Role of microRNAs and long non‑coding RNAs in glucocorticoid signaling (Review)
- Authors:
- Katerina Pierouli
- Louis Papageorgiou
- Thanasis Mitsis
- Eleni Papakonstantinou
- Io Diakou
- Stefanos Leptidis
- Markezina Sigala
- Konstantina Dragoumani
- Demetrios A. Spandidos
- Flora Bacopoulou
- George P. Chrousos
- George Ν. Goulielmos
- Elias Eliopoulos
- Dimitrios Vlachakis
-
Affiliations: Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece, Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece, University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece - Published online on: November 11, 2022 https://doi.org/10.3892/ijmm.2022.5203
- Article Number: 147
-
Copyright: © Pierouli et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Chrousos GP: Stress and disorders of the stress system. Nat Rev Endocrinol. 5:374–381. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tsigos C, Kyrou I, Kassi E and Chrousos GP: Stress: Endocrine Physiology and Pathophysiology. Endotext. Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dungan K, Grossman A, Hershman JM, Hofland J, Kaltsas G, et al: MDText.com, Inc. Copyright© 20002021, MDText.com, Inc. South Dartmouth, MA: 2000 | |
Charmandari E, Kino T, Souvatzoglou E and Chrousos GP: Pediatric stress: Hormonal mediators and human development. Horm Res. 59:161–179. 2003.PubMed/NCBI | |
Yaribeygi H, Panahi Y, Sahraei H, Johnston TP and Sahebkar A: The impact of stress on body function: A review. EXCLI J. 16:1057–1072. 2017.PubMed/NCBI | |
Russell G and Lightman S: The human stress response. Nat Re Endocrinol. 15:525–534. 2019. View Article : Google Scholar | |
Smith SM and Vale WW: The role of the hypothalamicpituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci. 8:383–395. 2006. View Article : Google Scholar | |
Nicolaides NC, Charmandari E, Kino T and Chrousos GP: Stress-related and circadian secretion and target tissue actions of glucocorticoids: Impact on Health. Front Endocrinol (Lausanne). 8:70. 2017. View Article : Google Scholar | |
Dunlavey CJ: Introduction to the Hypothalamic-pituitary-adrenal axis: Healthy and dysregulated stress responses, developmental stress and neurodegeneration. J Undergrad Neurosci Educ. 16:R59–R60. 2018.PubMed/NCBI | |
DeMorrow S: Role of the Hypothalamic-pituitary-adrenal axis in health and disease. Int J Mol Sci. 19:9862018. View Article : Google Scholar | |
Chrousos GP: Stressors, stress, and neuroendocrine integration of the adaptive response. The 1997 hans selye memorial lecture. Ann N Y Acad Sci. 851:311–335. 1998. View Article : Google Scholar : PubMed/NCBI | |
Evanson NK, Tasker JG, Hill MN, Hillard CJ and Herman JP: Fast feedback inhibition of the HPA axis by glucocorticoids is mediated by endocannabinoid signaling. Endocrinology. 151:4811–4819. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Gou X, Jiang T and Ouyang J: The effects of microRNAs on glucocorticoid responsiveness. J Cancer Res Clin Oncoly. 143:1005–1011. 2017. View Article : Google Scholar | |
Kawa MP, Sobuś A, Litwińska Z, Osowicz-Korolonek L, Cymbaluk-Płoska A, Stecewicz I, Zagrodnik E, Romanowska H, Walczak M, Syrenicz A and Machaliński B: Expression of selected angiogenesis-related small microRNAs in patients with abnormally increased secretion of glucocorticoids. Endokryno Pol. 70:489–495. 2019. View Article : Google Scholar | |
Kino T, Hurt DE, Ichijo T, Nader N and Chrousos GP: Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal. 3:ra82010. View Article : Google Scholar : PubMed/NCBI | |
Douma LG, Solocinski K, Masten SH, Barral DH, Barilovits SJ, Jeffers LA, Alder KD, Patel R, Wingo CS, Brown KD, et al: EDN1-AS, a novel long non-coding rna regulating endothelin-1 in human proximal tubule cells. Front Physiol. 11:2092020. View Article : Google Scholar : | |
Silverman MN and Sternberg EM: Glucocorticoid regulation of inflammation and its functional correlates: From HPA axis to glucocorticoid receptor dysfunction. Ann N Y Acad Sci. 1261:55–63. 2012. View Article : Google Scholar | |
Timmermans S, Souffriau J and Libert C: A general introduction to glucocorticoid biology. Front Immunol. 10:1545. 2019. View Article : Google Scholar : PubMed/NCBI | |
Flynn BP: Glucocorticoid ultradian rhythms. Curr Opin Endocrine Metabolic Res. 25:1003622022. View Article : Google Scholar | |
Kalafatakis K, Russell GM, Ferguson SG, Grabski M, Harmer CJ, Munafò MR, Marchant N, Wilson A, Brooks JC, Thakrar J, et al: Glucocorticoid ultradian rhythmicity differentially regulates mood and resting state networks in the human brain: A randomised controlled clinical trial. Psychoneuroendocrinology. 124:1050962021. View Article : Google Scholar : | |
