1
|
Chen Q, Lv J, Yang W, Xu B, Wang Z, Yu Z,
Wu J, Yang Y and Han Y: Targeted inhibition of STAT3 as a potential
treatment strategy for atherosclerosis. Theranostics. 9:6424–6442.
2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Szelag M, Piaszyk-Borychowska A,
Plens-Galaska M, Wesoly J and Bluyssen HA: Targeted inhibition of
STATs and IRFs as a potential treatment strategy in cardiovascular
disease. Oncotarget. 7:48788–48812. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Xue F, Nie X, Shi J, Liu Q, Wang Z, Li X,
Zhou J, Su J, Xue M, Chen WD and Wang YD: Quercetin inhibits
LPS-induced inflammation and ox-LDL-induced lipid deposition. Front
Pharmacol. 8:402017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Libby P: Inflammation in atherosclerosis.
Nature. 420:868–874. 2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sikorski K, Czerwoniec A, Bujnicki JM,
Wesoly J and Bluyssen HA: STAT1 as a novel therapeutical target in
pro-atherogenic signal integration of IFNγ, TLR4 and IL-6 in
vascular disease. Cytokine Growth Factor Rev. 22:211–219. 2011.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Shah PK and Lecis D: Inflammation in
atherosclerotic cardiovascular disease. F1000. Res.
8:F10002019.
|
7
|
Fatkhullina AR, Peshkova IO and Koltsova
EK: The role of cytokines in the development of atherosclerosis.
Biochemistry (Mosc). 81:1358–1370. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang S, Zou J, Li P, Zheng X and Feng D:
Curcumin protects against atherosclerosis in apolipoprotein
e-knockout mice by inhibiting toll-like receptor 4 expression. J
Agric Food Chem. 66:449–456. 2018. View Article : Google Scholar
|
9
|
Imbaby S, Matsuda N, Tomita K, Hattori K,
Palikhe S, Yokoo H and Hattori Y: Beneficial effect of STAT3 decoy
oligodeoxynucleotide transfection on organ injury and mortality in
mice with cecal ligation and puncture-induced sepsis. Sci Rep.
10:153162020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Bromberg JF: Activation of STAT proteins
and growth control. Bioessays. 23:161–169. 2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bromberg J: Stat proteins and oncogenesis.
J Clin Invest. 109:1139–1142. 2002. View Article : Google Scholar : PubMed/NCBI
|
12
|
An HJ, Kim JY, Gwon MG, Gu H, Kim HJ, Leem
J, Youn SW and Park KK: Beneficial effects of SREBP decoy
oligodeoxy-nucleotide in an animal model of hyperlipidemia. Int J
Mol Sci. 21:5522020. View Article : Google Scholar
|
13
|
Morishita R, Higaki J, Tomita N and
Ogihara T: Application of transcription factor 'decoy' strategy as
means of gene therapy and study of gene expression in
cardiovascular disease. Circ Res. 82:1023–1028. 1998. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tomita N, Ogihara T and Morishita R:
Transcription factors as molecular targets: Molecular mechanisms of
decoy ODN and their design. Curr Drug Targets. 4:603–608. 2003.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Kim SJ, Park JH, Kim KH, Lee WR, Lee S,
Kwon OC, Kim KS and Park KK: Effect of NF-kappaB decoy
oligodeoxynucleotide on LPS/high-fat diet-induced atherosclerosis
in an animal model. Basic Clin Pharmacol Toxicol. 107:925–930.
2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Reimann C, Brangsch J, Colletini F, Walter
T, Hamm B, Botnar RM and Makowski MR: Molecular imaging of the
extracellular matrix in the context of atherosclerosis. Adv Drug
Deliv Rev. 113:49–60. 2017. View Article : Google Scholar
|
17
|
Brasselet C, Durand E, Addad F, Zen AAH,
Smeets MB, Laurent-Maquin D, Bouthors S, Bellon G, de Kleijn D,
Godeau G, et al: Collagen and elastin cross-linking: A mechanism of
constrictive remodeling after arterial injury. Am J Physiol Heart
Circ Physiol. 289:H2228–H2233. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yang ST, Kreutzberger AJB, Lee J,
Kiessling V and Tamm LK: The role of cholesterol in membrane
fusion. Chem Phys Lipids. 199:136–143. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Singaraja RR, Fievet C, Castro G, James
ER, Hennuyer N, Clee SM, Bissada N, Choy JC, Fruchart JC, McManus
BM, et al: Increased ABCA1 activity protects against
atherosclerosis. J Clin Invest. 110:35–42. 2002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wang Q, Zhang M, Liang B, Shirwany N, Zhu
Y and Zou MH: Activation of AMP-activated protein kinase is
required for berberine-induced reduction of atherosclerosis in
mice: The role of uncoupling protein 2. PLoS One. 6:e254362011.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Lan TH, Huang XQ and Tan HM: Vascular
fibrosis in atherosclerosis. Cardiovasc Pathol. 22:401–407. 2013.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Harrington JR: The role of MCP-1 in
atherosclerosis. Stem Cells. 18:65–66. 2000. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lu W, Park SH, Meng Z, Wang F and Zhou C:
Deficiency of adipocyte IKKbeta affects atherosclerotic plaque
vulnerability in obese LDLR deficient mice. J Am Heart Assoc.
8:e0120092019. View Article : Google Scholar
|
24
|
Liu T, Zhang L, Joo D and Sun SC:
NF-kappaB signaling in inflammation. Signal Transduct Target Ther.
