Digestive system infection by SARS‑CoV‑2: Entry mechanism, clinical symptoms and expression of major receptors (Review)
- Authors:
- Liming Zheng
- Li Zhang
- Yi Zheng
- Jiaxing An
- Guorong Wen
- Hai Jin
- Biguang Tuo
-
Affiliations: Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China, Department of Gastroenterology, The Fifth People's Hospital of Zunyi, Zunyi, Guizhou 563000, P.R. China - Published online on: January 20, 2023 https://doi.org/10.3892/ijmm.2023.5222
- Article Number: 19
-
Copyright: © Zheng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Li J, Li C, Wang X, Wang Y and Zhou Y: Considerations and perspectives on digestive diseases during the COVID-19 pandemic: A narrative review. Ann Palliat Med. 10:4858–4867. 2021. View Article : Google Scholar | |
Delgado-Gonzalez P, Gonzalez-Villarreal CA, Roacho-Perez JA, Quiroz-Reyes AG, Islas JF, Delgado-Gallegos JL, Arellanos-Soto D, Galan-Huerta KA and Garza-Treviño EN: Inflammatory effect on the gastrointestinal system associated with COVID-19. World J Gastroenterol. 27:4160–4171. 2021. View Article : Google Scholar | |
Rizvi A, Patel Z, Liu Y, Satapathy SK, Sultan K and Trindade AJ; Northwell Health COVID-19 Research Consortium: Gastrointestinal sequelae 3 and 6 months after hospitalization for coronavirus disease 2019. Clin Gastroenterol Hepatol. 19:2438–2440.e1. 2021. View Article : Google Scholar : | |
Fang LG and Zhou Q: Remarkable gastrointestinal and liver manifestations of COVID-19: A clinical and radiologic overview. World J Clin Cases. 9:4969–4979. 2021. View Article : Google Scholar : | |
Gkogkou E, Barnasas G, Vougas K and Trougakos IP: Expression profiling meta-analysis of ACE2 and TMPRSS2, the putative anti-inflammatory receptor and priming protease of SARS-CoV-2 in human cells, and identification of putative modulators. Redox Biol. 36:1016152020. View Article : Google Scholar | |
Jackson CB, Farzan M, Chen B and Choe H: Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 23:3–20. 2022. View Article : Google Scholar | |
Parmar MS: TMPRSS2: An equally important protease as ACE2 in the pathogenicity of SARS-CoV-2 Infection. Mayo Clin Proc. 96:2748–2752. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang X, He C, Hua X, Kan A, Sun S, Wang J and Li S: Bioinformatic Analysis of correlation between immune infiltration and COVID-19 in cancer patients. Int J Biol Sci. 16:2464–2476. 2020. View Article : Google Scholar : | |
Hoang T, Nguyen TQ and Tran TTA: Genetic Susceptibility of ACE2 and TMPRSS2 in six common cancers and possible impacts on COVID-19. Cancer Res Treat. 53:650–656. 2021. View Article : Google Scholar | |
Viveiros A, Gheblawi M, Aujla PK, Sosnowski DK, Seubert JM, Kassiri Z and Oudit GY: Sex- and age-specific regulation of ACE2: Insights into severe COVID-19 susceptibility. J Mol Cell Cardiol. 164:13–16. 2022. View Article : Google Scholar | |
Da Eira D, Jani S and Ceddia RB: Obesogenic and ketogenic diets distinctly regulate the SARS-CoV-2 Entry Proteins ACE2 and TMPRSS2 and the Renin-angiotensin system in rat lung and heart tissues. Nutrients. 13:33572021. View Article : Google Scholar | |
Rando HM, MacLean AL, Lee AJ, Lordan R, Ray S, Bansal V, Skelly AN, Sell E, Dziak JJ, Shinholster L, et al: Pathogenesis, symptomatology, and transmission of SARS-CoV-2 through analysis of viral genomics and structure. mSystems. 6:e00095212021. View Article : Google Scholar | |
Saied EM, El-Maradny YA, Osman AA, Darwish AMG, Abo Nahas HH, Niedbala G, Piekutowska M, Abdel-Rahman MA, Balbool BA and Abdel-Azeem AM: A comprehensive review about the molecular structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Insights into natural products against COVID-19. Pharmaceutics. 13:17592021. View Article : Google Scholar : | |