Dickmeis T: Glucocorticoids and the circadian clock. J Ndocrinol. 200:3–22. 2009. View Article : Google Scholar | |
Sevilla LM and Pérez P: Roles of the Glucocorticoid and mineralocorticoid receptors in skin pathophysiology. Int J Mol Sci. 19:19062018. View Article : Google Scholar : | |
Sarabdjitsingh RA, Meijer OC and de Kloet ER: Specificity of glucocorticoid receptor primary antibodies for analysis of receptor localization patterns in cultured cells and rat hippocampus. Brain Res. 1331:1–11. 2010. View Article : Google Scholar : PubMed/NCBI | |
Desmet SJ and De Bosscher K: Glucocorticoid receptors: Finding the middle ground. J Clin Invest. 127:1136–1145. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nicolaides NC, Skyrla E, Vlachakis D, Psarra AM, Moutsatsou P, Sertedaki A, Kossida S and Charmandari E: Functional characterization of the hGRαT556I causing Chrousos syndrome. Eur J Clin Invest. 46:42–49. 2016. View Article : Google Scholar | |
Paragliola RM, Papi G, Pontecorvi A and Corsello SM: Treatment with synthetic glucocorticoids and the hypothalamus-pituitary-Adrenal Axis. Int J Mol Sci. 18:22012017. View Article : Google Scholar : | |
Mazaira GI, Zgajnar NR, Lotufo CM, Daneri-Becerra C, Sivils JC, Soto OB, Cox MB and Galigniana MD: The nuclear receptor field: A historical overview and future challenges. Nucl Receptor Res. 5:1013202018. View Article : Google Scholar : PubMed/NCBI | |
Porter BA, Ortiz MA, Bratslavsky G and Kotula L: Structure and function of the nuclear receptor superfamily and current targeted therapies of prostate cancer. Cancers (Basel). 11:18522019. View Article : Google Scholar | |
Weikum ER, Okafor CD, D'Agostino EH, Colucci JK and Ortlund EA: Structural analysis of the glucocorticoid receptor ligand-binding domain in complex with triamcinolone acetonide and a fragment of the atypical coregulator, small heterodimer partner. Mol Pharmacol. 92:12–21. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tan CK and Wahli W: A trilogy of glucocorticoid receptor actions. Proc Natl Acad Sci USA. 113:1115–1117. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nicolaides NC, Galata Z, Kino T, Chrousos GP and Charmandari E: The human glucocorticoid receptor: Molecular basis of biologic function. Steroids. 75:1–12. 2010. View Article : Google Scholar : | |
Kaziales A, Barkovits K, Marcus K and Richter K: Glucocorticoid receptor complexes form cooperatively with the Hsp90 co-chaperones Pp5 and FKBPs. Sci Rep. 10:10733. 2020. View Article : Google Scholar : PubMed/NCBI | |
Baker JD, Ozsan I, Rodriguez Ospina S, Gulick D and Blair LJ: Hsp90 heterocomplexes regulate steroid hormone receptors: From stress response to psychiatric disease. Int J Mol Sci. 20:792018. View Article : Google Scholar | |
Louw A: GR Dimerization and the Impact of GR Dimerization on GR protein stability and half-life. Front Immunol. 10:1693. 2019. View Article : Google Scholar : PubMed/NCBI | |
Robertson S, Hapgood JP and Louw A: Glucocorticoid receptor concentration and the ability to dimerize influence nuclear translocation and distribution. Steroids. 78:182–194. 2013. View Article : Google Scholar | |
Frego L and Davidson W: Conformational changes of the glucocorticoid receptor ligand binding domain induced by ligand and cofactor binding, and the location of cofactor binding sites determined by hydrogen/deuterium exchange mass spectrometry. Protein Sci. 15:722–730. 2006. View Article : Google Scholar : PubMed/NCBI | |
Vandevyver S, Dejager L and Libert C: On the trail of the glucocorticoid receptor: Into the nucleus and back. Traffic. 13:364–374. 2012. View Article : Google Scholar | |
Hudson WH, Youn C and Ortlund EA: The structural basis of direct glucocorticoid-mediated transrepression. Nat Struct Mol Biol. 20:53–58. 2013. View Article : Google Scholar : | |
Groeneweg FL, van Royen ME, Fenz S, Keizer VI, Geverts B, Prins J, de Kloet ER, Houtsmuller AB, Schmidt TS and Schaaf MJ: Quantitation of glucocorticoid receptor DNA-binding dynamics by single-molecule microscopy and FRAP. PLoS One. 9:e905322014. View Article : Google Scholar : PubMed/NCBI | |
Quatrini L and Ugolini S: New insights into the cell- and tissue-specificity of glucocorticoid actions. Cell Mol Immunol. 18:269–278. 2021. View Article : Google Scholar | |
Petta I, Dejager L, Ballegeer M, Lievens S, Tavernier J, De Bosscher K and Libert C: The Interactome of the glucocorticoid receptor and its influence on the actions of glucocorticoids in combatting inflammatory and infectious diseases. Microbiol Mol Biol Rev. 80:495–522. 2016. View Article : Google Scholar : PubMed/NCBI | |
