Role of non‑coding RNAs as biomarkers and the application of omics technologies in Alzheimer's disease (Review)
- Authors:
- Katerina Pierouli
- Eleni Papakonstantinou
- Louis Papageorgiou
- Io Diakou
- Thanasis Mitsis
- Konstantina Dragoumani
- Demetrios A. Spandidos
- Flora Bacopoulou
- George P. Chrousos
- George Ν. Goulielmos
- Elias Eliopoulos
- Dimitrios Vlachakis
-
Affiliations: Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece, Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece, University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece, Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece - Published online on: November 24, 2022 https://doi.org/10.3892/ijmm.2022.5208
- Article Number: 5
-
Copyright: © Pierouli et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Cuyvers E and Sleegers K: Genetic variations underlying Alzheimer's disease: Evidence from genome-wide association studies and beyond. Lancet Neurol. 15:857–868. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D and Jones E: Alzheimer's disease. Lancet. 377:1019–1031. 2011. View Article : Google Scholar : PubMed/NCBI | |
Braak H, Thal DR, Ghebremedhin E and Del Tredici K: Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years. J Neuropathol Exp Neurol. 70:960–969. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fliss R, Le Gall D, Etcharry-Bouyx F, Chauviré V, Desgranges B and Allain P: Theory of Mind and social reserve: Alternative hypothesis of progressive Theory of Mind decay during different stages of Alzheimer's disease. Soc Neurosci. 11:409–423. 2016. View Article : Google Scholar | |
Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S and Van der Flier WM: Alzheimer's disease. Lancet. 388:505–517. 2016. View Article : Google Scholar : PubMed/NCBI | |
Krokidis MG, Exarchos TP and Vlamos P: Data-driven biomarker analysis using computational omics approaches to assess neurodegenerative disease progression. Math Biosci Eng. 18:1813–1832. 2021. View Article : Google Scholar : PubMed/NCBI | |
Verheijen J and Sleegers K: Understanding Alzheimer disease at the interface between genetics and transcriptomics. Trends Genetics. 34:434–447. 2018. View Article : Google Scholar | |
Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W and Ferri CP: The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement. 9:63–75.e62. 2013. View Article : Google Scholar : PubMed/NCBI | |
Heppner FL, Ransohoff RM and Becher B: Immune attack: The role of inflammation in Alzheimer disease. Nat Rev Neurosci. 16:358–372. 2015. View Article : Google Scholar : PubMed/NCBI | |
Medeiros R, Kitazawa M, Passos GF, Baglietto-Vargas D, Cheng D, Cribbs DH and LaFerla FM: Aspirin-triggered lipoxin A4 stimulates alternative activation of microglia and reduces Alzheimer disease-like pathology in mice. Am J Pathol. 182:1780–1789. 2013. View Article : Google Scholar : PubMed/NCBI | |
Prokop S, Miller KR and Heppner FL: Microglia actions in Alzheimer's disease. Acta Neuropathol. 126:461–477. 2013. View Article : Google Scholar : PubMed/NCBI | |
Heneka MT, Kummer MP and Latz E: Innate immune activation in neurodegenerative disease. Nat Rev Immunol. 14:463–477. 2014. View Article : Google Scholar : PubMed/NCBI | |
Labzin LI, Heneka MT and Latz E: Innate Immunity and Neurodegeneration. Annu Rev Med. 69:437–449. 2018. View Article : Google Scholar | |
Aubry S, Shin W, Crary JF, Lefort R, Qureshi YH, Lefebvre C, Califano A and Shelanski ML: Assembly and interrogation of Alzheimer's disease genetic networks reveal novel regulators of progression. PLoS One. 10:e01203522015. View Article : Google Scholar : PubMed/NCBI | |
Chouraki V and Seshadri S: Genetics of Alzheimer's disease. Adv Genet. 87:245–294. 2014. View Article : Google Scholar : PubMed/NCBI | |
Greenough MA: The Role of presenilin in protein trafficking and degradation-implications for metal homeostasis. J Mol Neurosci. 60:289–297. 2016. View Article : Google Scholar : PubMed/NCBI | |
Millan MJ: Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review. Prog Neurobiol. 156:1–68. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang YA, Zhou B, Wernig M and Südhof TC: ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and Aβ secretion. Cell. 168:427–441.e21. 2017. View Article : Google Scholar | |
