Role of ceramides in diabetic foot ulcers (Review)
- Authors:
- Ying Wang
- Zhen Sun
- Guangyao Zang
- Lili Zhang
- Zhongqun Wang
-
Affiliations: Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China - Published online on: February 6, 2023 https://doi.org/10.3892/ijmm.2023.5229
- Article Number: 26
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, Ostolaza H and Martín C: Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 21:62752020. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Ley SH and Hu FB: Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 14:88–98. 2018. View Article : Google Scholar | |
Demir S, Nawroth PP, Herzig S and Ekim Üstünel B: Emerging targets in type 2 diabetes and diabetic complications. Adv Sci (Weinh). 8:21002752021. View Article : Google Scholar : PubMed/NCBI | |
Everett E and Mathioudakis N: Update on management of diabetic foot ulcers:. Ann N Y Acad Sci. 1411:153–165. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wolf SJ, Melvin WJ and Gallagher K: Macrophage-mediated inflammation in diabetic wound repair. Semin Cell Dev Biol. 119:111–118. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gomez-Larrauri A, Presa N, Dominguez-Herrera A, Ouro A, Trueba M and Gomez-Muñoz A: Role of bioactive sphingolipids in physiology and pathology. Essays Biochem. 64:579–589. 2020. View Article : Google Scholar : PubMed/NCBI | |
Castro BM, Prieto M and Silva LC: Ceramide: A simple sphingolipid with unique biophysical properties. Prog Lipid Res. 54:53–67. 2014. View Article : Google Scholar : PubMed/NCBI | |
Summers SA: Editorial: The role of ceramides in diabetes and cardiovascular disease. Front Endocrinol (Lausanne). 12:6678852021. View Article : Google Scholar : PubMed/NCBI | |
Raichur S, Brunner B, Bielohuby M, Hansen G, Pfenninger A, Wang B, Bruning JC, Larsen PJ and Tennagels N: The role of C16:0 ceramide in the development of obesity and type 2 diabetes: CerS6 inhibition as a novel therapeutic approach. Mol Metab. 21:36–50. 2019. View Article : Google Scholar : PubMed/NCBI | |
Field BC, Gordillo R and Scherer PE: The role of ceramides in diabetes and cardiovascular disease regulation of ceramides by adipokines. Front Endocrinol (Lausanne). 11:5692502020. View Article : Google Scholar : PubMed/NCBI | |
Lechner A, Akdeniz M, Tomova-Simitchieva T, Bobbert T, Moga A, Lachmann N, Blume-Peytavi U and Kottner J: Comparing skin characteristics and molecular markers of xerotic foot skin between diabetic and non-diabetic subjects: An exploratory study. J Tissue Viability. 28:200–209. 2019. View Article : Google Scholar : PubMed/NCBI | |
Summers SA, Chaurasia B and Holland WL: Metabolic messengers: Ceramides. Nat Metab. 1:1051–1058. 2019. View Article : Google Scholar | |
Custodia A, Aramburu-Núñez M, Correa-Paz C, Posado-Fernández A, Gómez-Larrauri A, Castillo J, Gómez-Muñoz A, Sobrino T and Ouro A: Ceramide metabolism and Parkinson's disease-therapeutic targets. Biomolecules. 11:9452021. View Article : Google Scholar : PubMed/NCBI | |
Alexandropoulou I, Grammatikopoulou MG, Gkouskou KK, Pritsa AA, Vassilakou T, Rigopoulou E, Lindqvist HM and Bogdanos DP: Ceramides in autoimmune rheumatic diseases: Existing evidence and therapeutic considerations for diet as an anticeramide treatment. Nutrients. 15:2292023. View Article : Google Scholar : PubMed/NCBI | |
Mandell EW and Savani RC: Ceramides, autophagy, and apoptosis mechanisms of ventilator-induced lung injury and potential therapeutic targets. Am J Respir Crit Care Med. 199:687–689. 2019. View Article : Google Scholar : | |
Pal P, Atilla-Gokcumen GE and Frasor J: Emerging roles of ceramides in breast cancer biology and therapy. Int J Mol Sci. 23:111782022. View Article : Google Scholar : PubMed/NCBI | |
Wattenberg BW: The long and the short of ceramides. J Biol Chem. 293:9922–9923. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cha HJ, He C, Zhao H, Dong Y, An IS and An S: Intercellular and intracellular functions of ceramides and their metabolites in skin (Review). Int J Mol Med. 38:16–22. 2016. View Article : Google Scholar : PubMed/NCBI | |
Magnan C and Le Stunff H: Role of hypothalamic de novo ceramides synthesis in obesity and associated metabolic disorders. Mol Metab. 53:1012982021. View Article : Google Scholar : PubMed/NCBI | |
Insausti-Urkia N, Solsona-Vilarrasa E, Garcia-Ruiz C and Fernandez-Checa JC: Sphingomyelinases and liver diseases. Biomolecules. 10:14972020. View Article : Google Scholar : PubMed/NCBI | |
Taniguchi M and Okazaki T: Role of ceramide/sphingomyelin (SM) balance regulated through 'SM cycle' in cancer. Cell Signal. 87:1101192021. View Article : Google Scholar | |
Hammerschmidt P and Brüning JC: Contribution of specific ceramides to obesity-associated metabolic diseases. Cell Mol Life Sci. 79:3952022. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharya N, Sato WJ, Kelly A, Ganguli-Indra G and Indra AK: Epidermal lipids: Key mediators of atopic dermatitis pathogenesis. Trends Mol Med. 25:551–562. 2019. View Article : Google Scholar : PubMed/NCBI | |
Roszczyc-Owsiejczuk K and Zabielski P: Sphingolipids as a culprit of mitochondrial dysfunction in insulin resistance and type 2 diabetes. Front Endocrinol (Lausanne). 12:6351752021. View Article : Google Scholar : PubMed/NCBI | |