Salem R, El-Kholy AA, Waly FR, Ayman D, Sakr A and Hussein M: Generation and utility of a single-chain fragment variable monoclonal antibody platform against a baculovirus expressed recombinant receptor binding domain of SARS-CoV-2 spike protein. Mol Immunol. 141:287–296. 2022. View Article : Google Scholar | |
Tai L, Zhu G, Yang M, Cao L, Xing X, Yin G, Chan C, Qin C, Rao Z, Wang X, et al: Nanometer-resolution in situ structure of the SARS-CoV-2 postfusion spike protein. Proc Natl Acad Sci USA. 118:e21127031182021. View Article : Google Scholar : | |
Grishin AM, Dolgova NV, Landreth S, Fisette O, Pickering IJ, George GN, Falzarano D and Cygler M: Disulfide bonds play a critical role in the structure and function of the receptor-binding domain of the SARS-CoV-2 spike antigen. J Mol Biol. 434:1673572022. View Article : Google Scholar | |
Chen Y, Guo Y, Pan Y and Zhao ZJ: Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun. 525:135–140. 2020. View Article : Google Scholar : | |
Zhang J, Xiao T, Cai Y and Chen B: Structure of SARS-CoV-2 spike protein. Curr Opin Virol. 50:173–182. 2021. View Article : Google Scholar : PubMed/NCBI | |
Edenfield RC and Easley CA IV: Implications of testicular ACE2 and the renin-angiotensin system for SARS-CoV-2 on testis function. Nat Rev Urol. 19:116–127. 2022. View Article : Google Scholar | |
Li D, Liu X, Zhang L, He J, Chen X, Liu S, Fu J, Fu S, Chen H, Fu J and Cheng J: COVID-19 disease and malignant cancers: The impact for the furin gene expression in susceptibility to SARS-CoV-2. Int J Biol Sci. 17:3954–3967. 2021. View Article : Google Scholar : PubMed/NCBI | |
Peacock TP, Goldhill DH, Zhou J, Baillon L, Frise R, Swann OC, Kugathasan R, Penn R, Brown JC, Sanchez-David RY, et al: The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat Microbiol. 6:899–909. 2021. View Article : Google Scholar | |
Wu CT, Lidsky PV, Xiao Y, Lee IT, Cheng R, Nakayama T, Jiang S, Demeter J, Bevacqua RJ, Chang CA, et al: SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. Cell Metab. 33:1565–1576.e5. 2021. View Article : Google Scholar | |
Yele V, Sanapalli BKR and Mohammed AA: Imidazoles and benzimidazoles as putative inhibitors of SARS-CoV-2 B.1.1.7 (Alpha) and 1 (Gamma) variant spike glycoproteins: A computational approach. Chem Zvesti. 76:1107–1117. 2022. | |
Liu C, Zhou D, Nutalai R, Duyvesteyn HME, Tuekprakhon A, Ginn HM, Dejnirattisai W, Supasa P, Mentzer AJ, Wang B, et al: The antibody response to SARS-CoV-2 Beta underscores the antigenic distance to other variants. Cell Host Microbe. 30:53–68.e12. 2022. View Article : Google Scholar | |
Moss DL and Rappaport J: SARS-CoV-2 beta variant substitutions alter spike glycoprotein receptor binding domain structure and stability. J Biol Chem. 297:1013712021. View Article : Google Scholar : PubMed/NCBI | |
Sanches PRS, Charlie-Silva I, Braz HLB, Bittar C, Freitas Calmon M, Rahal P and Cilli EM: Recent advances in SARS-CoV-2 Spike protein and RBD mutations comparison between new variants Alpha (B.1.1.7, United Kingdom), Beta (B.1.351, South Africa), Gamma (1Brazil) and Delta (B.1.617.2, India). J Virus Erad. 7:1000542021. View Article : Google Scholar | |
Storti B, Quaranta P, Di Primio C, Clementi N, Mancini N, Criscuolo E, Spezia PG, Carnicelli V, Lottini G, Paolini E, et al: A spatial multi-scale fluorescence microscopy toolbox discloses entry checkpoints of SARS-CoV-2 variants in Vero E6 cells. Comput Struct Biotechnol J. 19:6140–6156. 2021. View Article : Google Scholar : | |
Alaofi AL and Shahid M: Mutations of SARS-CoV-2 RBD may alter its molecular structure to improve its infection efficiency. Biomolecules. 11:12732021. View Article : Google Scholar : | |