Jiang T, Yu JT, Tian Y and Tan L: Epidemiology and etiology of Alzheimer's disease: From genetic to non-genetic factors. Curr Alzheimer Res. 10:852–867. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kanekiyo T, Xu H and Bu G: ApoE and Aβ in Alzheimer's disease: Accidental encounters or partners? Neuron. 81:740–754. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vlachakis D, Papakonstantinou E, Sagar R, Bacopoulou F, Exarchos T, Kourouthanassis P, Karyotis V, Vlamos P, Lyketsos C, Avramopoulos D and Mahairaki V: Improving the utility of polygenic risk scores as a biomarker for Alzheimer's disease. Cells. 10:2021. View Article : Google Scholar : PubMed/NCBI | |
Yan Y, Zhao A, Qui Y, Li Y, Yan R, Wang Y, Xu W and Deng Y: Genetic Association of FERMT2, HLA-DRB1, CD2AP, and PTK2B Polymorphisms with Alzheimer's disease risk in the southern Chinese population. Front Aging Neurosci. 12:162020. View Article : Google Scholar : PubMed/NCBI | |
Chin-Chan M, Navarro-Yepes J and Quintanilla-Vega B: Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci. 9:1242015. View Article : Google Scholar : PubMed/NCBI | |
Reitz C, Brayne C and Mayeux R: Epidemiology of Alzheimer disease. Nat Rev Neurol. 7:137–152. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tremlett H, Bauer KC, Appel-Cresswell S, Finlay BB and Waubant E: The gut microbiome in human neurological disease: A review. Ann Neurol. 81:369–382. 2017. View Article : Google Scholar : PubMed/NCBI | |
Blennow K, Dubois B, Fagan AM, Lewczuk P, de Leon MJ and Hampel H: Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer's disease. Alzheimers Dement. 11:58–69. 2015. View Article : Google Scholar | |
Sancesario GM and Bernardini S: How many biomarkers to discriminate neurodegenerative dementia? Crit Rev Clin Lab Sci. 52:314–326. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sancesario GM and Bernardini S: Alzheimer's disease in the omics era. Clin Biochem. 59:9–16. 2018. View Article : Google Scholar : PubMed/NCBI | |
Trushina E, Dutta T, Persson X-MT, Mielke MM and Petersen RC: Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer's disease using metabolomics. PLoS One. 8:e636442013. View Article : Google Scholar : PubMed/NCBI | |
Nday CM, Eleftheriadou D and Jackson G: Shared pathological pathways of Alzheimer's disease with specific comorbidities: Current perspectives and interventions. J Neurochem. 144:360–389. 2018. View Article : Google Scholar | |
Morgan SL, Naderi P, Koler K, Pita-Juarez Y, Prokopenko D, Vlachos IS, Tanzi RE, Bertram L and Hide WA: Most pathways can be related to the pathogenesis of Alzheimer's disease. Front Aging Neurosci. 14:8469022022. View Article : Google Scholar : PubMed/NCBI | |
Colpaert RMW and Calore M: Epigenetics and microRNAs in cardiovascular diseases. Genomics. 113:540–551. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ramzan F, Vickers MH and Mithen RF: Epigenetics, microRNA and metabolic syndrome: A comprehensive review. Int J Mol Sci. 22:50472021. View Article : Google Scholar : PubMed/NCBI | |
Suzuki H, Maruyama R, Yamamoto E and Kai M: Epigenetic alteration and microRNA dysregulation in cancer. Front Genet. 4:2582013. View Article : Google Scholar : PubMed/NCBI | |
Lau P, Bossers K, Janky R, Salta E, Frigerio CS, Barbash S, Rothman R, Sierksma AS, Thathiah A, Greenberg D, et al: Alteration of the microRNA network during the progression of Alzheimer's disease. EMBO Mol Med. 5:1613–1634. 2013. View Article : Google Scholar : PubMed/NCBI | |
Maoz R, Garfinkel BP and Soreq H: Alzheimer's disease and ncRNAs. Adv Exp Med Biol. 978:337–361. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun AX, Crabtree GR and Yoo AS: MicroRNAs: Regulators of neuronal fate. Curr Opin Cell Biol. 25:215–221. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM and Zhang GZ: Biological functions of microRNAs: A review. J Physiol Biochem. 67:129–139. 2011. View Article : Google Scholar | |
Fiore R, Khudayberdiev S, Saba R and Schratt G: MicroRNA function in the nervous system. Prog Mol Biol Transl Sci. 102:47–100. 2011. View Article : Google Scholar : PubMed/NCBI | |
Goodall EF, Heath PR, Bandmann O, Kirby J and Shaw PJ: Neuronal dark matter: The emerging role of microRNAs in neurodegeneration. Front Cell Neurosci. 7:1782013. View Article : Google Scholar : PubMed/NCBI | |