Aldoghachi AF, Baharudin A, Ahmad U, Chan SC, Ong TA, Yunus R, Razack AH, Yusoff K and Veerakumarasivam A: Evaluation of CERS2 gene as a potential biomarker for bladder cancer. Dis Markers. 2019:38751472019. View Article : Google Scholar : PubMed/NCBI | |
Polubothu S, Glover M, Holder SE and Kinsler VA: Uniparental disomy as a mechanism for CERS3-mutated autosomal recessive congenital ichthyosis. Br J Dermatol. 179:1214–1215. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sheridan M and Ogretmen B: The role of ceramide metabolism and signaling in the regulation of mitophagy and cancer therapy. Cancers (Basel). 13:24752021. View Article : Google Scholar : PubMed/NCBI | |
Kurz J, Parnham MJ, Geisslinger G and Schiffmann S: Ceramides as novel disease biomarkers. Trends Mol Med. 25:20–32. 2019. View Article : Google Scholar | |
Mullen TD, Hannun YA and Obeid LM: Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem J. 441:789–802. 2012. View Article : Google Scholar : PubMed/NCBI | |
Parveen F, Bender D, Law SH, Mishra VK, Chen CC and Ke LY: Role of ceramidases in sphingolipid metabolism and human diseases. Cells. 8:15732019. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Fang H, Dang E and Wang G: The role of ceramides in skin homeostasis and inflammatory skin diseases. J Dermatol Sci. 97:2–8. 2020. View Article : Google Scholar | |
Jung K, Kim SH, Joo KM, Lim SH, Shin JH, Roh J, Kim E, Park W and Kim W: Oral intake of enzymatically decomposed AP collagen peptides improves skin moisture and ceramide and natural moisturizing factor contents in the stratum corneum. Nutrients. 13:43722021. View Article : Google Scholar : PubMed/NCBI | |
Ramírez-Vélez R, Martínez-Velilla N, Correa-Rodríguez M, Sáez de Asteasu ML, Zambom-Ferraresi F, Palomino-Echeverria S, García-Hermoso A and Izquierdo M: Lipidomic signatures from physically frail and robust older adults at hospital admission. Geroscience. 44:1677–1688. 2022. View Article : Google Scholar : PubMed/NCBI | |
Coderch L, López O, de la Maza A and Parra JL: Ceramides and skin function. Am J Clin Dermatol. 4:107–129. 2003. View Article : Google Scholar : PubMed/NCBI | |
Badhe Y, Gupta R and Rai B: Structural and barrier properties of the skin ceramide lipid bilayer: A molecular dynamics simulation study. J Mol Model. 25:1402019. View Article : Google Scholar : PubMed/NCBI | |
Vollmer DL, West VA and Lephart ED: Enhancing skin health: By oral administration of natural compounds and minerals with implications to the dermal microbiome. Int J Mol Sci. 19:30592018. View Article : Google Scholar : PubMed/NCBI | |
Kim B, Shon JC, Seo HS, Liu KH, Lee JW, Ahn SK and Hong SP: Decrease of ceramides with long-chain fatty acids in psoriasis: Possible inhibitory effect of interferon gamma on chain elongation. Exp Dermatol. 31:122–132. 2022. View Article : Google Scholar | |
Wang L, Liu M, Ning D, Zhu H, Shan G, Wang D, Ping B, Yu Y, Yang H, Yan K, et al: Low serum ZAG levels correlate with determinants of the metabolic syndrome in Chinese subjects. Front Endocrinol (Lausanne). 11:1542020. View Article : Google Scholar : PubMed/NCBI | |
Fujiwara A, Morifuji M, Kitade M, Kawahata K, Fukasawa T, Yamaji T, Itoh H and Kawashima M: Age-related and seasonal changes in covalently bound ceramide content in forearm stratum corneum of Japanese subjects: Determination of molecular species of ceramides. Arch Dermatol Res. 310:729–735. 2018. View Article : Google Scholar : PubMed/NCBI | |
Łuczaj W, Jastrząb A, do Rosário Domingues M, Domingues P and Skrzydlewska E: Changes in phospholipid/ceramide profiles and eicosanoid levels in the plasma of rats irradiated with UV rays and treated topically with cannabidiol. Int J Mol Sci. 22:87002021. View Article : Google Scholar : PubMed/NCBI | |
Fujii M: The pathogenic and therapeutic implications of ceramide abnormalities in atopic dermatitis. Cells. 10:23862021. View Article : Google Scholar : PubMed/NCBI | |
Meckfessel MH and Brandt S: The structure, function, and importance of ceramides in skin and their use as therapeutic agents in skin-care products. J Am Acad Dermatol. 71:177–184. 2014. View Article : Google Scholar : PubMed/NCBI | |
Draelos ZD: The science behind skin care: Moisturizers. J Cosmet Dermatol. 17:138–144. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wertz PW: Roles of lipids in the permeability barriers of skin and oral mucosa. Int J Mol Sci. 22:52292021. View Article : Google Scholar : PubMed/NCBI | |
Bocheńska K and Gabig-Cimińska M: Unbalanced sphingolipid metabolism and its implications for the pathogenesis of psoriasis. Molecules. 25:11302020. View Article : Google Scholar | |
Santinha DR, Marques DR, Maciel EA, Simões CS, Rosa S, Neves BM, Macedo B, Domingues P, Cruz MT and Domingues MR: Profiling changes triggered during maturation of dendritic cells: A lipidomic approach. Anal Bioanal Chem. 403:457–471. 2012. View Article : Google Scholar : PubMed/NCBI | |
Paget C, Deng S, Soulard D, Priestman DA, Speca S, von Gerichten J, Speak AO, Saroha A, Pewzner-Jung Y, Futerman AH, et al: TLR9-mediated dendritic cell activation uncovers mammalian ganglioside species with specific ceramide backbones that activate invariant natural killer T cells. PLoS Biol. 17:e30001692019. View Article : Google Scholar : PubMed/NCBI | |