Bhattacharya M, Chatterjee S, Sharma AR, Agoramoorthy G and Chakraborty C: D614G mutation and SARS-CoV-2: Impact on S-protein structure, function, infectivity, and immunity. Appl Microbiol Biotechnol. 105:9035–9045. 2021. View Article : Google Scholar : | |
Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural A, et al: First Case of 2019 novel coronavirus in the United States. N Engl J Med. 382:929–936. 2020. View Article : Google Scholar : | |
Wang W, Xu Y, Gao R, Lu R, Han K, Wu G and Tan W: Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 323:1843–1844. 2020. | |
Xu Y, Li X, Zhu B, Liang H, Fang C, Gong Y, Guo Q, Sun X, Zhao D, Shen J, et al: Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med. 26:502–505. 2020. View Article : Google Scholar | |
Chen L, Lou J, Bai Y and Wang M: COVID-19 disease with positive fecal and negative pharyngeal and sputum viral tests. Am J Gastroenterol. 115:7902020. View Article : Google Scholar : PubMed/NCBI | |
Burgueño JF, Reich A, Hazime H, Quintero MA, Fernandez I, Fritsch J, Santander AM, Brito N, Damas OM, Deshpande A, et al: Expression of SARS-CoV-2 Entry Molecules ACE2 and TMPRSS2 in the Gut of Patients With IBD. Inflamm Bowel Dis. 26:797–808. 2020. View Article : Google Scholar | |
Xiao F, Tang M, Zheng X, Liu Y, Li X and Shan H: Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 158:1831–1833.e3. 2020. View Article : Google Scholar | |
Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS, Bikdeli B, Ahluwalia N, Ausiello JC, Wan EY, et al: Extrapulmonary manifestations of COVID-19. Nat Med. 26:1017–1032. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mohamed DZ, Ghoneim ME, Abu-Risha SE, Abdelsalam RA and Farag MA: Gastrointestinal and hepatic diseases during the COVID-19 pandemic: Manifestations, mechanism and management. World J Gastroenterol. 27:4504–4535. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lin L, Jiang X, Zhang Z, Huang S, Zhang Z, Fang Z, Gu Z, Gao L, Shi H, Mai L, et al: Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut. 69:997–1001. 2020. View Article : Google Scholar : PubMed/NCBI | |
Elmunzer BJ, Spitzer RL, Foster LD, Merchant AA, Howard EF, Patel VA, West MK, Qayed E, Nustas R, Zakaria A, et al: Digestive manifestations in patients hospitalized with coronavirus disease 2019. Clin Gastroenterol Hepatol. 19:1355–1365.e4. 2021. View Article : Google Scholar | |
Ferm S, Fisher C, Pakala T, Tong M, Shah D, Schwarzbaum D, Cooley V, Hussain S and Kim SH: Analysis of gastrointestinal and hepatic manifestations of SARS-CoV-2 infection in 892 patients in queens, NY. Clin Gastroenterol Hepatol. 18:2378–2379.e1. 2020. View Article : Google Scholar | |
Wang MK, Yue HY, Cai J, Zhai YJ, Peng JH, Hui JF, Hou DY, Li WP and Yang JS: COVID-19 and the digestive system: A comprehensive review. World J Clin Cases. 9:3796–3813. 2021. View Article : Google Scholar : PubMed/NCBI | |
Andrews PLR, Cai W, Rudd JA and Sanger GJ: COVID-19, nausea, and vomiting. J Gastroenterol Hepatol. 36:646–656. 2021. View Article : Google Scholar | |
Boraschi P, Giugliano L, Mercogliano G, Donati F, Romano S and Neri E: Abdominal and gastrointestinal manifestations in COVID-19 patients: Is imaging useful? World J Gastroenterol. 27:4143–4159. 2021. View Article : Google Scholar : PubMed/NCBI | |
Carvalho A, Alqusairi R, Adams A, Paul M, Kothari N, Peters S and DeBenedet AT: SARS-CoV-2 gastrointestinal infection causing hemorrhagic colitis: Implications for detection and transmission of COVID-19 disease. Am J Gastroenterol. 115:942–946. 2020. View Article : Google Scholar | |