Niwa R, Zhou F, Li C and Slack FJ: The expression of the Alzheimer's amyloid precursor protein-like gene is regulated by developmental timing microRNAs and their targets in Caenorhabditis elegans. Dev Biol. 315:418–425. 2008. View Article : Google Scholar : PubMed/NCBI | |
Patel N, Hoang D, Miller N, Ansaloni S, Huang Q, Rogers JT, Lee JC and Saunders AJ: MicroRNAs can regulate human APP levels. Mol Neurodegener. 3:102008. View Article : Google Scholar : PubMed/NCBI | |
Fan X, Liu Y, Jiang J, Ma Z, Wu H, Liu T, Liu M, Li X and Tang H: miR-20a promotes proliferation and invasion by targeting APP in human ovarian cancer cells. Acta Biochim Biophys Sin (Shanghai). 42:318–324. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hébert SS, Horré K, Nicolaï L, Bergmans B, Papadopoulou AS, Delacourte A and De Strooper B: MicroRNA regulation of Alzheimer's Amyloid precursor protein expression. Neurobiol Dis. 33:422–428. 2009. View Article : Google Scholar | |
Vilardo E, Barbato C, Ciotti M, Cogoni C and Ruberti F: MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. J Biol Chem. 285:18344–18351. 2010. View Article : Google Scholar : PubMed/NCBI | |
Glinsky GV: An SNP-guided microRNA map of fifteen common human disorders identifies a consensus disease phenocode aiming at principal components of the nuclear import pathway. Cell Cycle. 7:2570–2583. 2008. View Article : Google Scholar : PubMed/NCBI | |
Delay C, Calon F, Mathews P and Hébert SS: Alzheimer-specific variants in the 3′UTR of Amyloid precursor protein affect microRNA function. Mol Neurodegener. 6:702011. View Article : Google Scholar | |
Smith P, Al Hashimi A, Girard J, Delay C and Hébert SS: In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs. J Neurochem. 116:240–247. 2011. View Article : Google Scholar | |
Kong Y, Wu J, Zhang D, Wan C and Yuan L: The role of miR-124 in drosophila Alzheimer's disease model by targeting delta in notch signaling pathway. Curr Mol Med. 15:980–989. 2015. View Article : Google Scholar : PubMed/NCBI | |
Schonrock N, Matamales M, Ittner LM and Götz J: MicroRNA networks surrounding APP and amyloid-β metabolism-implications for Alzheimer's disease. Exp Neurol. 235:447–454. 2012. View Article : Google Scholar | |
Rockenstein EM, McConlogue L, Tan H, Power M, Masliah E and Mucke L: Levels and alternative splicing of amyloid beta protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer's disease. J Biol Chem. 270:28257–28267. 1995. View Article : Google Scholar : PubMed/NCBI | |
Donev R, Newall A, Thome J and Sheer D: A role for SC35 and hnRNPA1 in the determination of amyloid precursor protein isoforms. Mol Psychiatry. 12:681–690. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yang LB, Lindholm K, Yan R, Citron M, Xia W, Yang XL, Beach T, Sue L, Wong P, Price D, et al: Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med. 9:3–4. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yang G, Song Y, Zhou X, Deng Y, Liu T, Weng G, Yu D and Pan S: MicroRNA-29c targets β-site amyloid precursor protein-cleaving enzyme 1 and has a neuroprotective role in vitro and in vivo. Mol Med Rep. 12:3081–3088. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lei X, Lei L, Zhang Z, Zhang Z and Cheng Y: Downregulated miR-29c correlates with increased BACE1 expression in sporadic Alzheimer's disease. Int J Clin Exp Pathol. 8:1565–1574. 2015.PubMed/NCBI | |
Zong Y, Wang H, Dong W, Quan X, Zhu H, Xu Y, Huang L, Ma C and Qin C: miR-29c regulates BACE1 protein expression. Brain Res. 1395:108–115. 2011. View Article : Google Scholar : PubMed/NCBI | |
Boissonneault V, Plante I, Rivest S and Provost P: MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem. 284:1971–1981. 2009. View Article : Google Scholar | |