Scheiblich H, Schlütter A, Golenbock DT, Latz E, Martinez-Martinez P and Heneka MT: Activation of the NLRP3 inflammasome in microglia: The role of ceramide. J Neurochem. 143:534–550. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Hunt RL, Villaruz AE, Fisher EL, Liu R, Liu Q, Cheung GYC, Li M and Otto M: Commensal staphylococcus epidermidis contributes to skin barrier homeostasis by generating protective ceramides. Cell Host Microbe. 30:301–313.e9. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Shao T, Wang J, Huang X, Deng X, Cao Y, Zhou M and Zhao C: An update on potential biomarkers for diagnosing diabetic foot ulcer at early stage. Biomed Pharmacother. 133:1109912021. View Article : Google Scholar | |
Abbott CA, Chatwin KE, Foden P, Hasan AN, Sange C, Rajbhandari SM, Reddy PN, Vileikyte L, Bowling FL, Boulton AJM and Reeves ND: Innovative intelligent insole system reduces diabetic foot ulcer recurrence at plantar sites: A prospective, randomised, proof-of-concept study. Lancet Digit Health. 1:e308–e318. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim EJ and Han K: Factors related to self-care behaviours among patients with diabetic foot ulcers. J Clin Nurs. 29:1712–1722. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bandyk DF: The diabetic foot: Pathophysiology, evaluation, and treatment. Semin Vasc Surg. 31:43–48. 2018. View Article : Google Scholar : PubMed/NCBI | |
Aldana PC, Cartron AM and Khachemoune A: Reappraising diabetic foot ulcers: A focus on mechanisms of ulceration and clinical evaluation. Int J Low Extrem Wounds. 21:294–302. 2022. View Article : Google Scholar | |
Rubitschung K, Sherwood A, Crisologo AP, Bhavan K, Haley RW, Wukich DK, Castellino L, Hwang H, La Fontaine J, Chhabra A, et al: Pathophysiology and molecular imaging of diabetic foot infections. Int J Mol Sci. 22:115522021. View Article : Google Scholar : PubMed/NCBI | |
Armstrong DG, Boulton AJM and Bus SA: Diabetic foot ulcers and their recurrence. N Engl J Med. 376:2367–2375. 2017. View Article : Google Scholar : PubMed/NCBI | |
Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, Bril V, Russell JW and Viswanathan V: Diabetic neuropathy. Nat Rev Dis Primers. 5:422019. View Article : Google Scholar : PubMed/NCBI | |
Volpe CMO, Villar-Delfino PH, dos Anjos PMF and Nogueira-Machado JA: Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 9:1192018. View Article : Google Scholar : PubMed/NCBI | |
Bönhof GJ, Herder C, Strom A, Papanas N, Roden M and Ziegler D: Emerging biomarkers, tools, and treatments for diabetic polyneuropathy. Endocr Rev. 40:153–192. 2019. View Article : Google Scholar | |
Hammad SM, Baker NL, El Abiad JM, Spassieva SD, Pierce JS, Rembiesa B, Bielawski J, Lopes-Virella MF and Klein RL; DCCT/EDIC Group of Investigators: Increased plasma levels of select deoxy-ceramide and ceramide species are associated with increased odds of diabetic neuropathy in type 1 diabetes: A pilot study. Neuromolecular Med. 19:46–56. 2017. View Article : Google Scholar : | |
Strain WD and Paldánius PM: Diabetes, cardiovascular disease and the microcirculation. Cardiovasc Diabetol. 17:572018. View Article : Google Scholar : PubMed/NCBI | |
Criqui MH, Matsushita K, Aboyans V, Hess CN, Hicks CW, Kwan TW, McDermott MM, Misra S, Ujueta F; American Heart Association Council on Epidemiology and Prevention; et al: Lower extremity peripheral artery disease: Contemporary epidemiology, management gaps, and future directions: A scientific statement from the american heart association. Circulation. 144. pp. e171–e191. 2021, View Article : Google Scholar | |
He X and Schuchman EH: Ceramide and ischemia/reperfusion injury. J Lipids. 2018:36467252018. View Article : Google Scholar : PubMed/NCBI | |
Davis FM, Kimball A, Boniakowski A and Gallagher K: Dysfunctional wound healing in diabetic foot ulcers: New crossroads. Curr Diab Rep. 18:22018. View Article : Google Scholar : PubMed/NCBI | |
Sloan G, Selvarajah D and Tesfaye S: Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. Nat Rev Endocrinol. 17:400–420. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zweier JL and Ilangovan G: Regulation of nitric oxide metabolism and vascular tone by cytoglobin. Antioxid Redox Signal. 32:1172–1187. 2020. View Article : Google Scholar : | |
Sun HJ, Wu ZY, Nie XW and Bian JS: Role of endothelial dysfunction in cardiovascular diseases: The link between inflammation and hydrogen sulfide. Front Pharmacol. 10:15682020. View Article : Google Scholar : PubMed/NCBI | |
Chabowski DS, Cohen KE, Abu-Hatoum O, Gutterman DD and Freed JK: Crossing signals: Bioactive lipids in the microvasculature. Am J Physiol Heart Circ Physiol. 318:H1185–H1197. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang QJ, Holland WL, Wilson L, Tanner JM, Kearns D, Cahoon JM, Pettey D, Losee J, Duncan B, Gale D, et al: Ceramide mediates vascular dysfunction in diet-induced obesity by PP2A-mediated dephosphorylation of the eNOS-Akt complex. Diabetes. 61:1848–1859. 2012. View Article : Google Scholar : PubMed/NCBI | |
Akawi N, Checa A, Antonopoulos AS, Akoumianakis I, Daskalaki E, Kotanidis CP, Kondo H, Lee K, Yesilyurt D, Badi I, et al: Fat-secreted ceramides regulate vascular redox state and influence outcomes in patients with cardiovascular disease. J Am Coll Cardiol. 77:2494–2513. 2021. View Article : Google Scholar : PubMed/NCBI | |
Akhiyat N, Vasile V, Ahmad A, Sara JD, Nardi V, Lerman LO, Jaffe A and Lerman A: Plasma ceramide levels are elevated in patients with early coronary atherosclerosis and endothelial dysfunction. J Am Heart Assoc. 11:e0228522022. View Article : Google Scholar : PubMed/NCBI | |