Oeckinghaus A and Ghosh S: The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 1:a0000342009. View Article : Google Scholar | |
Rao NA, McCalman MT, Moulos P, Francoijs KJ, Chatziioannou A, Kolisis FN, Alexis MN, Mitsiou DJ and Stunnenberg HG: Coactivation of GR and NFKB alters the repertoire of their binding sites and target genes. Genome Res. 21:1404–1416. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shimba A and Ikuta K: Control of immunity by glucocorticoids in health and disease. Semin Immunopathol. 42:669–680. 2020. View Article : Google Scholar : PubMed/NCBI | |
Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT, et al: The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38:W214–W220. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wilson KS, Tucker CS, Al-Dujaili EA, Holmes MC, Hadoke PW, Kenyon CJ and Denvir MA: Early-life glucocorticoids programme behaviour and metabolism in adulthood in zebrafish. J Endocrinol. 230:125–142. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rog-Zielinska EA, Craig MA, Manning JR, Richardson RV, Gowans GJ, Dunbar DR, Gharbi K, Kenyon CJ, Holmes MC, Hardie DG, et al: Glucocorticoids promote structural and functional maturation of foetal cardiomyocytes: A role for PGC-1α. Cell Death Differ. 22:1106–1116. 2015. View Article : Google Scholar | |
Whirledge S and DeFranco DB: Glucocorticoid signaling in health and disease: Insights from tissue-specific GR knockout mice. Endocrinology. 159:46–64. 2018. View Article : Google Scholar : | |
Meszaros K and Patocs A: Glucocorticoids influencing Wnt/β-catenin pathway; multiple sites, heterogeneous effects. Molecules. 25:14892020. View Article : Google Scholar | |
Steptoe A and Kivimäki M: Stress and cardiovascular disease. Nat Rev Cardiol. 9:360–370. 2012. View Article : Google Scholar : PubMed/NCBI | |
Duma D, Collins JB, Chou JW and Cidlowski JA: Sexually dimorphic actions of glucocorticoids provide a link to inflammatory diseases with gender differences in prevalence. Sci Signal. 3:ra742010. View Article : Google Scholar : PubMed/NCBI | |
Goodwin JE, Zhang J and Geller DS: A critical role for vascular smooth muscle in acute glucocorticoid-induced hypertension. J Am Soc Nephrol. 19:1291–1299. 2008. View Article : Google Scholar : PubMed/NCBI | |
Goodwin JE, Feng Y, Velazquez H and Sessa WC: Endothelial glucocorticoid receptor is required for protection against sepsis. Proc Natl Acad Sci USA. 110:306–311. 2013. View Article : Google Scholar : | |
Akalestou E, Genser L and Rutter GA: Glucocorticoid metabolism in obesity and following weight loss. Front Endocrinol (Lausanne). 11:592020. View Article : Google Scholar | |
Kuo T, McQueen A, Chen TC and Wang JC: Regulation of glucose homeostasis by glucocorticoids. Adv Exp Med Biol. 872:99–126. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ferris HA and Kahn CR: New mechanisms of glucocorticoid-induced insulin resistance: Make no bones about it. J Clin Invest. 122:3854–3857. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vegiopoulos A and Herzig S: Glucocorticoids, metabolism and metabolic diseases. Mol Cell Endocrinol. 275:43–61. 2007. View Article : Google Scholar : PubMed/NCBI | |
Madalena KM and Lerch JK: The effect of glucocorticoid and glucocorticoid receptor interactions on brain, spinal cord, and glial cell plasticity. Neural Plast. 2017:86409702017. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Lombès M and Le Menuet D: Glucocorticoid receptor represses brain-derived neurotrophic factor expression in neuron-like cells. Mol Brain. 10:122017. View Article : Google Scholar : PubMed/NCBI | |
Myers B, McKlveen JM and Herman JP: Glucocorticoid actions on synapses, circuits, and behavior: Implications for the energetics of stress. Front Neuroendocrinol. 35:180–196. 2014. View Article : Google Scholar | |
Joëls M: Corticosteroids and the brain. J Endocrinol. 238:R121–R130. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fietta P and Fietta P: Glucocorticoids and brain functions. Riv Biol. 100:403–418. 2007. | |
McEwen BS and Akil H: Revisiting the stress concept: Implications for affective disorders. J Neurosci. 40:12–21. 2020. View Article : Google Scholar : PubMed/NCBI | |
Smoller JW and Finn CT: Family, twin, and adoption studies of bipolar disorder. Am J Med Genet C Semin Med Genet. 123C:48–58. 2003. View Article : Google Scholar : PubMed/NCBI | |
Geschwind DH and Flint J: Genetics and genomics of psychiatric disease. Science. 349:1489–1494. 2015. View Article : Google Scholar : PubMed/NCBI | |