Liu T, Huang Y, Chen J, Chi H, Yu Z, Wang J and Chen C: Attenuated ability of BACE1 to cleave the amyloid precursor protein via silencing long noncoding RNA BACE1-AS expression. Mol Med Rep. 10:1275–1281. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Xing H, Guo S, Zheng Z, Wang H and Xu D: MicroRNA-135b has a neuroprotective role via targeting of β-site APP-cleaving enzyme 1. Exp Ther Med. 12:809–814. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xie H, Zhao Y, Zhou Y, Wang D, Zhang S and Yang M: MiR-9 regulates the expression of BACE1 in dementia induced by chronic brain hypoperfusion in rats. Cell Physiol Biochem. 42:1213–1226. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhu HC, Wang LM, Wang M, Song B, Tan S, Teng JF and Duan DX: MicroRNA-195 downregulates Alzheimer's disease amyloid-β production by targeting BACE1. Brain Res Bull. 88:596–601. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I and Nelson PT: The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci. 28:1213–1223. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rybak-Wolf A and Plass M: RNA dynamics in Alzheimer's disease. Molecules. 26:51132021. View Article : Google Scholar : PubMed/NCBI | |
Chang F, Zhang LH, Xu WP, Jing P and Zhan PY: microRNA-9 attenuates amyloidβ-induced synaptotoxicity by targeting calcium/calmodulin-dependent protein kinase kinase 2. Mol Med Rep. 9:1917–1922. 2014. View Article : Google Scholar : PubMed/NCBI | |
Janson J, Laedtke T, Parisi JE, O'Brien P, Petersen RC and Butler PC: Increased risk of type 2 diabetes in Alzheimer disease. Diabetes. 53:474–481. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cheng C, Li W, Zhang Z, Yoshimura S, Hao Q, Zhang C and Wang Z: MicroRNA-144 is regulated by activator protein-1 (AP-1) and decreases expression of Alzheimer disease-related a disintegrin and metalloprotease 10 (ADAM10). J Biol Chem. 288:13748–13761. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dubois B, Padovani A, Scheltens P, Rossi A and Dell'Agnello G: Timely diagnosis for Alzheimer's disease: A literature review on benefits and challenges. J Alzheimers Dis. 49:617–631. 2016. View Article : Google Scholar | |
Wei W, Wang ZY, Ma LN, Zhang TT, Cao Y and Li H: MicroRNAs in Alzheimer's disease: Function and potential applications as diagnostic biomarkers. Front Mol Neurosci. 13:2020. View Article : Google Scholar | |
Schwarzenbach H, Nishida N, Calin GA and Pantel K: Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol. 11:145–156. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bekris LM and Leverenz JB: The biomarker and therapeutic potential of miRNA in Alzheimer's disease. Neurodegener Dis Manag. 5:61–74. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, et al: Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis. 14:27–41. 2008. View Article : Google Scholar : PubMed/NCBI | |
Siedlecki-Wullich D, Català-Solsona J, Fábregas C, Hernández I, Clarimon J, Lleó A, Boada M, Saura CA, Rodríguez-Álvarez J and Miñano-Molina AJ: Altered microRNAs related to synaptic function as potential plasma biomarkers for Alzheimer's disease. Alzheimers Res Ther. 11:462019. View Article : Google Scholar : PubMed/NCBI | |
Denk J, Boelmans K, Siegismund C, Lassner D, Arlt S and Jahn H: MicroRNA profiling of CSF reveals potential biomarkers to detect Alzheimer's disease. PLoS One. 10:e01264232015. View Article : Google Scholar | |
Alexandrov PN, Dua P and Lukiw WJ: Up-regulation of miRNA-146a in progressive, Age-related inflammatory neurodegenerative disorders of the human CNS. Front Neurol. 5:1812014. View Article : Google Scholar : PubMed/NCBI | |
Arena A, Iyer A, Milenkovic I, Kovacs GG, Ferrer I, Perluigi M and Aronica E: Developmental expression and dysregulation of miR-146a and miR-155 in Down's syndrome and mouse models of Down's syndrome and Alzheimer's disease. Curr Alzheimer Res. 14:1305–1317. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kumar S and Reddy PH: Elevated levels of MicroRNA-455-3p in the cerebrospinal fluid of Alzheimer's patients: A potential biomarker for Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis. 1867:1660522021. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Li H, Liu W, Zhang L, Tian Q, Li H and Li M: MiR-485-3p serves as a biomarker and therapeutic target of Alzheimer's disease via regulating neuronal cell viability and neuroinflammation by targeting AKT3. Mol Genet Genomic Med. 9:e15482021. View Article : Google Scholar | |
Andreeva K and Cooper NGF: Circular RNAs: New players in gene regulation. Adv Bioscience Biotechnol. 06(06): 82015. View Article : Google Scholar | |
Gruner H, Cortés-López M, Cooper DA, Bauer M and Miura P: CircRNA accumulation in the aging mouse brain. Sci Rep. 6:389072016. View Article : Google Scholar : PubMed/NCBI | |