Karakashian AA, Giltiay NV, Smith GM and Nikolova-Karakashian MN: Expression of neutral sphingomyelinase-2 (NSMase-2) in primary rat hepatocytes modulates IL-beta-induced JNK activation. FASEB J. 18:968–970. 2004. View Article : Google Scholar : PubMed/NCBI | |
Parker BA, Walton CM, Carr ST, Andrus JL, Cheung ECK, Duplisea MJ, Wilson EK, Draney C, Lathen DR, Kenner KB, et al: β-Hydroxybutyrate elicits favorable mitochondrial changes in skeletal muscle. Int J Mol Sci. 19:22472018. View Article : Google Scholar | |
Cogolludo A, Villamor E, Perez-Vizcaino F and Moreno L: Ceramide and regulation of vascular tone. Int J Mol Sci. 20:4112019. View Article : Google Scholar : PubMed/NCBI | |
Sletten AC, Peterson LR and Schaffer JE: Manifestations and mechanisms of myocardial lipotoxicity in obesity. J Intern Med. 284:478–491. 2018. View Article : Google Scholar : PubMed/NCBI | |
Arsenault EJ, McGill CM and Barth BM: Sphingolipids as regulators of neuro-inflammation and NADPH oxidase 2. Neuromolecular Med. 23:25–46. 2021. View Article : Google Scholar : PubMed/NCBI | |
Patwardhan GA, Beverly LJ and Siskind LJ: Sphingolipids and mitochondrial apoptosis. J Bioenerg Biomembr. 48:153–168. 2016. View Article : Google Scholar | |
Colombini M: Ceramide channels and mitochondrial outer membrane permeability. J Bioenerg Biomembr. 49:57–64. 2017. View Article : Google Scholar | |
Cantalupo A, Sasset L, Gargiulo A, Rubinelli L, Del Gaudio I, Benvenuto D, Wadsack C, Jiang XC, Bucci MR and Di Lorenzo A: Endothelial sphingolipid de novo synthesis controls blood pressure by regulating signal transduction and NO via ceramide. Hypertension. 75:1279–1288. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pérez-Villavicencio R, Flores-Estrada J, Franco M, Escalante B, Pérez-Méndez O, Mercado A and Bautista-Pérez R: Effect of empagliflozin on sphingolipid catabolism in diabetic and hypertensive rats. Int J Mol Sci. 23:28832022. View Article : Google Scholar : PubMed/NCBI | |
Lin YH, Jewell BE, Gingold J, Lu L, Zhao R, Wang LL and Lee DF: Osteosarcoma: Molecular pathogenesis and iPSC modeling. Trends Mol Med. 23:737–755. 2017. View Article : Google Scholar : PubMed/NCBI | |
Altura BM, Gebrewold A, Carella A, Shah NC, Shah GJ, Resnick LM and Altura BT: Why vasculitis probably can be ameliorated with magnesium and antagonists of ceramides and platelet-activating factor. MOJ Anat Physiol. 6:120–123. 2019. | |
Borodzicz-Jażdżyk S, Jażdżyk P, Łysik W, Cudnoch-Jedrzejewska A and Czarzasta K: Sphingolipid metabolism and signaling in cardiovascular diseases. Front Cardiovasc Med. 9:9159612022. View Article : Google Scholar | |
Zhang Y, Zhao H, Liu B, Shu H, Zhang L, Bao M, Yi W, Tan Y, Ji X, Zhang C, et al: Human serum metabolomic analysis reveals progression for high blood pressure in type 2 diabetes mellitus. BMJ Open Diabetes Res Care. 9:e0023372021. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wang HF, Li XX and Xu M: Contribution of acid sphingomyelinase to angiotensin II-induced vascular adventitial remodeling via membrane rafts/Nox2 signal pathway. Life Sci. 219:303–310. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu A, Chu YJ, Wang X, Yu R, Jiang H, Li Y, Zhou H, Gong LL, Yang WQ and Ju J: Serum metabolomics study based on LC-MS and antihypertensive effect of uncaria on spontaneously hypertensive rats. Evid Based Complement Alternat Med. 2018:92819462018. View Article : Google Scholar : PubMed/NCBI | |
Shu H, Peng Y, Hang W, Li N, Zhou N and Wang DW: Emerging roles of ceramide in cardiovascular diseases. Aging Dis. 13:232–245. 2022. View Article : Google Scholar : PubMed/NCBI | |
Choi SR, Lim JH, Kim MY, Kim EN, Kim Y, Choi BS, Kim YS, Kim HW, Lim KM, Kim MJ and Park CW: Adiponectin receptor agonist AdipoRon decreased ceramide, and lipotoxicity, and ameliorated diabetic nephropathy. Metabolism. 85:348–360. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yaribeygi H, Bo S, Ruscica M and Sahebkar A: Ceramides and diabetes mellitus: An update on the potential molecular relationships. Diabet Med. 37:11–19. 2020. View Article : Google Scholar | |
Kane JP, Pullinger CR, Goldfine ID and Malloy MJ: Dyslipidemia and diabetes mellitus: Role of lipoprotein species and inter-related pathways of lipid metabolism in diabetes mellitus. Curr Opin Pharmacol. 61:21–27. 2021. View Article : Google Scholar : PubMed/NCBI | |
Guitton J, Bandet CL, Mariko ML, Tan-Chen S, Bourron O, Benomar Y, Hajduch E and Le Stunff H: Sphingosine-1-phosphate metabolism in the regulation of obesity/type 2 diabetes. Cells. 9:16822020. View Article : Google Scholar : PubMed/NCBI | |
Miller LG Jr, Young JA, Ray SK, Wang G, Purohit S, Banik NL and Dasgupta S: Sphingosine toxicity in EAE and MS: Evidence for ceramide generation via serine-palmitoyltransferase activation. Neurochem Res. 42:2755–2768. 2017. View Article : Google Scholar : PubMed/NCBI | |
Siskind LJ: Mitochondrial ceramide and the induction of apoptosis. J Bioenerg Biomembr. 37:143–153. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mancini A, Imperlini E, Nigro E, Montagnese C, Daniele A, Orrù S and Buono P: Biological and nutritional properties of palm oil and palmitic acid: Effects on health. Molecules. 20:17339–17361. 2015. View Article : Google Scholar : PubMed/NCBI | |
