Role and mechanisms of noncoding RNAs in the regulation of metabolic reprogramming in bladder cancer (Review)
- Authors:
- Bin Zhang
- Liming Yang
- Yang He
- Dali Han
- Peng Qi
- Panfeng Shang
-
Affiliations: Department of Urology, Institute of Urology, Gansu Nephro‑Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China, Department of Skin and Venereal Diseases, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China - Published online on: July 19, 2023 https://doi.org/10.3892/ijmm.2023.5282
- Article Number: 79
This article is mentioned in:
Abstract
Jubber I, Ong S, Bukavina L, Black PC, Compérat E, Kamat AM, Kiemeney L, Lawrentschuk N, Lerner SP, Meeks JJ, et al: Epidemiology of bladder cancer in 2023: A systematic review of risk factors. Eur Urol. May 15–2023.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
World Cancer Research Fund (WCRF) International, . Bladder cancer statistics. WCRF International, London, 2020. https://www.wcrf.org/cancer-trends/bladder-cancer-statistics | |
Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI | |
Warburg O, Wind F and Negelein E: The metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927. View Article : Google Scholar : PubMed/NCBI | |
Upadhyay M, Samal J, Kandpal M, Singh OV and Vivekanandan P: The Warburg effect: Insights from the past decade. Pharmacol Ther. 137:318–330. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pascale RM, Calvisi DF, Simile MM, Feo CF and Feo F: The Warburg effect 97 years after its discovery. Cancers (Basel). 12:28192020. View Article : Google Scholar : PubMed/NCBI | |
Massari F, Ciccarese C, Santoni M, Iacovelli R, Mazzucchelli R, Piva F, Scarpelli M, Berardi R, Tortora G, Lopez-Beltran A, et al: Metabolic phenotype of bladder cancer. Cancer Treat Rev. 45:46–57. 2016. View Article : Google Scholar : PubMed/NCBI | |
Adnane S, Marino A and Leucci E: LncRNAs in human cancers: Signal from noise. Trends Cell Biol. 32:565–573. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhu S, Meng N, He Y, Lu R and Yan GR: ncRNA-encoded peptides or proteins and cancer. Mol Ther. 27:1718–1725. 2019. View Article : Google Scholar : PubMed/NCBI | |
Anastasiadou E, Jacob LS and Slack FJ: Non-coding RNA networks in cancer. Nat Rev Cancer. 18:5–18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Li G, Guo X, Yao H, Wang G and Li C: Non-coding RNA in bladder cancer. Cancer Lett. 485:38–44. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chandra Gupta S and Nandan Tripathi Y: Potential of long non-coding RNAs in cancer patients: From biomarkers to therapeutic targets. Int J Cancer. 140:1955–1967. 2017. View Article : Google Scholar : PubMed/NCBI | |
Martens-Uzunova ES, Böttcher R, Croce CM, Jenster G, Visakorpi T and Calin GA: Long noncoding RNA in prostate, bladder, and kidney cancer. Eur Urol. 65:1140–1151. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hu QG, Yang Z, Chen JW, Kazobinka G, Tian L and Li WC: MiR-183-5p-PNPT1 axis enhances cisplatin-induced apoptosis in bladder cancer cells. Curr Med Sci Aug. 42:785–796. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Yang Y, Yang Z, Xia S, Lin D, Xiao B and Xiu Y: Novel circRNA_0071196/miRNA-19b-3p/CIT axis is associated with proliferation and migration of bladder cancer. Int J Oncol. 57:767–779. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang D, Lv J, Wang S and Zhang Q: MiR-125a-5p suppresses bladder cancer progression through targeting FUT4. Biomed Pharmacother. 108:1039–1047. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Chen Q and Wang Y: MiR-125b-5p suppresses the bladder cancer progression via targeting HK2 and suppressing PI3K/AKT pathway. Hum Cell. 33:185–194. 2020. View Article : Google Scholar : PubMed/NCBI | |
Luo W, Wang J, Xu W, Ma C, Wan F, Huang Y, Yao M, Zhang H, Qu Y, Ye D and Zhu Y: LncRNA RP11-89 facilitates tumorigenesis and ferroptosis resistance through PROM2-activated iron export by sponging miR-129-5p in bladder cancer. Cell Death Dis. 12:10432021. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Luo Y, He W, Zhao Y, Kong Y, Liu H, Zhong G, Li Y, Li J, Huang J, et al: Exosomal long noncoding RNA LNMAT2 promotes lymphatic metastasis in bladder cancer. J Clin Invest. 130:404–421. 2020. View Article : Google Scholar : PubMed/NCBI | |
Logotheti S, Marquardt S, Gupta SK, Richter C, Edelhäuser BAH, Engelmann D, Brenmoehl J, Söhnchen C, Murr N, Alpers M, et al: LncRNA-SLC16A1-AS1 induces metabolic reprogramming during Bladder Cancer progression as target and co-activator of E2F1. Theranostics. 10:9620–9643. 2020. View Article : Google Scholar : PubMed/NCBI | |
