
extracellular vesicles regulate endothelial dysfunction via ERK1/2
activation. Pflugers Arch. 469:293–302. 2017. View Article : Google Scholar
|
49
|
Brodsky SV, Zhang F, Nasjletti A and
Goligorsky MS: Endothelium-derived microparticles impair
endothelial function in vitro. Am J Physiol Heart Circ Physiol.
286:H1910–H1915. 2004. View Article : Google Scholar : PubMed/NCBI
|
50
|
Zhang H, Liu J, Qu D, Wang L, Wong CM, Lau
CW, Huang Y, Wang YF, Huang H, Xia Y, et al: Serum exosomes mediate
delivery of arginase 1 as a novel mechanism for endothelial
dysfunction in diabetes. Proc Natl Acad Sci USA. 115:E6927–E6936.
2018.PubMed/NCBI
|
51
|
Van den Bergh G, Van den Branden A,
Opdebeeck B, Fransen P, Neven E, De Meyer GRY, D'Haese PC and
Verhulst A: Endothelial dysfunction aggravates arterial media
calcification in warfarin administered rats. FASEB J.
36:e223152022. View Article : Google Scholar : PubMed/NCBI
|
52
|
Grześk G, Kozinski M, Tantry US, Wicinski
M, Fabiszak T, Navarese EP, Grzesk E, Jeong YH, Gurbel PA and
Kubica J: High-dose, but not low-dose, aspirin impairs
anticontractile effect of ticagrelor following ADP stimulation in
rat tail artery smooth muscle cells. Biomed Res Int.
2013:9282712013. View Article : Google Scholar
|
53
|
Bosman M, Krüger DN, Favere K, Wesley CD,
Neutel CHG, Van Asbroeck B, Diebels OR, Faes B, Schenk TJ, Martinet
W, et al: Doxorubicin impairs smooth muscle cell contraction: Novel
insights in vascular toxicity. Int J Mol Sci. 22:128122021.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Bundy K, Boone J and Simpson CL: Wnt
signaling in vascular calcification. Front Cardiovasc Med.
8:7084702021. View Article : Google Scholar : PubMed/NCBI
|
55
|
Gaur T, Lengner CJ, Hovhannisyan H, Bhat
RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS
and Lian JB: Canonical WNT signaling promotes osteogenesis by
directly stimulating Runx2 gene expression. J Biol Chem.
280:33132–33140. 2005. View Article : Google Scholar : PubMed/NCBI
|
56
|
Cai T, Sun D, Duan Y, Wen P, Dai C, Yang J
and He W: WNT/β-catenin signaling promotes VSMCs to osteogenic
trans-differentiation and calcification through directly modulating
Runx2 gene expression. Exp Cell Res. 345:206–217. 2016. View Article : Google Scholar : PubMed/NCBI
|
57
|
Liao R, Wang L, Li J, Sun S, Xiong Y, Li
Y, Han M, Jiang H, Anil M and Su B: Vascular calcification is
associated with Wnt-signaling pathway and blood pressure
variability in chronic kidney disease rats. Nephrology (Carlton).
25:264–272. 2020. View Article : Google Scholar
|
58
|
Wu N, Liu GB, Zhang YM, Wang Y, Zeng HT
and Xiang H: MiR-708-5p/Pit-1 axis mediates high phosphate-induced
calcification in vascular smooth muscle cells via Wnt8b/β-catenin
pathway. Kaohsiung J Med Sci. 38:653–661. 2022. View Article : Google Scholar : PubMed/NCBI
|
59
|
Cong J, Cheng B, Liu J and He P: RTEF-1
inhibits vascular smooth muscle cell calcification through
regulating Wnt/β-catenin signaling pathway. Calcif Tissue Int.
109:203–214. 2021. View Article : Google Scholar : PubMed/NCBI
|
60
|
Zhao L, Li X, Su J, Wang Gong F, Lu J and
Wei Y: STAT1 determines aggressiveness of glioblastoma both in vivo
and in vitro through wnt/β-catenin signalling pathway. Cell Biochem
Funct. 38:630–641. 2020. View Article : Google Scholar : PubMed/NCBI
|
61
|
Yuan X, He F, Zheng F, Xu Y and Zou J:
Interferon-gamma facilitates neurogenesis by activating
Wnt/β-catenin cell signaling pathway via promotion of STAT1
regulation of the β-catenin promoter. Neuroscience. 448:219–233.
2020. View Article : Google Scholar : PubMed/NCBI
|
62
|
Xie M, Fu Q, Wang PP and Cui YL:
STAT1-induced upregulation lncRNA LINC00958 accelerates the
epithelial ovarian cancer tumorigenesis by regulating Wnt/β-catenin
signaling. Dis Markers. 2021:14050452021. View Article : Google Scholar
|