Park IB, Kim MH, Han JS and Park WJ: Gryllus bimaculatus extract protects against palmitate-induced β-cell death by inhibiting ceramide synthesis. Appl Biol Chem. 65:722022. View Article : Google Scholar | |
Tong X, Chaudhry Z, Lee CC, Bone RN, Kanojia S, Maddatu J, Sohn P, Weaver SA, Robertson MA, Petrache I, et al: Cigarette smoke exposure impairs β-cell function through activation of oxidative stress and ceramide accumulation. Mol Metab. 37:1009752020. View Article : Google Scholar | |
Xu YN, Wang Z, Zhang SK, Xu JR, Pan ZX, Wei X, Wen HH, Luo YS, Guo MJ and Zhu Q: Low-grade elevation of palmitate and lipopolysaccharide synergistically induced β-cell damage via inhibition of neutral ceramidase. Mol Cell Endocrinol. 539:1114732022. View Article : Google Scholar | |
Šrámek J, Němcová-Fürstová V and Kovář J: Molecular mechanisms of apoptosis induction and its regulation by fatty acids in pancreatic β-cells. Int J Mol Sci. 22:42852021. View Article : Google Scholar | |
Canals D, Salamone S and Hannun YA: Visualizing bioactive ceramides. Chem Phys Lipids. 216:142–151. 2018. View Article : Google Scholar : PubMed/NCBI | |
Marra F and Svegliati-Baroni G: Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol. 68:280–295. 2018. View Article : Google Scholar | |
Meikle PJ and Summers SA: Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat Rev Endocrinol. 13:79–91. 2017. View Article : Google Scholar | |
Bandet CL, Tan-Chen S, Bourron O, Stunff HL and Hajduch E: Sphingolipid metabolism: New insight into ceramide-induced lipotoxicity in muscle cells. Int J Mol Sci. 20:4792019. View Article : Google Scholar : PubMed/NCBI | |
Fang Z, Pyne S and Pyne NJ: Ceramide and sphingosine 1-phosphate in adipose dysfunction. Prog Lipid Res. 74:145–159. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bekhite M, González-Delgado A, Hübner S, Haxhikadrija P, Kretzschmar T, Müller T, Wu JMF, Bekfani T, Franz M, Wartenberg M, et al: The role of ceramide accumulation in human induced pluripotent stem cell-derived cardiomyocytes on mitochondrial oxidative stress and mitophagy. Free Radic Biol Med. 167:66–80. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chavez JA, Knotts TA, Wang LP, Li G, Dobrowsky RT, Florant GL and Summers SA: A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem. 278:10297–10303. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zalewska A, Maciejczyk M, Szulimowska J, Imierska M and Błachnio-Zabielska A: High-fat diet affects ceramide content, disturbs mitochondrial redox balance, and induces apoptosis in the submandibular glands of mice. Biomolecules. 9:8772019. View Article : Google Scholar : PubMed/NCBI | |
Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y, Narra K, Hoehn KL, Knotts TA, Siesky A, et al: Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 5:167–179. 2007. View Article : Google Scholar : PubMed/NCBI | |
Petersen MC and Shulman GI: Mechanisms of insulin action and insulin resistance. Physiol Rev. 98:2133–2223. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gasparini SJ, Swarbrick MM, Kim S, Thai LJ, Henneicke H, Cavanagh LL, Tu J, Weber MC, Zhou H and Seibel MJ: Androgens sensitise mice to glucocorticoid-induced insulin resistance and fat accumulation. Diabetologia. 62:1463–1477. 2019. View Article : Google Scholar : PubMed/NCBI | |
Linn SC, Kim HS, Keane EM, Andras LM, Wang E and Merrill AH Jr: Regulation of de novo sphingolipid biosynthesis and the toxic consequences of its disruption. Biochem Soc Trans. 29:831–835. 2001. View Article : Google Scholar : PubMed/NCBI | |
Choi KM, Lee YS, Choi MH, Sin DM, Lee S, Ji SY, Lee MK, Lee YM, Yun YP, Hong JT and Yoo HS: Inverse relationship between adipocyte differentiation and ceramide level in 3T3-L1 cells. Biol Pharm Bull. 34:912–916. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Talbot CL, Chandravanshi B, Ksiazek A, Sood A, Chowdhury KH, Maschek JA, Cox J, Babu AKS, Paz HA, et al: Cordyceps inhibits ceramide biosynthesis and improves insulin resistance and hepatic steatosis. Sci Rep. 12:72732022. View Article : Google Scholar : PubMed/NCBI | |
Kumar DP, Caffrey R, Marioneaux J, Santhekadur PK, Bhat M, Alonso C, Koduru SV, Philip B, Jain MR, Giri SR, et al: The PPAR α/γ agonist saroglitazar improves insulin resistance and steatohepatitis in a diet induced animal model of nonalcoholic fatty liver disease. Sci Rep. 10:93302020. View Article : Google Scholar | |
Kucuk S, Niven J, Caamano J, Jones SW, Camacho-Muñoz D, Nicolaou A and Mauro C: Unwrapping the mechanisms of ceramide and fatty acid-initiated signals leading to immune-inflammatory responses in obesity. Int J Biochem Cell Biol. 135:1059722021. View Article : Google Scholar : PubMed/NCBI | |
Gilbert M: Role of skeletal muscle lipids in the pathogenesis of insulin resistance of obesity and type 2 diabetes. J Diabetes Investig. 12:1934–1941. 2021. View Article : Google Scholar : PubMed/NCBI | |
Reidy PT, Mahmassani ZS, McKenzie AI, Petrocelli JJ, Summers SA and Drummond MJ: Influence of exercise training on skeletal muscle insulin resistance in aging: Spotlight on muscle ceramides. Int J Mol Sci. 21:15142020. View Article : Google Scholar : PubMed/NCBI | |
Coen PM and Goodpaster BH: Role of intramyocelluar lipids in human health. Trends Endocrinol Metab. 23:391–398. 2012. View Article : Google Scholar : PubMed/NCBI | |
Galadari S, Rahman A, Pallichankandy S, Galadari A and Thayyullathil F: Role of ceramide in diabetes mellitus: Evidence and mechanisms. Lipids Health Dis. 12:982013. View Article : Google Scholar : PubMed/NCBI | |