Akil H, Gordon J, Hen R, Javitch J, Mayberg H, McEwen B, Meaney MJ and Nestler EJ: Treatment resistant depression: A multi-scale, systems biology approach. Neurosci Biobehav Rev. 84:272–288. 2018. View Article : Google Scholar | |
Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, Adams MJ, Agerbo E, Air TM, Andlauer TMF, et al: Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet. 50:668–681. 2018. View Article : Google Scholar : PubMed/NCBI | |
Aurbach EL, Inui EG, Turner CA, Hagenauer MH, Prater KE, Li JZ, Absher D, Shah N, Blandino P Jr, Bunney WE, et al: Fibroblast growth factor 9 is a novel modulator of negative affect. Proc Natl Acad Sci USA. 112:11953–11958. 2015. View Article : Google Scholar : PubMed/NCBI | |
Salmaso N, Stevens HE, McNeill J, ElSayed M, Ren Q, Maragnoli ME, Schwartz ML, Tomasi S, Sapolsky RM, Duman R and Vaccarino FM: Fibroblast growth factor 2 modulates hypothalamic pituitary axis activity and anxiety behavior through glucocorticoid receptors. Biol Psychiatry. 80:479–489. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chaudhury S, Aurbach EL, Sharma V, Blandino P Jr, Turner CA, Watson SJ and Akil H: FGF2 is a target and a trigger of epigenetic mechanisms associated with differences in emotionality: Partnership with H3K9me3. Proc Natl Acad Sci USA. 111:11834–11839. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tyrka AR, Parade SH, Eslinger NM, Marsit CJ, Lesseur C, Armstrong DA, Philip NS, Josefson B and Seifer R: Methylation of exons 1D, 1F, and 1H of the glucocorticoid receptor gene promoter and exposure to adversity in preschool-aged children. Dev Psychopathol. 27:577–585. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sinclair D, Fillman SG, Webster MJ and Weickert CS: Dysregulation of glucocorticoid receptor co-factors FKBP5, BAG1 and PTGES3 in prefrontal cortex in psychotic illness. Sci Rep. 3:35392013. View Article : Google Scholar : PubMed/NCBI | |
Sinclair D, Tsai SY, Woon HG and Weickert CS: Abnormal glucocorticoid receptor mRNA and protein isoform expression in the prefrontal cortex in psychiatric illness. Neuropsychopharmacology. 36:2698–2709. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sinclair D, Webster MJ, Fullerton JM and Weickert CS: Glucocorticoid receptor mRNA and protein isoform alterations in the orbitofrontal cortex in schizophrenia and bipolar disorder. BMC Psychiatry. 12:842012. View Article : Google Scholar : PubMed/NCBI | |
Kloosterman WP and Plasterk RH: The diverse functions of microRNAs in animal development and disease. Dev Cell. 11:441–450. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kozomara A and Griffiths-Jones S: miRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39:D152–D157. 2011. View Article : Google Scholar : | |
Griffiths-Jones S: miRBase: MicroRNA Sequences and Annotation. Curr Protoc Bioinformatics. Chapter 12: Unit 12.9.1-10. 2010. View Article : Google Scholar : PubMed/NCBI | |
Griffiths-Jones S, Saini HK, van Dongen S and Enright AJ: miRBase: Tools for microRNA genomics. Nucleic Acids Res. 36:D154–D158. 2008. View Article : Google Scholar : | |
Griffiths-Jones S: miRBase: The microRNA sequence database. Methods Mol Biol. 342:129–138. 2006.PubMed/NCBI | |
Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A and Enright AJ: miRBase: MicroRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34:D140–D144. 2006. View Article : Google Scholar : | |
Griffiths-Jones S: The microRNA Registry. Nucleic Acids Res. 32:D109–D111. 2004. View Article : Google Scholar : | |
Kozomara A, Birgaoanu M and Griffiths-Jones S: miRBase: From microRNA sequences to function. Nucleic Acids Res. 47:D155–D162. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hollins SL and Cairns MJ: MicroRNA: Small RNA mediators of the brains genomic response to environmental stress. Prog Neurobiol. 143:61–81. 2016. View Article : Google Scholar : PubMed/NCBI | |
de Kloet ER, Fitzsimons CP, Datson NA, Meijer OC and Vreugdenhil E: Glucocorticoid signaling and stress-related limbic susceptibility pathway: About receptors, transcription machinery and microRNA. Brain Res. 1293:129–141. 2009. View Article : Google Scholar : PubMed/NCBI | |
Moisiadis VG and Matthews SG: Glucocorticoids and fetal programming part 2: Mechanisms. Nat Rev Endocrinol. 10:403–411. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pufall MA: Glucocorticoids and cancer. Adv Exp Med Biol. 872:315–333. 2015. View Article : Google Scholar : PubMed/NCBI | |
Peng Y and Croce CM: The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 1:150042016. View Article : Google Scholar : PubMed/NCBI | |
Agarwal V, Bell GW, Nam JW and Bartel DP: Predicting effective microRNA target sites in mammalian mRNAs. Elife. 4:e050052015. View Article : Google Scholar : | |