2:170232017. View Article : Google Scholar
|
25
|
Usui F, Shirasuna K, Kimura H, Tatsumi K,
Kawashima A, Karasawa T, Hida S, Sagara J, Taniguchi S and
Takahashi M: Critical role of caspase-1 in vascular inflammation
and development of atherosclerosis in Western diet-fed
apolipoprotein E-deficient mice. Biochem Biophys Res Commun.
425:162–168. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Spagnoli LG, Bonanno E, Sangiorgi G and
Mauriello A: Role of inflammation in atherosclerosis. J Nucl Med.
48:1800–1815. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Schumacher T and Benndorf RA: ABC
transport proteins in cardiovascular disease-A brief summary.
Molecules. 22:5892017. View Article : Google Scholar : PubMed/NCBI
|
28
|
He P, Gelissen IC and Ammit AJ: Regulation
of ATP binding cassette transporter A1 (ABCA1) expression:
Cholesterol-dependent and-independent signaling pathways with
relevance to inflammatory lung disease. Respir Res. 21:2502020.
View Article : Google Scholar
|
29
|
Miller NE: HDL metabolism and its role in
lipid transport. Eur Heart J. 11(Suppl H): 1–3. 1990. View Article : Google Scholar : PubMed/NCBI
|
30
|
Favari E, Chroni A, Tietge UJ, Zanotti I,
Escola-Gil JC and Bernini F: Cholesterol efflux and reverse
cholesterol transport. Handb Exp Pharmacol. 224:181–206. 2015.
View Article : Google Scholar
|
31
|
Taleb S: Inflammation in atherosclerosis.
Arch Cardiovasc Dis. 109:708–715. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhang X, Xue C, Xu Q, Zhang Y, Li H, Li F,
Liu Y and Guo C: Caprylic acid suppresses inflammation via
TLR4/NF-kappaB signaling and improves atherosclerosis in
ApoE-deficient mice. Nutr Metab (Lond). 16:402019. View Article : Google Scholar
|
33
|
Yu M, Zhou H, Zhao J, Xiao N, Roychowdhury
S, Schmitt D, Hu B, Ransohoff RM, Harding CV, Hise AG, et al:
MyD88-dependent interplay between myeloid and endothelial cells in
the initiation and progression of obesity-associated inflammatory
diseases. J Exp Med. 211:887–907. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
den Dekker WK, Cheng C, Pasterkamp G and
Duckers HJ: Toll like receptor 4 in atherosclerosis and plaque
destabilization. Atherosclerosis. 209:314–320. 2010. View Article : Google Scholar
|
35
|
Darnell JE Jr: The JAK-STAT pathway:
Summary of initial studies and recent advances. Recent Prog Horm
Res. 51:391–403; discussion 403-394. 1996.PubMed/NCBI
|
36
|
Rawlings JS, Rosler KM and Harrison DA:
The JAK/STAT signaling pathway. J Cell Sci. 117:1281–1283. 2004.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Yu H, Pardoll D and Jove R: STATs in
cancer inflammation and immunity: A leading role for STAT3. Nat Rev
Cancer. 9:798–809. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hillmer EJ, Zhang H, Li HS and Watowich
SS: STAT3 signaling in immunity. Cytokine Growth Factor Rev.
31:1–15. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Miklossy G, Hilliard TS and Turkson J:
Therapeutic modulators of STAT signalling for human diseases. Nat
Rev Drug Discov. 12:611–629. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Marrero MB: Introduction to JAK/STAT
signaling and the vasculature. Vascul Pharmacol. 43:307–309. 2005.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Tamiya T, Kashiwagi I, Takahashi R,
Yasukawa H and Yoshimura A: Suppressors of cytokine signaling
(SOCS) proteins and JAK/STAT pathways: Regulation of T-cell
inflammation by SOCS1 and SOCS3. Arterioscler Thromb Vasc Biol.
31:980–985. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Tian J, Liu Y, Liu Y, Chen K and Lyu S:
Cellular and molecular mechanisms of diabetic atherosclerosis:
Herbal medicines as a potential therapeutic approach. Oxid Med Cell
Longev. 2017:90808692017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Sprague AH and Khalil RA: Inflammatory
cytokines in vascular dysfunction and vascular disease. Biochem
Pharmacol. 78:539–552. 2009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Raines EW: The extracellular matrix can
regulate vascular cell migration, proliferation, and survival:
Relationships to vascular disease. Int J Exp Pathol. 81:173–182.
2000. View Article : Google Scholar : PubMed/NCBI
|
45
|
Bobryshev YV, Ivanova EA, Chistiakov DA,
Nikiforov NG and Orekhov AN: Macrophages and their role in
atherosclerosis: Pathophysiology and transcriptome analysis. Biomed
Res Int. 2016:95824302016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Wang N, Liang H and Zen K: Molecular
mechanisms that influence the macrophage m1-m2 polarization
balance. Front Immunol. 5:6142014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Rubinow KB, Wall VZ, Nelson J, Mar D,
Bomsztyk K, Askari B, Lai MA, Smith KD, Han MS, Vivekanandan-Giri
A, et al: Acyl-CoA synthetase 1 is induced by Gram-negative
bacteria and lipopolysaccharide and is required for phospholipid
turnover in stimulated macrophages. J Biol Chem. 288:9957–9970.
2013. View Article : Google Scholar : PubMed/NCBI
|