Choi RH, Tatum SM, Symons JD, Summers SA and Holland WL: Ceramides and other sphingolipids as drivers of cardiovascular disease. Nat Rev Cardiol. 18:701–711. 2021. View Article : Google Scholar : PubMed/NCBI | |
Edsfeldt A, Dunér P, Ståhlman M, Mollet IG, Asciutto G, Grufman AHM, Nitulescu M, Persson AF, Fisher RM, Melander O, et al: Proinflammatory role of sphingolipids and glycosphingolipids in the human atherosclerotic plaque. Arterioscler Thromb Vasc Biol. 36:1132–1140. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Zeng G, Yan Y, Zhang SY, Dong Y, Zhang Y, Zhang X, Liu H, Zhang Z, Jiang C and Pang Y: Disruption of adipocyte HIF-1 α improves atherosclerosis through the inhibition of ceramide generation. Acta Pharm Sin B. 12:1899–1912. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang RX, Pan Q, Liu XL, Zhou D, Xin FZ, Zhao ZH, Zhang RN, Zeng J, Qiao L, Hu CX, et al: Therapeutic effect and autophagy regulation of myriocin in nonalcoholic steatohepatitis. Lipids Health Dis. 18:1792019. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhang Y, Wang P, Zhang SY, Dong Y, Zeng G, Yan Y, Sun L, Wu Q, Liu H, et al: Adipocyte hypoxia-inducible factor 2α suppresses atherosclerosis by promoting adipose ceramide catabolism. Cell Metab. 30:937–951.e5. 2019. View Article : Google Scholar | |
Dany M, Gencer S, Nganga R, Thomas RJ, Oleinik N, Baron KD, Szulc ZM, Ruvolo P, Kornblau S, Andreeff M and Ogretmen B: Targeting FLT3-ITD signaling mediates ceramide-dependent mitophagy and attenuates drug resistance in AML. Blood. 128:1944–1958. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Huang NQ, Yan F, Jin H, Zhou SY, Shi JS and Jin F: Diabetes mellitus and Alzheimer's disease: GSK-3β as a potential link. Behav Brain Res. 339:57–65. 2018. View Article : Google Scholar | |
Yang Y, Xu G, Xu Y, Cheng X, Xu S, Chen S and Wu L: Ceramide mediates radiation-induced germ cell apoptosis via regulating mitochondria function and MAPK factors in caenorhabditis elegans. Ecotoxicol Environ Saf. 208:1115792021. View Article : Google Scholar : PubMed/NCBI | |
Ganesan V, Perera MN, Colombini D, Datskovskiy D, Chadha K and Colombini M: Ceramide and activated Bax act synergistically to permeabilize the mitochondrial outer membrane. Apoptosis. 15:553–562. 2010. View Article : Google Scholar : PubMed/NCBI | |
James BN, Oyeniran C, Sturgill JL, Newton J, Martin RK, Bieberich E, Weigel C, Maczis MA, Palladino END, Lownik JC, et al: Ceramide in apoptosis and oxidative stress in allergic inflammation and asthma. J Allergy Clin Immunol. 147:1936–1948.e9. 2021. View Article : Google Scholar : | |
Römer A, Linn T and Petry SF: Lipotoxic impairment of mitochondrial function in β-cells: A review. Antioxidants (Basel). 10:2932021. View Article : Google Scholar | |
Onyango AN: Cellular stresses and stress responses in the pathogenesis of insulin resistance. Oxid Med Cell Longev. 2018:43217142018. View Article : Google Scholar : PubMed/NCBI | |
Ueda N: A rheostat of ceramide and sphingosine-1-phosphate as a determinant of oxidative stress-mediated kidney injury. Int J Mol Sci. 23:40102022. View Article : Google Scholar : PubMed/NCBI | |
Poole LP and Macleod KF: Mitophagy in tumorigenesis and metastasis. Cell Mol Life Sci. 78:3817–3851. 2021. View Article : Google Scholar : PubMed/NCBI | |
Srivastava S and Chan C: Hydrogen peroxide and hydroxyl radicals mediate palmitate-induced cytotoxicity to hepatoma cells: Relation to mitochondrial permeability transition. Free Radic Res. 41:38–49. 2007. View Article : Google Scholar | |
Law BA, Liao X, Moore KS, Southard A, Roddy P, Ji R, Szulc Z, Bielawska A, Schulze PC and Cowart LA: Lipotoxic very-long-chain ceramides cause mitochondrial dysfunction, oxidative stress, and cell death in cardiomyocytes. FASEB J. 32:1403–1416. 2018. View Article : Google Scholar : | |
Botta A, Elizbaryan K, Tashakorinia P, Lam NH and Sweeney G: An adiponectin-S1P autocrine axis protects skeletal muscle cells from palmitate-induced cell death. Lipids Health Dis. 19:1562020. View Article : Google Scholar : PubMed/NCBI | |
Simon JN, Chowdhury SAK, Warren CM, Sadayappan S, Wieczorek DF, Solaro RJ and Wolska BM: Ceramide-mediated depression in cardiomyocyte contractility through PKC activation and modulation of myofilament protein phosphorylation. Basic Res Cardiol. 109:4452014. View Article : Google Scholar : PubMed/NCBI | |
Kim C and Kim B: Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A review. Nutrients. 10:10212018. View Article : Google Scholar : PubMed/NCBI | |
Hu H, Tian M, Ding C and Yu S: The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol. 9:30832019. View Article : Google Scholar : PubMed/NCBI | |
Xiang C, Wang Y, Zhang H and Han F: The role of endoplasmic reticulum stress in neurodegenerative disease. Apoptosis. 22:1–26. 2017. View Article : Google Scholar | |
Szpigel A, Hainault I, Carlier A, Venteclef N, Batto AF, Hajduch E, Bernard C, Ktorza A, Gautier JF, Ferré P, et al: Lipid environment induces ER stress, TXNIP expression and inflammation in immune cells of individuals with type 2 diabetes. Diabetologia. 61:399–412. 2018. View Article : Google Scholar | |