Akhter R: Circular RNA and Alzheimer's disease. Adv Exp Med Biol. 1087:239–243. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lukiw WJ: Circular RNA (circRNA) in Alzheimer's disease (AD). Front Genet. 4:3072013. View Article : Google Scholar | |
Lonskaya I, Shekoyan AR, Hebron ML, Desforges N, Algarzae NK and Moussa CE: Diminished parkin solubility and Co-localization with intraneuronal amyloid-β are associated with autophagic defects in Alzheimer's disease. J Alzheimers Dis. 33:231–247. 2013. View Article : Google Scholar | |
Dube U, Del-Aguila JL, Li Z, Budde JP, Jiang S, Hsu S, Ibanez L, Fernandez MV, Farias F, Norton J, et al: An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nat Neurosci. 22:1903–1912. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Yu F, Bao S and Sun J: Systematic characterization of circular RNA-associated CeRNA network identified novel circRNA biomarkers in Alzheimer's disease. Front Bioeng Biotechnol. 7:2222019. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Tan L and Wang X: Circular HDAC9/microRNA-138/Sirtuin-1 pathway mediates synaptic and amyloid precursor protein processing deficits in Alzheimer's disease. Neurosci Bull. 35:877–888. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Wang H, Shang H, Chen X, Yang S, Qu Y, Ding J and Li X: Circular RNA circ_0000950 promotes neuron apoptosis, suppresses neurite outgrowth and elevates inflammatory cytokines levels via directly sponging miR-103 in Alzheimer's disease. Cell Cycle. 18:2197–2214. 2019. View Article : Google Scholar : PubMed/NCBI | |
Diling C, Yinrui G, Longkai Q, Xiaocui T, Yadi L, Xin Y, Guoyan H, Ou S, Tianqiao Y, Dongdong W, et al: Circular RNA NF1-419 enhances autophagy to ameliorate senile dementia by binding Dynamin-1 and Adaptor protein 2 B1 in AD-like mice. Aging (Albany NY). 11:12002–12031. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang M and Bian Z: The emerging role of circular RNAs in Alzheimer's disease and Parkinson's disease. Front Aging Neurosci. 13:6915122021. View Article : Google Scholar : PubMed/NCBI | |
Huang X and Wong G: An old weapon with a new function: PIWI-interacting RNAs in neurodegenerative diseases. Transl Neurodegener. 10:92021. View Article : Google Scholar : PubMed/NCBI | |
Qiu W, Guo X, Lin X, Yang Q, Zhang W, Zhang Y, Zuo L, Zhu Y, Li CR, Ma C and Luo X: Transcriptome-wide piRNA profiling in human brains of Alzheimer's disease. Neurobiol Aging. 57:170–177. 2017. View Article : Google Scholar : PubMed/NCBI | |
Roy J, Sarkar A, Parida S, Ghosh Z and Mallick B: Small RNA sequencing revealed dysregulated piRNAs in Alzheimer's disease and their probable role in pathogenesis. Mol Biosyst. 13:565–576. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mercer TR, Dinger ME and Mattick JS: Long non-coding RNAs: Insights into functions. Nat Rev Genet. 10:155–159. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wilusz JE, Sunwoo H and Spector DL: Long noncoding RNAs: Functional surprises from the RNA world. Genes Dev. 23:1494–1504. 2009. View Article : Google Scholar : PubMed/NCBI | |
Clark MB and Mattick JS: Long noncoding RNAs in cell biology. Semin Cell Dev Biol. 22:366–376. 2011. View Article : Google Scholar : PubMed/NCBI | |
Martianov I, Ramadass A, Serra Barros A, Chow N and Akoulitchev A: Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature. 445:666–670. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, et al: The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 39:925–938. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, et al: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 142:409–419. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mourtada-Maarabouni M, Hedge VL, Kirkham L, Farzaneh F and Williams GT: Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). J Cell Sci. 121:939–946. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li F, Wang Y, Yang H, Xu Y, Zhou X, Zhang X, Xie Z and Bi J: The effect of BACE1-AS on β-amyloid generation by regulating BACE1 mRNA expression. BMC Mol Biol. 20:232019. View Article : Google Scholar | |
Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, Finch CE, St Laurent G III, Kenny PJ and Wahlestedt C: Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase. Nat Med. 14:723–730. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zeng T, Ni H, Yu Y, Zhang M, Wu M, Wang Q, Wang L, Xu S, Xu Z, Xu C, et al: BACE1-AS prevents BACE1 mRNA degradation through the sequestration of BACE1-targeting miRNAs. J Chem Neuroanat. 98:87–96. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Ge Y, Liu Q, Li YX, Chao X, Guan JJ, Diwu YC and Zhang Q: LncRNA BACE1-AS promotes autophagy-mediated neuronal damage through the miR-214-3p/ATG5 signalling axis in Alzheimer's disease. Neuroscience. 455:52–64. 2021. View Article : Google Scholar | |
Parenti R, Paratore S, Torrisi A and Cavallaro S: A natural antisense transcript against Rad18, specifically expressed in neurons and upregulated during beta-amyloid-induced apoptosis. Eur J Neurosci. 26:2444–2457. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li D, Zhang J, Li X, Chen Y, Yu F and Liu Q: Insights into lncRNAs in Alzheimer's disease mechanisms. RNA Biol. 18:1037–1047. 2021. View Article : Google Scholar | |
Ciarlo E, Massone S, Penna I, Nizzari M, Gigoni A, Dieci G, Russo C, Florio T, Cancedda R and Pagano A: An intronic ncRNA-dependent regulation of SORL1 expression affecting Aβ formation is upregulated in post-mortem Alzheimer's disease brain samples. Dis Model Mech. 6:424–433. 2013. | |
Massone S, Vassallo I, Fiorino G, Castelnuovo M, Barbieri F, Borghi R, Tabaton M, Robello M, Gatta E, Russo C, et al: 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease. Neurobiol Dis. 41:308–317. 2011. View Article : Google Scholar | |
Zhang J and Wang R: Deregulated lncRNA MAGI2-AS3 in Alzheimer's disease attenuates amyloid-β induced neurotoxicity and neuroinflammation by sponging miR-374b-5p. Exp Gerontol. 144:1111802021. View Article : Google Scholar | |
Mus E, Hof PR and Tiedge H: Dendritic BC200 RNA in aging and in Alzheimer's disease. Proc Natl Acad Sci USA. 104:10679–10684. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhou X and Xu J: Identification of Alzheimer's disease-associated long noncoding RNAs. Neurobiol Aging. 36:2925–2931. 2015. View Article : Google Scholar : PubMed/NCBI | |
Magistri M, Velmeshev D, Makhmutova M and Faghihi MA: Transcriptomics profiling of Alzheimer's disease reveal neurovascular defects, altered Amyloid-β homeostasis, and deregulated expression of long noncoding RNAs. J Alzheimers Dis. 48:647–665. 2015. View Article : Google Scholar | |
Subramanian I, Verma S, Kumar S, Jere A and Anamika K: Multi-omics data integration, interpretation, and its application. Bioinformatics Biol Insights. 14:11779322198990512020. View Article : Google Scholar | |
Peña-Bautista C, Baquero M, Vento M and Cháfer-Pericás C: Omics-based Biomarkers for the Early Alzheimer disease diagnosis and reliable therapeutic targets development. Curr Neuropharmacol. 17:630–647. 2019. View Article : Google Scholar : | |
Tan MS, Cheah PL, Chin AV, Looi LM and Chang SW: A review on omics-based biomarkers discovery for Alzheimer's disease from the bioinformatics perspectives: Statistical approach vs machine learning approach. Comput Biol Med. 139:1049472021. View Article : Google Scholar : PubMed/NCBI | |
Giri M, Zhang M and Lü Y: Genes associated with Alzheimer's disease: An overview and current status. Clin Interv Aging. 11:665–681. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ridge PG, Mukherjee S, Crane PK and Kauwe JSK; Alzheimer's Disease Genetics Consortium: Alzheimer's disease: Analyzing the missing heritability. PLoS One. 8:e797712013. View Article : Google Scholar : PubMed/NCBI | |
Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B, et al: Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet. 45:1452–1458. 2013. View Article : Google Scholar : PubMed/NCBI | |
Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP and Crane PK: Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nat Genet. 43:436–441. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, et al: Variant of TREM2 associated with the Risk of Alzheimer's disease. N Eng J Med. 368:107–116. 2012. View Article : Google Scholar | |
Cruchaga C, Karch CM, Jin SC, Benitez BA, Cai Y, Guerreiro R, Harari O, Norton J, Budde J, Bertelsen S, et al: Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease. Nature. 505:550–554. 2014. View Article : Google Scholar | |
Bennett DA, Yu L, Yang J, Srivastava GP, Aubin C and De Jager PL: Epigenomics of Alzheimer's disease. Transl Res. 165:200–220. 2015. View Article : Google Scholar | |