Li X, Huang S, Lu J, Lai R, Zhang Z, Lin X, Zheng X and Shan H: Upper Gastrointestinal Bleeding Caused by SARS-CoV-2 Infection. Am J Gastroenterol. 115:1541–1542. 2020. View Article : Google Scholar | |
Xu Z, Tang M, Chen P, Cai H and Xiao F: SARS-CoV-2 gastro-intestinal infection prolongs the time to recover from COVID-19. Front Med (Lausanne). 8:6835512021. View Article : Google Scholar | |
Hu F, Chen F, Ou Z, Fan Q, Tan X, Wang Y, Pan Y, Ke B, Li L, Guan Y, et al: A compromised specific humoral immune response against the SARS-CoV-2 receptor-binding domain is related to viral persistence and periodic shedding in the gastrointestinal tract. Cell Mol Immunol. 17:1119–1125. 2020. View Article : Google Scholar | |
Noviello D, Costantino A, Muscatello A, Bandera A, Consonni D, Vecchi M and Basilisco G: Functional gastrointestinal and somatoform symptoms five months after SARS-CoV-2 infection: A controlled cohort study. Neurogastroenterol Motil. 34:e141872022. View Article : Google Scholar | |
Liu YL, Ren J, Yuan JP, Zhang ZJ, Guo WY, Guan Y, Moeckel G, Ahuja N and Fu T: Postoperative onset and detection of SARS-CoV-2 in surgically resected specimens from gastrointestinal cancer patients with pre/asymptomatic COVID-19. Ann Surg. 272:e321–e328. 2020. View Article : Google Scholar | |
Nabil A, Elshemy MM, Uto K, Soliman R, Hassan AA, Shiha G and Ebara M: Coronavirus (SARS-CoV-2) in gastroenterology and its current epidemiological situation: An updated review until January 2021. EXCLI J. 20:366–385. 2021.PubMed/NCBI | |
McAllister MJ, Kirkwood K, Chuah SC, Thompson EJ, Cartwright JA, Russell CD, Dorward DA, Lucas CD and Ho GT: Intestinal protein characterisation of SARS-CoV-2 entry molecules ACE2 and TMPRSS2 in inflammatory bowel disease (IBD) and Fatal COVID-19 Infection. Inflammation. 45:567–572. 2022. View Article : Google Scholar | |
Suárez-Fariñas M, Tokuyama M, Wei G, Huang R, Livanos A, Jha D, Levescot A, Irizar H, Kosoy R, Cording S, et al: Intestinal inflammation modulates the expression of ACE2 and TMPRSS2 and potentially overlaps with the pathogenesis of SARS-CoV-2-related disease. Gastroenterology. 160:287–301.e20. 2021. View Article : Google Scholar | |
Tao SS, Wang XY, Yang XK, Liu YC, Fu ZY, Zhang LZ, Wang ZX, Ni J, Shuai ZW and Pan HF: COVID-19 and inflammatory bowel disease crosstalk: From emerging association to clinical proposal. J Med Virol. 94:5640–5652. 2022. View Article : Google Scholar | |
Shen S, Gong M, Wang G, Dua K, Xu J, Xu X and Liu G: COVID-19 and gut injury. Nutrients. 14:44092022. View Article : Google Scholar | |
Viganò C, Massironi S, Pirola L, Cristoferi L, Fichera M, Bravo M, Mauri M, Redaelli AE, Dinelli ME and Invernizzi P: COVID-19 in patients with inflammatory bowel disease: A single-center observational study in Northern Italy. Inflamm Bowel Dis. 26:e138–e139. 2020. View Article : Google Scholar | |
Derikx LAAP, Lantinga MA, de Jong DJ, van Dop WA, Creemers RH, Römkens TEH, Jansen JM, Mahmmod N, West RL, Tan ACITL, et al: Clinical Outcomes of Covid-19 in patients with inflammatory bowel disease: A nationwide cohort study. J Crohns Colitis. 15:529–539. 2021. View Article : Google Scholar | |
Zhou L, Niu Z, Jiang X, Zhang Z, Zheng Y, Wang Z, Zhu Y, Gao L, Huang H, Wang X and Sun Q: SARS-CoV-2 Targets by the pscRNA Profiling of ACE2, TMPRSS2 and Furin Proteases. iScience. 23:1017442020. View Article : Google Scholar : PubMed/NCBI | |
Qi F, Qian S, Zhang S and Zhang Z: Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun. 526:135–140. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lee JJ, Kopetz S, Vilar E, Shen JP, Chen K and Maitra A: Relative Abundance of SARS-CoV-2 entry genes in the enterocytes of the lower gastrointestinal tract. Genes (Basel). 11:6452020. View Article : Google Scholar : PubMed/NCBI | |