Xu G, Chen J, Jing G, Grayson TB and Shalev A: miR-204 targets PERK and regulates UPR signaling and β-cell apoptosis. Mol Endocrinol. 30:917–924. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ojo OA, Grant S, Amanze JC, Oni AI, Ojo AB, Elebiyo TC, Obafemi TO, Ayokunle DI and Ogunlakin AD: Annona muricata L. peel extract inhibits carbohydrate metabolizing enzymes and reduces pancreatic β-cells, inflammation, and apoptosis via upregulation of PI3K/AKT genes. PLoS One. 17:e02769842022. View Article : Google Scholar | |
Wang Y, Liu J, Akatsu C, Zhang R, Zhang H, Zhu H, Liu K, Zhu HY, Min Q, Meng X, et al: LAPTM5 mediates immature B cell apoptosis and B cell tolerance by regulating the WWP2-PTEN-AKT pathway. Proc Natl Acad Sci USA. 119:e22056291192022. View Article : Google Scholar : PubMed/NCBI | |
Hsu CM, Lin JJ, Su JH and Liu CI: 13-Acetoxysarcocrassolide induces apoptosis in human hepatocellular carcinoma cells through mitochondrial dysfunction and suppression of the PI3K/AKT/mTOR/p70S6K signalling pathway. Pharm Biol. 60:2276–2285. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cui F and He X: IGF-1 ameliorates streptozotocin-induced pancreatic β cell dysfunction and apoptosis via activating IRS1/PI3K/Akt/FOXO1 pathway. Inflamm Res. 71:669–680. 2022. View Article : Google Scholar : PubMed/NCBI | |
Denhez B, Rousseau M, Spino C, Dancosst DA, Dumas MÈ, Guay A, Lizotte F and Geraldes P: Saturated fatty acids induce insulin resistance in podocytes through inhibition of IRS1 via activation of both IKKβ and mTORC1. Sci Rep. 10:216282020. View Article : Google Scholar | |
Jennemann R, Kaden S, Volz M, Nordström V, Herzer S, Sandhoff R and Gröne HJ: Gangliosides modulate insulin secretion by pancreatic beta cells under glucose stress. Glycobiology. 30:722–734. 2020. View Article : Google Scholar : PubMed/NCBI | |
Benito-Vicente A, Jebari-Benslaiman S, Galicia-Garcia U, Larrea-Sebal A, Uribe KB and Martin C: Molecular mechanisms of lipotoxicity-induced pancreatic β-cell dysfunction. Int Rev Cell Mol Biol. 359:357–402. 2021. View Article : Google Scholar | |
Huang X, Liu G, Guo J and Su Z: The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 14:1483–1496. 2018. View Article : Google Scholar : PubMed/NCBI | |
Obanda DN, Ribnicky D, Yu Y, Stephens J and Cefalu WT: An extract of Urtica dioica L. mitigates obesity induced insulin resistance in mice skeletal muscle via protein phosphatase 2A (PP2A). Sci Rep. 6:222222016. View Article : Google Scholar : PubMed/NCBI | |
Li J, Huang J, Lu J, Guo Z, Li Z, Gao H, Wang P, Luo W, Cai S, Hu Y, et al: Sirtuin 1 represses PKC-ζ activity through regulating interplay of acetylation and phosphorylation in cardiac hypertrophy. Br J Pharmacol. 176:416–435. 2019. | |
Ivey RA, Sajan MP and Farese RV: Requirements for pseudosubstrate arginine residues during autoinhibition and phosphatidylinositol 3,4,5-(PO4)3-dependent activation of atypical PKC. J Biol Chem. 289:25021–25030. 2014. View Article : Google Scholar : PubMed/NCBI | |
Campana M, Bellini L, Rouch C, Rachdi L, Coant N, Butin N, Bandet CL, Philippe E, Meneyrol K, Kassis N, et al: Inhibition of central de novo ceramide synthesis restores insulin signaling in hypothalamus and enhances β-cell function of obese Zucker rats. Mol Metab. 8:23–36. 2018. View Article : Google Scholar | |
Wali JA, Jarzebska N, Raubenheimer D, Simpson SJ, Rodionov RN and O'Sullivan JF: Cardio-metabolic effects of high-fat diets and their underlying mechanisms-a narrative review. Nutrients. 12:15052020. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Aminian A, Hassan M, Dan O, Axelrod CL, Schauer PR, Brethauer SA and Kirwan JP: Gastric bypass surgery improves the skeletal muscle ceramide/S1P ratio and upregulates the AMPK/SIRT1/PGC-1α pathway in Zucker diabetic fatty rats. Obes Surg. 29:2158–2165. 2019. View Article : Google Scholar : PubMed/NCBI | |
Matsuzaka T, Kuba M, Koyasu S, Yamamoto Y, Motomura K, Arulmozhiraja S, Ohno H, Sharma R, Shimura T, Okajima Y, et al: Hepatocyte ELOVL fatty acid elongase 6 determines ceramide Acyl-chain length and hepatic insulin sensitivity in mice. Hepatology. 71:1609–1625. 2020. View Article : Google Scholar | |
Yazıcı D and Sezer H: Insulin resistance, obesity and lipotoxicity. Engin AB and Engin A: Obesity and Lipotoxicity. Advances in Experimental Medicine and Biology. 960. Springer International Publishing; pp. 277–304. 2017, View Article : Google Scholar | |
Xia QS, Lu FE, Wu F, Huang ZY, Dong H, Xu LJ and Gong J: New role for ceramide in hypoxia and insulin resistance. World J Gastroenterol. 26:2177–2186. 2020. View Article : Google Scholar : PubMed/NCBI | |
Obata Y, Kita S, Koyama Y, Fukuda S, Takeda H, Takahashi M, Fujishima Y, Nagao H, Masuda S, Tanaka Y, et al: Adiponectin/T-cadherin system enhances exosome biogenesis and decreases cellular ceramides by exosomal release. JCI Insight. 3:e996802018. View Article : Google Scholar : PubMed/NCBI | |
Santovito D, De Nardis V, Marcantonio P, Mandolini C, Paganelli C, Vitale E, Buttitta F, Bucci M, Mezzetti A, Consoli A and Cipollone F: Plasma exosome microRNA profiling unravels a new potential modulator of adiponectin pathway in diabetes: Effect of glycemic control. J Clin Endocrinol Metab. 99:E1681–E1685. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Seo JB, Ofrecio JM, Wollam J, Hernandez-Carretero A, Fu W, et al: Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell. 171:372–384.e12. 2017. View Article : Google Scholar | |