Lunnon K, Smith R, Hannon E, De Jager PL, Srivastava G, Volta M, Troakes C, Al-Sarraj S, Burrage J, Macdonald R, et al: Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease. Nat Neurosci. 17:1164–1170. 2014. View Article : Google Scholar : PubMed/NCBI | |
De Jager PL, Srivastava G, Lunnon K, Burgess J, Schalkwyk LC, Yu L, Eaton ML, Keenan BT, Ernst J, McCabe C, et al: Alzheimer's disease: Early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci. 17:1156–1163. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Schrag M, Crofton A, Trivedi R, Vinters H and Kirsch W: Targeted proteomics for quantification of histone acetylation in Alzheimer's disease. Proteomics. 12:1261–1268. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lu X, Deng Y, Yu D, Cao H, Wang L, Liu L, Yu C, Zhang Y, Guo X and Yu G: Histone acetyltransferase p300 mediates histone acetylation of PS1 and BACE1 in a cellular model of Alzheimer's disease. PLoS One. 9:e1030672014. View Article : Google Scholar : PubMed/NCBI | |
Rao JS, Keleshian VL, Klein S and Rapoport SI: Epigenetic modifications in frontal cortex from Alzheimer's disease and bipolar disorder patients. Transl Psychiatry. 2:e1322012. View Article : Google Scholar : PubMed/NCBI | |
Narayan PJ, Lill C, Faull R, Curtis MA and Dragunow M: Increased acetyl and total histone levels in post-mortem Alzheimer's disease brain. Neurobiol Dis. 74:281–294. 2015. View Article : Google Scholar | |
Zhang Y, Zhao Y, Ao X, Yu W, Zhang L, Wang Y and Chang W: The role of Non-coding RNAs in Alzheimer's disease: From regulated mechanism to therapeutic targets and diagnostic biomarkers. Front Aging Neurosci. 13:6549782021. View Article : Google Scholar : PubMed/NCBI | |
Idda ML, Munk R, Abdelmohsen K and Gorospe M: Noncoding RNAs in Alzheimer's disease. Wiley Interdiscip Rev RNA. Jan 12–2018.Epub ahead of print. View Article : Google Scholar | |
Wang M, Qin L and Tang B: MicroRNAs in Alzheimer's disease. Front Genet. 10:1532019. View Article : Google Scholar : PubMed/NCBI | |
Formosa A, Piro MC, Docimo R, Maturo P, Sollecito DR, Kalimutho M, Sancesario G, Barlattani A, Melino G, Candi E and Bernardini S: Salivary miRNAome profiling uncovers epithelial and proliferative miRNAs with differential expression across dentition stages. Cell Cycle. 10:3359–3368. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dehghani R, Rahmani F and Rezaei N: MicroRNA in Alzheimer's disease revisited: Implications for major neuropathological mechanisms. Rev Neurosci. 29:161–182. 2018. View Article : Google Scholar | |
Shevchenko G, Konzer A, Musunuri S and Bergquist J: Neuroproteomics tools in clinical practice. Biochim Biophys Acta. 1854:705–717. 2015. View Article : Google Scholar : PubMed/NCBI | |
Henkel AW, Müller K, Lewczuk P, Müller T, Marcus K, Kornhuber J and Wiltfang J: Multidimensional plasma protein separation technique for identification of potential Alzheimer's disease plasma biomarkers: A pilot study. J Neural Transm (Vienna). 119:779–788. 2012. View Article : Google Scholar : PubMed/NCBI | |
Thambisetty M, Simmons A, Velayudhan L, Hye A, Campbell J, Zhang Y, Wahlund LO, Westman E, Kinsey A, Güntert A, et al: Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch Gen Psychiatry. 67:739–748. 2010. View Article : Google Scholar : PubMed/NCBI | |
Korolainen MA, Nyman TA, Aittokallio T and Pirttilä T: An update on clinical proteomics in Alzheimer's research. J Neurochem. 112:1386–1414. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pannee J, Portelius E, Oppermann M, Atkins A, Hornshaw M, Zegers I, Höjrup P, Minthon L, Hansson O, Zetterberg H, et al: A selected reaction monitoring (SRM)-based method for absolute quantification of Aβ 38, Aβ 40, and Aβ 42 in cerebrospinal fluid of Alzheimer's disease patients and healthy controls. J Alzheimers Dis. 33:1021–1032. 2013. View Article : Google Scholar | |
Erik P, Niklas M, Ulf A, Kaj B and Henrik Z: Novel AβIsoforms in Alzheimer's disease-their role in diagnosis and treatment. Curr Pharmaceutical Design. 17:2594–2602. 2011. View Article : Google Scholar | |
Brinkmalm G, Brinkmalm A, Bourgeois P, Persson R, Hansson O, Portelius E, Mercken M, Andreasson U, Parent S, Lipari F, et al: Soluble amyloid precursor protein α and β in CSF in Alzheimer's disease. Brain Res. 1513:117–126. 2013. View Article : Google Scholar : PubMed/NCBI | |