Chen Y and Wang X: miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res. 48:D127–D131. 2020. View Article : Google Scholar : | |
Liu W and Wang X: Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 20:182019. View Article : Google Scholar : PubMed/NCBI | |
Ledderose C, Möhnle P, Limbeck E, Schütz S, Weis F, Rink J, Briegel J and Kreth S: Corticosteroid resistance in sepsis is influenced by microRNA-124-induced downregulation of glucocorticoid receptor-α. Crit Care Med. 40:2745–2753. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang SS, Mu RH, Li CF, Dong SQ, Geng D, Liu Q and Yi LT: microRNA-124 targets glucocorticoid receptor and is involved in depression-like behaviors. Prog Neuropsychopharmacol Biol Psychiatry. 79:417–425. 2017. View Article : Google Scholar : PubMed/NCBI | |
Roy B, Dunbar M, Shelton RC and Dwivedi Y: Identification of MicroRNA-124-3p as a putative epigenetic signature of major depressive disorder. Neuropsychopharmacology. 42:864–875. 2017. View Article : Google Scholar : | |
Dwivedi Y: microRNA-124: A putative therapeutic target and biomarker for major depression. Expert Opin Ther Targets. 21:653–656. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vreugdenhil E, Verissimo CS, Mariman R, Kamphorst JT, Barbosa JS, Zweers T, Champagne DL, Schouten T, Meijer OC, de Kloet ER and Fitzsimons CP: MicroRNA 18 and 124a down-regulate the glucocorticoid receptor: Implications for glucocorticoid responsiveness in the brain. Endocrinology. 150:2220–2228. 2009. View Article : Google Scholar : PubMed/NCBI | |
Uchida S, Nishida A, Hara K, Kamemoto T, Suetsugi M, Fujimoto M, Watanuki T, Wakabayashi Y, Otsuki K, McEwen BS and Watanabe Y: Characterization of the vulnerability to repeated stress in Fischer 344 rats: Possible involvement of microRNA-mediated down-regulation of the glucocorticoid receptor. Eur J Neurosci. 27:2250–2261. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vallès A, Martens GJ, De Weerd P, Poelmans G and Aschrafi A: MicroRNA-137 regulates a glucocorticoid receptor-dependent signalling network: Implications for the etiology of schizophrenia. J Psychiatry Neurosc. 39:312–320. 2014. View Article : Google Scholar | |
Li S, Ma H, Yuan X, Zhou X, Wan Y and Chen S: MicroRNA-382-5p targets nuclear receptor subfamily 3 group C member 1 to regulate depressive-like behaviors induced by chronic unpredictable mild stress in rats. Neuropsychiatr Dis Treat. 16:2053–2061. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Jeong D, Nam J, Aung TN, Gim JA, Park KU and Kim SW: MicroRNA-124 regulates glucocorticoid sensitivity by targeting phosphodiesterase 4B in diffuse large B cell lymphoma. Gene. 558:173–180. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liang YN, Tang YL, Ke ZY, Chen YQ, Luo XQ, Zhang H and Huang LB: MiR-124 contributes to glucocorticoid resistance in acute lymphoblastic leukemia by promoting proliferation, inhibiting apoptosis and targeting the glucocorticoid receptor. J Steroid Biochem Mol Biol. 172:62–68. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lv M, Zhang X, Jia H, Li D, Zhang B, Zhang H, Hong M, Jiang T, Jiang Q, Lu J, et al: An oncogenic role of miR-142-3p in human T-cell acute lymphoblastic leukemia (T-ALL) by targeting glucocorticoid receptor-alpha and cAMP/PKA pathways. Leukemia. 26:769–777. 2012. View Article : Google Scholar | |
Riester A, Issler O, Spyroglou A, Rodrig SH, Chen A and Beuschlein F: ACTH-dependent regulation of microRNA as endogenous modulators of glucocorticoid receptor expression in the adrenal gland. Endocrinology. 153:212–222. 2012. View Article : Google Scholar | |
Tessel MA, Benham AL, Krett NL, Rosen ST and Gunaratne PH: Role for microRNAs in regulating glucocorticoid response and resistance in multiple myeloma. Horm Cancer. 2:182–189. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sionov RV: MicroRNAs and glucocorticoid-induced apoptosis in lymphoid malignancies. ISRN Hematol. 2013:3482122013. View Article : Google Scholar : PubMed/NCBI | |
Vigorito E, Kohlhaas S, Lu D and Leyland R: miR-155: An ancient regulator of the immune system. Immunol Rev. 253:146–157. 2013. View Article : Google Scholar : PubMed/NCBI | |
Elmesmari A, Fraser AR, Wood C, Gilchrist D, Vaughan D, Stewart L, McSharry C, McInnes IB and Kurowska-Stolarska M: MicroRNA-155 regulates monocyte chemokine and chemokine receptor expression in Rheumatoid Arthritis. Rheumatology (Oxford). 55:2056–2065. 2016. View Article : Google Scholar | |