Tian F, Tang P, Sun Z, Zhang R, Zhu D, He J, Liao J, Wan Q and Shen J: miR-210 in exosomes derived from macrophages under high glucose promotes mouse diabetic obesity pathogenesis by suppressing NDUFA4 expression. J Diabetes Res. 2020:68946842020. View Article : Google Scholar : PubMed/NCBI | |
Ruiz-León AM, Lapuente M, Estruch R and Casas R: Clinical advances in immunonutrition and atherosclerosis: A review. Front Immunol. 10:8372019. View Article : Google Scholar : PubMed/NCBI | |
Geovanini GR and Libby P: Atherosclerosis and inflammation: Overview and updates. Clin Sci (Lond). 132:1243–1252. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ho QWC, Zheng X and Ali Y: Ceramide Acyl chain length and its relevance to intracellular lipid regulation. Int J Mol Sci. 23:96972022. View Article : Google Scholar : PubMed/NCBI | |
Sindhu S, Leung YH, Arefanian H, Madiraju SRM, Al-Mulla F, Ahmad R and Prentki M: Neutral sphingomyelinase-2 and cardiometabolic diseases. Obes Rev. 22:e132482021. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Guo X, Ge Q, Zhao Y, Mu H and Zhang J: ER stress activates the NLRP3 inflammasome: A novel mechanism of atherosclerosis. Oxid Med Cell Longev. 2019:34625302019. View Article : Google Scholar : PubMed/NCBI | |
Alaaeldin R, Abdel-Rahman IAM, Hassan HA, Youssef N, Allam AE, Abdelwahab SF, Zhao QL and Fathy M: Carpachromene ameliorates insulin resistance in HepG2 cells via modulating IR/IRS1/PI3k/Akt/GSK3/FoxO1 pathway. Molecules. 26:76292021. View Article : Google Scholar : PubMed/NCBI | |
Gündüz D, Troidl C, Tanislav C, Rohrbach S, Hamm C and Aslam M: Role of PI3K/Akt and MEK/ERK signalling in cAMP/Epac-mediated endothelial barrier stabilisation. Front Physiol. 10:13872019. View Article : Google Scholar : PubMed/NCBI | |
Prasad M, Gatasheh MK, Alshuniaber MA, Krishnamoorthy R, Rajagopal P, K rishnamoor thy K, Periyasamy V, Veeraraghavan VP and Jayaraman S: Impact of glyphosate on the development of insulin resistance in experimental diabetic rats: Role of NFκB signalling pathways. Antioxidants (Basel). 11:24362022. View Article : Google Scholar | |
Wright CJ, McKenna S, De Dios R, Boehmer BH, Nguyen L, Ghosh S, Sandoval J and Rozance PJ: Lower threshold to NFκB activity sensitizes murine β-cells to streptozotocin. J Endocrinol. 249:163–175. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, Ge J, Wang Z, Ren J, Wang X, Xiong H, Gao J, Zhang Y and Zhang Q: Let-7e modulates the inflammatory response in vascular endothelial cells through ceRNA crosstalk. Sci Rep. 7:424982017. View Article : Google Scholar : PubMed/NCBI | |
Olona A, Hateley C, Muralidharan S, Wenk MR, Torta F and Behmoaras J: Sphingolipid metabolism during Toll-like receptor 4 (TLR4)-mediated macrophage activation. Br J Pharmacol. 178:4575–4587. 2021. View Article : Google Scholar : PubMed/NCBI | |
Engin A: The pathogenesis of obesity-associated adipose tissue inflammation. Obesity and Lipotoxicity. Advances in Experimental Medicine and Biology. Engin AB and Engin A: 960. Springer International Publishing; pp. 221–245. 2017, View Article : Google Scholar | |
Berg M, Polyzos KA, Agardh H, Baumgartner R, Forteza MJ, Kareinen I, Gisterå A, Bottcher G, Hurt-Camejo E, Hansson GK and Ketelhuth DFJ: 3-Hydroxyanthralinic acid metabolism controls the hepatic SREBP/lipoprotein axis, inhibits inflammasome activation in macrophages, and decreases atherosclerosis in Ldlr-/- mice. Cardiovasc Res. 116:1948–1957. 2020. View Article : Google Scholar | |
Hornemann T and Worgall TS: Sphingolipids and atherosclerosis. Atherosclerosis. 226:16–28. 2013. View Article : Google Scholar | |
Dekker MJ, Baker C, Naples M, Samsoondar J, Zhang R, Qiu W, Sacco J and Adeli K: Inhibition of sphingolipid synthesis improves dyslipidemia in the diet-induced hamster model of insulin resistance: Evidence for the role of sphingosine and sphinganine in hepatic VLDL-apoB100 overproduction. Atherosclerosis. 228:98–109. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang J and Liu Z: Mechanistic pathogenesis of endothelial dysfunction in diabetic nephropathy and retinopathy. Front Endocrinol (Lausanne). 13:8164002022. View Article : Google Scholar : PubMed/NCBI | |
Sharma S, Schaper N and Rayman G: Microangiopathy: Is it relevant to wound healing in diabetic foot disease? Diabetes Metab Res Rev. 36(Suppl 1): e32442020. View Article : Google Scholar | |
Wang S, Lei B, Zhang E, Gong P, Gu J, He L, Han L and Yuan Z: Targeted therapy for inflammatory diseases with mesenchymal stem cells and their derived exosomes: From basic to clinics. Int J Nanomedicine. 17:1757–1781. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gil CL, Hooker E and Larrivée B: Diabetic kidney disease, endothelial damage, and podocyte-endothelial crosstalk. Kidney Med. 3:105–115. 2020. View Article : Google Scholar | |
Zhao WN, Xu SQ, Liang JF, Peng L, Liu HL, Wang Z, Fang Q, Wang M, Yin WQ, Zhang WJ and Lou JN: Endothelial progenitor cells from human fetal aorta cure diabetic foot in a rat model. Metabolism. 65:1755–1767. 2016. View Article : Google Scholar : PubMed/NCBI | |
Basra R, Papanas N, Farrow F, Karalliedde J and Vas P: Diabetic foot ulcers and cardiac autonomic neuropathy. Clin Ther. 44:323–330. 2022. View Article : Google Scholar : PubMed/NCBI | |
King RJ, Harrison L, Gilbey SG, Santhakumar A, Wyatt J, Jones R and Bodansky HJ: Diabetic hepatosclerosis: Another diabetes microvascular complication? Diabet Med. 33:e5–e7. 2016. View Article : Google Scholar |