Thorsell A, Bjerke M, Gobom J, Brunhage E, Vanmechelen E, Andreasen N, Hansson O, Minthon L, Zetterberg H and Blennow K: Neurogranin in cerebrospinal fluid as a marker of synaptic degeneration in Alzheimer's disease. Brain Res. 1362:13–22. 2010. View Article : Google Scholar : PubMed/NCBI | |
Han SH, Kim JS, Lee Y, Choi H, Kim JW, Na DL, Yang EG, Yu MH, Hwang D, Lee C and Mook-Jung I: Both targeted mass spectrometry and flow sorting analysis methods detected the decreased serum apolipoprotein E level in Alzheimer's disease patients. Mol Cell Proteomics. 13:407–419. 2014. View Article : Google Scholar : | |
André W, Nondier I, Valensi M, Guillonneau F, Federici C, Hoffner G and Djian P: Identification of brain substrates of transglutaminase by functional proteomics supports its role in neurodegenerative diseases. Neurobiol Dis. 101:40–58. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sultana R, Perluigi M and Butterfield DA: Lipid peroxidation triggers neurodegeneration: A redox proteomics view into the Alzheimer disease brain. Free Radic Biol Med. 62:157–169. 2013. View Article : Google Scholar : | |
Chiasserini D, van Weering JRT, Piersma SR, Pham TV, Malekzadeh A, Teunissen CE, de Wit H and Jiménez CR: Proteomic analysis of cerebrospinal fluid extracellular vesicles: A comprehensive dataset. J Proteomics. 106:191–204. 2014. View Article : Google Scholar : PubMed/NCBI | |
Koal T, Klavins K, Seppi D, Kemmler G and Humpel C: Sphingomyelin SM(d18:1/18:0) is significantly enhanced in cerebrospinal fluid samples dichotomized by pathological amyloid-β42, tau, and phospho-tau-181 levels. J Alzheimers Dis. 44:1193–1201. 2015. View Article : Google Scholar | |
Guiraud SP, Montoliu I, Da Silva L, Dayon L, Galindo AN, Corthésy J, Kussmann M and Martin FP: High-throughput and simultaneous quantitative analysis of homocysteine-methionine cycle metabolites and co-factors in blood plasma and cerebrospinal fluid by isotope dilution LC-MS/MS. Anal Bioanal Chem. 409:295–305. 2017. View Article : Google Scholar | |
Toledo JB, Arnold M, Kastenmüller G, Chang R, Baillie RA, Han X, Thambisetty M, Tenenbaum JD, Suhre K, Thompson JW, et al: Metabolic network failures in Alzheimer's disease: A biochemical road map. Alzheimers Dement. 13:965–984. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, MacArthur LH, Hall WJ, Fisher SG, Peterson DR, Haley JM, et al: Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med. 20:415–418. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fiandaca MS, Zhong X, Cheema AK, Orquiza MH, Chidambaram S, Tan MT, Gresenz CR, FitzGerald KT, Nalls MA, Singleton AB, et al: Plasma 24-metabolite panel predicts preclinical transition to clinical stages of Alzheimer's disease. Front Neurol. 6:2372015. View Article : Google Scholar : PubMed/NCBI | |
Pimplikar SW: Multi-omics and Alzheimer's disease: A slower but surer path to an efficacious therapy? Am J Physiol Cell Physiol. 313:C1–C2. 2017. View Article : Google Scholar : PubMed/NCBI | |
Moreno-Indias I, Lahti L, Nedyalkova M, Elbere I, Roshchupkin G, Adilovic M, Aydemir O, Bakir-Gungor B, Santa Pau EC, D'Elia D, et al: Statistical and machine learning techniques in human microbiome studies: Contemporary challenges and solutions. Front Microbiol. 12:6357812021. View Article : Google Scholar : PubMed/NCBI | |
Papageorgiou L, Papakonstantinou E, Salis C, Polychronidou E, Hagidimitriou M, Maroulis D, Eliopoulos E and Vlachakis D: Drugena: A fully automated immunoinformatics platform for the design of antibody-drug conjugates against neurodegenerative diseases. Adv Exp Med Biol. 1194:203–215. 2020. View Article : Google Scholar : PubMed/NCBI | |
Termine A, Fabrizio C, Strafella C, Caputo V, Petrosini L, Caltagirone C, Giardina E and Cascella R: Multi-Layer picture of neurodegenerative diseases: Lessons from the use of big data through artificial intelligence. J Pers Med. 11:2802021. View Article : Google Scholar : PubMed/NCBI | |
Clark C, Dayon L, Masoodi M, Bowman GL and Popp J: An integrative multi-omics approach reveals new central nervous system pathway alterations in Alzheimer's disease. Alzheimers Res Ther. 13:712021. View Article : Google Scholar : PubMed/NCBI |