An X, Lin W, Liu H, Zhong W, Zhang X, Zhu Y, Wang X, Li J and Sheng Q: SARS-CoV-2 Host Receptor ACE2 protein expression atlas in human gastrointestinal tract. Front Cell Dev Biol. 9:6598092021. View Article : Google Scholar | |
Zhang M, Feng C, Zhang X, Hu S, Zhang Y, Min M, Liu B, Ying X and Liu Y: Susceptibility factors of stomach for SARS-CoV-2 and treatment implication of mucosal protective agent in COVID-19. Front Med (Lausanne). 7:5979672021. View Article : Google Scholar : PubMed/NCBI | |
Sun SH, Chen Q, Gu HJ, Yang G, Wang YX, Huang XY, Liu SS, Zhang NN, Li XF, Xiong R, et al: A Mouse Model of SARS-CoV-2 Infection and Pathogenesis. Cell Host Microbe. 28:124–133.e4. 2020. View Article : Google Scholar | |
Hartman AL, Nambulli S, McMillen CM, White AG, Tilston-Lunel NL, Albe JR, Cottle E, Dunn MD, Frye LJ, Gilliland TH, et al: SARS-CoV-2 infection of African green monkeys results in mild respiratory disease discernible by PET/CT imaging and shedding of infectious virus from both respiratory and gastrointestinal tracts. PLoS Pathog. 16:e10089032020. View Article : Google Scholar : PubMed/NCBI | |
Jiao L, Li H, Xu J, Yang M, Ma C, Li J, Zhao S, Wang H, Yang Y, Yu W, et al: The gastrointestinal tract is an alternative route for SARS-CoV-2 Infection in a nonhuman primate model. Gastroenterology. 160:1647–1661. 2021. View Article : Google Scholar | |
Livanos AE, Jha D, Cossarini F, Gonzalez-Reiche AS, Tokuyama M, Aydillo T, Parigi TL, Ladinsky MS, Ramos I, Dunleavy K, et al: Intestinal host response to SARS-CoV-2 Infection and COVID-19 outcomes in patients with gastrointestinal symptoms. Gastroenterology. 160:2435–2450.e34. 2021. View Article : Google Scholar | |
Qi J, Zhou Y, Hua J, Zhang L, Bian J, Liu B, Zhao Z and Jin S: The scRNA-seq Expression Profiling of the Receptor ACE2 and the cellular protease TMPRSS2 reveals human organs susceptible to SARS-CoV-2 Infection. Int J Environ Res Public Health. 18:2842021. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Yan W, Qi W, Wu D, Zhu L, Li W, Wang X, Ma K, Ni M, Xu D, et al: Clinical characteristics and risk factors of liver injury in COVID-19: A retrospective cohort study from Wuhan, China. Hepatol Int. 14:723–732. 2020. View Article : Google Scholar | |
Zhang H, Liao YS, Gong J, Liu J and Zhang H: Clinical characteristics and risk factors for liver injury in COVID-19 patients in Wuhan. World J Gastroenterol. 26:4694–4702. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wisniewska H, Skowron M, Bander D, Hornung M, Jurczyk K, Karpinska E, Laurans Ł, Socha Ł, Czajkowski Z and Wawrzynowicz-Syczewska M: Nosocomial COVID-19 Infection and Severe COVID-19 pneumonia in patients hospitalized for alcoholic liver disease: A case report. Am J Case Rep. 21:e9274522020. View Article : Google Scholar : PubMed/NCBI | |
Yang SJ, Wei TC, Hsu CH, Ho SN, Lai CY, Huang SF, Chen YY, Liu SJ, Yu GY and Dou HY: Characterization of virus replication, pathogenesis, and cytokine responses in syrian hamsters inoculated with SARS-CoV-2. J Inflamm Res. 14:3781–3795. 2021. View Article : Google Scholar | |
Wong GL, Yip TC, Wong VW, Tse YK, Hui DS, Lee SS, Yeoh EK, Chan HL and Lui GC: SARS-CoV-2 viral persistence based on cycle threshold value and liver injury in patients with COVID-19. Open Forum Infect Dis. 8:ofab2052021. View Article : Google Scholar | |
Lei HY, Ding YH, Nie K, Dong YM, Xu JH, Yang ML, Liu MQ, Wei L, Nasser MI, Xu LY, et al: Potential effects of SARS-CoV-2 on the gastrointestinal tract and liver. Biomed Pharmacother. 133:1110642021. View Article : Google Scholar | |