Kurowska-Stolarska M, Alivernini S, Ballantine LE, Asquith DL, Millar NL, Gilchrist DS, Reilly J, Ierna M, Fraser AR, Stolarski B, et al: MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc Natl Acad Sci USA. 108:11193–11198. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang ZH, Liang YB, Tang H, Chen ZB, Li ZY, Hu XC and Ma ZF: Dexamethasone down-regulates the expression of microRNA-155 in the livers of septic mice. PLoS One. 8:e805472013. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Xiong S, Jiang P, Liu R, Liu X, Qian J, Zheng X and Chu Y: Glucocorticoids inhibit lipopolysaccharide-mediated inflammatory response by downregulating microRNA-155: A novel anti-inflammation mechanism. Free Radic Biol Med. 52:1307–1317. 2012. View Article : Google Scholar : PubMed/NCBI | |
Curtale G, Renzi TA, Drufuca L, Rubino M and Locati M: Glucocorticoids downregulate TLR4 signaling activity via its direct targeting by miR-511-5p. Eur J Immunol. 47:2080–2089. 2017. View Article : Google Scholar : PubMed/NCBI | |
Puimège L, Van Hauwermeiren F, Steeland S, Van Ryckeghem S, Vandewalle J, Lodens S, Dejager L, Vandevyver S, Staelens J, Timmermans S, et al: Glucocorticoid-induced microRNA-511 protects against TNF by down-regulating TNFR1. EMBO Mol Med. 7:1004–1017. 2015. View Article : Google Scholar : PubMed/NCBI | |
Clayton SA, Jones SW, Kurowska-Stolarska M and Clark AR: The role of microRNAs in glucocorticoid action. J Biol Chemistry. 293:1865–1874. 2018. View Article : Google Scholar | |
Davis TE, Kis-Toth K, Szanto A and Tsokos GC: Glucocorticoids suppress T cell function by up-regulating microRNA-98. Arthritis Rheum. 65:1882–1890. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhu QY, Liu Q, Chen JX, Lan K and Ge BX: MicroRNA-101 targets MAPK phosphatase-1 to regulate the activation of MAPKs in macrophages. J Immunol. 185:7435–7442. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mogilyansky E and Rigoutsos I: The miR-17/92 cluster: A comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 20:1603–1614. 2013. View Article : Google Scholar : PubMed/NCBI | |
Molitor is JK, McColl KS and Distelhorst CW: Glucocorticoid-mediated repression of the oncogenic microRNA cluster miR-17~92 contributes to the induction of Bim and initiation of apoptosis. Mol Endocrinol. 25:409–420. 2011. View Article : Google Scholar | |
Harada M, Pokrovskaja-Tamm K, Söderhäll S, Heyman M, Grander D and Corcoran M: Involvement of miR17 pathway in glucocorticoid-induced cell death in pediatric acute lymphoblastic leukemia. Leuk Lymphoma. 53:2041–2050. 2012. View Article : Google Scholar : PubMed/NCBI | |
Palagani A, Op de Beeck K, Naulaerts S, Diddens J, Sekhar Chirumamilla C, Van Camp G, Laukens K, Heyninck K, Gerlo S, Mestdagh P, et al: Ectopic microRNA-150-5p transcription sensitizes glucocorticoid therapy response in MM1S multiple myeloma cells but fails to overcome hormone therapy resistance in MM1R cells. PLoS One. 9:e1138422014. View Article : Google Scholar : PubMed/NCBI | |
Zhao JJ, Chu ZB, Hu Y, Lin J, Wang Z, Jiang M, Chen M, Wang X, Kang Y, Zhou Y, et al: Targeting the miR-221-222/PUMA/BAK/BAX pathway abrogates dexamethasone resistance in multiple myeloma. Cancer Res. 75:4384–4397. 2015. View Article : Google Scholar : PubMed/NCBI | |
Murray MY, Rushworth SA, Zaitseva L, Bowles KM and Macewan DJ: Attenuation of dexamethasone-induced cell death in multiple myeloma is mediated by miR-125b expression. Cell Cycle. 12:2144–2153. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kotani A, Ha D, Hsieh J, Rao PK, Schotte D, den Boer ML, Armstrong SA and Lodish HF: miR-128b is a potent glucocorticoid sensitizer in MLL-AF4 acute lymphocytic leukemia cells and exerts cooperative effects with miR-221. Blood. 114:4169–4178. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cruz-Topete D, Oakley RH, Xu X and Cidlowski JA: Glucocorticoid receptor signaling is critical for microRNA Gender-specific regulation of gene expression in the adult mouse heart. FASEB J. 31:687.4. 2017. | |
Jung SH, Wang Y, Kim T, Tarr A, Reader B, Powell N and Sheridan JF: Molecular mechanisms of repeated social defeat-induced glucocorticoid resistance: Role of microRNA. Brain Behav Immun. 44:195–206. 2015. View Article : Google Scholar | |
Ko JY, Chuang PC, Ke HJ, Chen YS, Sun YC and Wang FS: MicroRNA-29a mitigates glucocorticoid induction of bone loss and fatty marrow by rescuing Runx2 acetylation. Bone. 81:80–88. 2015. View Article : Google Scholar : PubMed/NCBI | |
Schroeder M, Jakovcevski M, Polacheck T, Drori Y, Luoni A, Röh S, Zaugg J, Ben-Dor S, Albrecht C and Chen A: Placental miR-340 mediates vulnerability to activity based anorexia in mice. Nat Commun. 9:15962018. View Article : Google Scholar : PubMed/NCBI | |