Zhong P, Xu J, Yang D, Shen Y, Wang L, Feng Y, Du C, Song Y, Wu C, Hu X and Sun Y: COVID-19-associated gastrointestinal and liver injury: Clinical features and potential mechanisms. Signal Transduct Target Ther. 5:2562020. View Article : Google Scholar : | |
Siddiqui MA, Suresh S, Simmer S, Abu-Ghanimeh M, Karrick M, Nimri F, Musleh M, Mediratta V, Al-Shammari M, Russell S, et al: Increased morbidity and mortality in COVID-19 patients with liver injury. Dig Dis Sci. 67:2577–2583. 2021. View Article : Google Scholar | |
Wijarnpreecha K, Ungprasert P, Panjawatanan P, Harnois DM, Zaver HB, Ahmed A and Kim D: COVID-19 and liver injury: A meta-analysis. Eur J Gastroenterol Hepatol. 33:990–995. 2021. View Article : Google Scholar | |
Wang Q, Zhao H, Liu LG, Wang YB, Zhang T, Li MH, Xu YL, Gao GJ, Xiong HF, Fan Y, et al: Pattern of liver injury in adult patients with COVID-19: A retrospective analysis of 105 patients. Mil Med Res. 7:282020.PubMed/NCBI | |
Del Nonno F, Nardacci R, Colombo D, Visco-Comandini U, Cicalini S, Antinori A, Marchioni L, D'Offizi G, Piacentini M and Falasca L: Hepatic failure in COVID-19: Is iron overload the dangerous trigger? Cells. 10:11032021. View Article : Google Scholar : PubMed/NCBI | |
Gomi K, Ito T, Yamaguchi F, Kamio Y, Sato Y, Mori H, Endo K, Abe T, Sakakura S, Kobayashi K, et al: Clinical features and mechanism of liver injury in patients with mild or moderate coronavirus disease 2019. JGH Open. 5:888–895. 2021. View Article : Google Scholar | |
Ma C, Cong Y and Zhang H: COVID-19 and the digestive system. Am J Gastroenterol. 115:1003–1006. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Li J, Zhang Y, Gao J, Wang P, Ai M, Ding W and Tan X: Differences in clinical characteristics and liver injury between suspected and confirmed COVID-19 patients in Jingzhou, Hubei Province of China. Medicine (Baltimore). 100:e259132021. View Article : Google Scholar : PubMed/NCBI | |
Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H, Tzankov A, et al: Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 383:120–128. 2020. View Article : Google Scholar : | |
Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F and Moch H: Endothelial cell infection and endotheliitis in COVID-19. Lancet. 395:1417–1418. 2020. View Article : Google Scholar : | |
Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, et al: Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 8:420–422. 2020. View Article : Google Scholar : | |
Paizis G, Tikellis C, Cooper ME, Schembri JM, Lew RA, Smith AI, Shaw T, Warner FJ, Zuilli A, Burrell LM and Angus PW: Chronic liver injury in rats and humans upregulates the novel enzyme angiotensin converting enzyme 2. Gut. 54:1790–1796. 2005. View Article : Google Scholar | |
Bender JM and Worman HJ: Coronavirus Disease 2019 and liver injury: A retrospective analysis of hospitalized patients in New York City. J Clin Transl Hepatol. 9:551–558. 2021.PubMed/NCBI | |
Chew M, Tang Z, Radcliffe C, Caruana D, Doilicho N, Ciarleglio MM, Deng Y and Garcia-Tsao G: Significant liver injury during hospitalization for COVID-19 is not associated with liver insufficiency or death. Clin Gastroenterol Hepatol. 19:2182–2191.e7. 2021. View Article : Google Scholar | |
Vishwajeet V, Purohit A, Kumar D, Parag V, Tripathi S, Kanchan T, Kothari N, Dutt N, Elhence PA, Bhatia PK, et al: Evaluation of pathological findings of COVID-19 by minimally invasive autopsies: A single tertiary care center experience from India. J Lab Physicians. 13:97–106. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tollard C, Champenois V, Delemer B, Carsin-Vu A and Barraud S: An inaugural diabetic ketoacidosis with acute pancreatitis during COVID-19. Acta Diabetol. 58:389–391. 2021. View Article : Google Scholar | |