Fu Q, Liu CJ, Zhang X, Zhai ZS, Wang YZ, Hu MX, Xu XL, Zhang HW and Qin T: Glucocorticoid receptor regulates expression of microRNA-22 and downstream signaling pathway in apoptosis of pancreatic acinar cells. World J Gastroenterol. 24:5120–5130. 2018. View Article : Google Scholar : PubMed/NCBI | |
Buschmann D, González R, Kirchner B, Mazzone C, Pfaffl MW, Schelling G, Steinlein O and Reithmair M: Glucocorticoid receptor overexpression slightly shifts microRNA expression patterns in triple-negative breast cancer. Int J Oncol. 52:1765–1776. 2018.PubMed/NCBI | |
Tejos-Bravo M, Oakley RH, Whirledge SD, Corrales WA, Silva JP, García-Rojo G, Toledo J, Sanchez W, Román-Albasini L, Aliaga E, et al: Deletion of hippocampal Glucocorticoid receptors unveils sex-biased microRNA expression and neuronal morphology alterations in mice. Neurobiol Stress. 14:1003062021. View Article : Google Scholar : PubMed/NCBI | |
Zheng D, Sabbagh JJ, Blair LJ, Darling AL, Wen X and Dickey CA: MicroRNA-511 binds to FKBP5 mRNA, which encodes a chaperone protein, and regulates neuronal differentiation. J Biol Chemistry. 291:17897–17906. 2016. View Article : Google Scholar | |
Pelleymounter LL, Moon I, Johnson JA, Laederach A, Halvorsen M, Eckloff B, Abo R and Rossetti S: A novel application of pattern recognition for accurate SNP and indel discovery from high-throughput data: Targeted resequencing of the glucocorticoid receptor co-chaperone FKBP5 in a Caucasian population. Mol Genet Metab. 104:457–469. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mercer TR, Dinger ME and Mattick JS: Long non-coding RNAs: Insights into functions. Nat Rev Genet. 10:155–159. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wilusz JE, Sunwoo H and Spector DL: Long noncoding RNAs: Functional surprises from the RNA world. Genes Dev. 23:1494–1504. 2009. View Article : Google Scholar : PubMed/NCBI | |
Clemson CM, McNeil JA, Willard HF and Lawrence JB: XIST RNA paints the inactive X chromosome at interphase: Evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol. 132:259–275. 1996. View Article : Google Scholar : PubMed/NCBI | |
Swiezewski S, Liu F, Magusin A and Dean C: Cold-induced silencing by long antisense transcripts of an arabidopsis polycomb target. Nature. 462:799–802. 2009. View Article : Google Scholar : PubMed/NCBI | |
Houseley J, Rubbi L, Grunstein M, Tollervey D and Vogelauer M: A ncRNA modulates histone modification and mRNA induction in the yeast GAL gene cluster. Mol Cell. 32:685–695. 2008. View Article : Google Scholar : PubMed/NCBI | |
Reeves MB, Davies AA, McSharry BP, Wilkinson GW and Sinclair JH: Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. Science. 316:1345–1348. 2007. View Article : Google Scholar : PubMed/NCBI | |
Clark MB and Mattick JS: Long noncoding RNAs in cell biology. Semin Cell Dev Biol. 22:366–376. 2011. View Article : Google Scholar : PubMed/NCBI | |
Martianov I, Ramadass A, Serra Barros A, Chow N and Akoulitchev A: Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature. 445:666–670. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, et al: The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 39:925–938. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mourtada-Maarabouni M, Hedge VL, Kirkham L, Farzaneh F and Williams GT: Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). J Cell Sci. 121:939–946. 2008. View Article : Google Scholar : PubMed/NCBI | |
Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, et al: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 142:409–419. 2010. View Article : Google Scholar : PubMed/NCBI | |
Place RF and Noonan EJ: Non-coding RNAs turn up the heat: An emerging layer of novel regulators in the mammalian heat shock response. Cell Stress Chaperones. 19:159–172. 2014. View Article : Google Scholar : | |
Jarroux J, Morillon A and Pinskaya M: History, discovery, and classification of lncRNAs. Adv Exp Med Biol. 1008:1–46. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Bajic VB and Zhang Z: On the classification of long non-coding RNAs. RNA Biol. 10:925–933. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mayama T, Marr AK and Kino T: Differential expression of glucocorticoid receptor noncoding RNA repressor Gas5 in autoimmune and inflammatory diseases. Horm Metab Res. 48:550–557. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lucafò M, Di Silvestre A, Romano M, Avian A, Antonelli R, Martelossi S, Naviglio S, Tommasini A, Stocco G, Ventura A, Decorti G and De Iudicibus S: Role of the long non-coding RNA growth Arrest-Specific 5 in glucocorticoid response in children with inflammatory bowel disease. Basic Clin Pharmacol Toxicol. 122:87–93. 2018. View Article : Google Scholar | |
Gharesouran J, Taheri M, Sayad A, Ghafouri-Fard S, Mazdeh M and Omrani MD: The growth arrest-specific Transcript 5 (GAS5) and nuclear receptor Subfamily 3 Group C Member 1 (NR3C1): Novel Markers involved in multiple sclerosis. Int J Mol Cell Med. 7:102–110. 2018.PubMed/NCBI | |
Esguerra JLS, Ofori JK, Nagao M, Shuto Y, Karagiannopoulos A, Fadista J, Sugihara H, Groop L and Eliasson L: Glucocorticoid induces human beta cell dysfunction by involving riborepressor GAS5. LincRNA Mol Metab. 32:160–167. 2020. View Article : Google Scholar | |
Ketab FNG, Gharesouran J, Ghafouri-Fard S, Dastar S, Mazraeh SA, Hosseinzadeh H, Moradi M, Javadlar M, Hiradfar A, Rezamand A, et al: Dual biomarkers long non-coding RNA GAS5 and its target, NR3C1, contribute to acute myeloid leukemia. Exp Mol Pathol. 114:1043992020. View Article : Google Scholar : PubMed/NCBI | |
Pulido T, Adzerikho I, Channick RN, Delcroix M, Galiè N, Ghofrani HA, Jansa P, Jing ZC, Le Brun FO, Mehta S, et al: Macitentan and morbidity and mortality in pulmonary arterial hypertension. N Engl J Med. 369:809–818. 2013. View Article : Google Scholar : PubMed/NCBI | |
Speed JS and Pollock DM: Endothelin, kidney disease, and hypertension. Hypertension. 61:1142–1145. 2013. View Article : Google Scholar : PubMed/NCBI | |
Holm SJ, Sánchez F, Carlén LM, Mallbris L, Ståhle M and O'Brien KP: HLA-Cw*0602 associates more strongly to psoriasis in the Swedish population than variants of the novel 6p213 gene PSORS1C3. Acta Derm Venereol. 85:2–8. 2005. View Article : Google Scholar | |
Robinson PC, Leo PJ, Pointon JJ, Harris J, Cremin K, Bradbury LA; Wellcome Trust Case Control Consortium; Australasian Osteoporosis Genetics Consortium (AOGC); Stebbings S, Harrison AA, et al: The genetic associations of acute anterior uveitis and their overlap with the genetics of ankylosing spondylitis. Genes Immun. 17:46–51. 2016. View Article : Google Scholar | |
Murphy TM, Crawford B, Dempster EL, Hannon E, Burrage J, Turecki G, Kaminsky Z and Mill J: Methylomic profiling of cortex samples from completed suicide cases implicates a role for PSORS1C3 in major depression and suicide. Transl Psychiatry. 7:e9892017. View Article : Google Scholar : PubMed/NCBI | |
Mirzadeh Azad F, Malakootian M and Mowla SJ: lncRNA PSORS1C3 is regulated by glucocorticoids and fine-tunes OCT4 expression in non-pluripotent cells. Sci Rep. 9:83702019. View Article : Google Scholar : PubMed/NCBI | |
Redfern AD, Colley SM, Beveridge DJ, Ikeda N, Epis MR, Li X, Foulds CE, Stuart LM, Barker A, Russell VJ, et al: RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators. Proc Natl Acad Sci USA. 110:6536–6541. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hatchell EC, Colley SM, Beveridge DJ, Epis MR, Stuart LM, Giles KM, Redfern AD, Miles LE, Barker A, MacDonald LM, et al: SLIRP, a small SRA binding protein, is a nuclear receptor corepressor. Mol Cell. 22:657–668. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Lin C, Jin C, Yang JC, Tanasa B, Li W, Merkurjev D, Ohgi KA, Meng D, Zhang J, et al: lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature. 500:598–602. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vitellius G, Trabado S, Bouligand J, Delemer B and Lombès M: Pathophysiology of Glucocorticoid Signaling. Ann Endocrinol (Paris). 79:98–106. 2018. View Article : Google Scholar | |
Nicolaides NC, Geer EB, Vlachakis D, Roberts ML, Psarra AM, Moutsatsou P, Sertedaki A, Kossida S and Charmandari E: A novel mutation of the hGR gene causing Chrousos syndrome. Eur J Clin Invest. 45:782–791. 2015. View Article : Google Scholar : PubMed/NCBI | |
Volden PA and Conzen SD: The influence of glucocorticoid signaling on tumor progression. Brain Behav Immun. 30(Suppl): S26–S31. 2013. View Article : Google Scholar | |
Oakley RH and Cidlowski JA: Glucocorticoid signaling in the heart: A cardiomyocyte perspective. J Steroid Biochem Mol Biol. 153:27–34. 2015. View Article : Google Scholar : PubMed/NCBI | |
Oakley RH and Cidlowski JA: The biology of the glucocorticoid receptor: New signaling mechanisms in health and disease. J Allergy Clin Immunol. 132:1033–1044. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zabirowicz ES and Gan TJ: 34-Pharmacology of Postoperative Nausea and Vomiting. Pharmacology and Physiology for Anesthesia (Second Edition). Hemmings HC and Egan TD: Elsevier; Philadelphia: pp. 671–692. 2019, View Article : Google Scholar | |
Flor M: R interface to D3 chord diagrams. Chorddiag. https://github.com/mattflor/chorddiag. Accessed February 18, 2022. |