Kumaran NK, Karmakar BK and Taylor OM: Coronavirus disease-19 (COVID-19) associated with acute necrotising pancreatitis (ANP). BMJ Case Rep. 13:e2379032020. View Article : Google Scholar : PubMed/NCBI | |
Alves AM, Yvamoto EY, Marzinotto MAN, Teixeira ACS and Carrilho FJ: SARS-CoV-2 leading to acute pancreatitis: An unusual presentation. Braz J Infect Dis. 24:561–564. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hadi A, Werge M, Kristiansen KT, Pedersen UG, Karstensen JG, Novovic S and Gluud LL: Coronavirus Disease-19 (COVID-19) associated with severe acute pancreatitis: Case report on three family members. Pancreatology. 20:665–667. 2020. View Article : Google Scholar | |
Barlass U, Wiliams B, Dhana K, Adnan D, Khan SR, Mahdavinia M and Bishehsari F: Marked elevation of lipase in COVID-19 Disease: A cohort study. Clin Transl Gastroenterol. 11:e002152020. View Article : Google Scholar | |
Inamdar S, Benias PC, Liu Y, Sejpal DV, Satapathy SK and Trindade AJ; Northwell COVID-19 Research Consortium: Prevalence, risk factors, and outcomes of hospitalized patients with coronavirus disease 2019 presenting as acute pancreatitis. Gastroenterology. 159:2226–2228.e2. 2020. View Article : Google Scholar : PubMed/NCBI | |
Samies NL, Yarbrough A and Boppana S: Pancreatitis in pediatric patients with COVID-19. J Pediatric Infect Dis Soc. 10:57–59. 2021. View Article : Google Scholar | |
Pandanaboyana S, Moir J, Leeds JS, Oppong K, Kanwar A, Marzouk A, Belgaumkar A, Gupta A, Siriwardena AK, Haque AR, et al: SARS-CoV-2 infection in acute pancreatitis increases disease severity and 30-day mortality: COVID PAN collaborative study. Gut. 70:1061–1069. 2021. View Article : Google Scholar | |
Liu F, Long X, Zhang B, Zhang W, Chen X and Zhang Z: ACE2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 Infection. Clin Gastroenterol Hepatol. 18:2128–2130.e2. 2020. View Article : Google Scholar : | |
Qadir MMF, Bhondeley M, Beatty W, Gaupp DD, Doyle-Meyers LA, Fischer T, Bandyopadhyay I, Blair RV, Bohm R, Rappaport J, et al: SARS-CoV-2 infection of the pancreas promotes thrombofibrosis and is associated with new-onset diabetes. JCI Insight. 6:e1515512021. View Article : Google Scholar : | |
Jablonska B, Olakowski M and Mrowiec S: Association between acute pancreatitis and COVID-19 infection: What do we know? World J Gastrointest Surg. 13:548–562. 2021. View Article : Google Scholar : | |
Cao W, Feng Q and Wang X: Computational analysis of TMPRSS2 expression in normal and SARS-CoV-2-infected human tissues. Chem Biol Interact. 346:1095832021. View Article : Google Scholar : | |
Kusmartseva I, Wu W, Syed F, Van Der Heide V, Jorgensen M, Joseph P, Tang X, Candelario-Jalil E, Yang C, Nick H, et al: Expression of SARS-CoV-2 entry factors in the pancreas of normal organ donors and individuals with COVID-19. Cell Metab. 32:1041–1051.e6. 2020. View Article : Google Scholar : | |
Coate KC, Cha J, Shrestha S, Wang W, Goncalves LM, Almaca J, Kapp ME, Fasolino M, Morgan A, Dai C, et al: SARS-CoV-2 cell entry factors ACE2 and TMPRSS2 are expressed in the microvasculature and ducts of human pancreas but are not enriched in β cells. Cell Metab. 32:1028–1040.e4. 2020. View Article : Google Scholar | |
Steenblock C, Richter S, Berger I, Barovic M, Schmid J, Schubert U, Jarzebska N, von Mässenhausen A, Linkermann A, Schürmann A, et al: Viral infiltration of pancreatic islets in patients with COVID-19. Nat Commun. 12:35342021. View Article : Google Scholar | |
Shaharuddin SH, Wang V, Santos RS, Gross A, Wang Y, Jawanda H, Zhang Y, Hasan W, Garcia G Jr, Arumugaswami V and Sareen D: Deleterious Effects of SARS-CoV-2 infection on human pancreatic cells. Front Cell Infect Microbiol. 11:6784822021. View Article : Google Scholar |