He W, Zhong G, Jiang N, Wang B, Fan X, Chen C, Chen X, Huang J and Lin T: Long noncoding RNA BLACAT2 promotes bladder cancer-associated lymphangiogenesis and lymphatic metastasis. J Clin Invest. 128:861–875. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lv J, Li K, Yu H, Han J, Zhuang J, Yu R, Cheng Y, Song Q, Bai K, Cao Q, et al: HNRNPL induced circFAM13B increased bladder cancer immunotherapy sensitivity via inhibiting glycolysis through IGF2BP1/PKM2 pathway. J Exp Clin Cancer Res. 42:412023. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Wu S, Mou Z, Zhou Q, Dai X, Ou Y, Chen X, Chen Y, Xu C, Hu Y, et al: Exosome-derived circTRPS1 promotes malignant phenotype and CD8+ T cell exhaustion in bladder cancer microenvironments. Mol Ther. 30:1054–1070. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wei W, Sun J, Zhang H, Xiao X, Huang C, Wang L, Zhong H, Jiang Y, Zhang X and Jiang G: Circ0008399 Interaction with WTAP promotes assembly and activity of the m6A Methyltransferase complex and promotes cisplatin resistance in bladder cancer. Cancer Res. 81:6142–6156. 2021. View Article : Google Scholar : PubMed/NCBI | |
McConkey DJ and Choi W: Molecular subtypes of bladder cancer. Curr Oncol Rep. 20:772018. View Article : Google Scholar : PubMed/NCBI | |
Ko YH, Verhoeven HA, Lee MJ, Corbin DJ, Vogl TJ and Pedersen PL: A translational study ‘case report’ on the small molecule ‘energy blocker’ 3-bromopyruvate (3BP) as a potent anticancer agent: from bench side to bedside. J Bioenerg Biomembr. 44:163–170. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mattick JS: Challenging the dogma: The hidden layer of non-proteincoding RNAs in complex organisms. Bioessays. 25:930–939. 2003. View Article : Google Scholar : PubMed/NCBI | |
Mattick JS: The hidden genetic program of complex organisms. Sci Am. 291:60–67. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hombach S and Kretz M: Non-coding RNAs: Classification, biology and functioning. Adv Exp Med Biol. 937:3–17. 2016. View Article : Google Scholar : PubMed/NCBI | |
Heinrichs A: MicroRNAs get a boost. Nat Rev Mol Cell Biol. 10:302–303. 2009. View Article : Google Scholar : PubMed/NCBI | |
Baumann K: Gene expression: RNAi as a global transcriptional activator. Nat Rev Mol Cell Biol. 15:2982014.PubMed/NCBI | |
Sato K and Siomi MC: Piwi-interacting RNAs: Biological functions and biogenesis. Essays Biochem. 54:39–52. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ross RJ, Weiner MM and Lin HF: PIWI proteins and PIWI-interacting RNAs in the soma. Nature. 505:353–359. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim VN, Han J and Siomi MC: Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 10:126–139. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bonasio R and Shiekhattar R: Regulation of transcription by long noncoding RNAs. Annu Rev Genet. 48:433–455. 2014. View Article : Google Scholar : PubMed/NCBI | |
Brown JW, Marshall DF and Echeverria M: Intronic noncoding RNAs and splicing. Trends Plant Sci. 13:335–342. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shankaraiah RC, Veronese A, Sabbioni S and Negrini M: Non-coding RNAs in the reprogramming of glucose metabolism in cancer. Cancer Lett. 419:167–174. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fu XD: Non-coding RNA: A new frontier in regulatory biology. Natl Sci Rev. 1:190–204. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kugel JF and Goodrich JA: Non-coding RNAs: Key regulators of mammalian transcription. Trends Biochem Sci. 37:144–151. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mondal T and Kanduri C: Maintenance of epigenetic information: A noncoding RNA perspective. Chromosome Res. 21:615–625. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chan B, Manley J, Lee J and Singh SR: The emerging roles of microRNAs in cancer metabolism. Cancer Lett. 356:301–308. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pulito C, Donzelli S, Muti P, Puzzo L, Strano S and Blandino G: MicroRNAs and cancer metabolism reprogramming: The paradigm of metformin. Ann Transl Med. 2:582014.PubMed/NCBI | |
Zhao XY and Lin JD: Long non-coding RNAs: A new regulatory code in metabolic control. Trends Biochem Sci. 40:586–596. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fei X, Qi M, Wu B, Song Y, Wang Y and Li T: MicroRNA-195-5p suppresses glucose uptake and proliferation of human bladder cancer T24 cells by regulating GLUT3 expression. FEBS Lett. 586:392–397. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li HJ, Li X, Pang H, Pan JJ, Xie XJ and Chen W: Long non-coding RNA UCA1 promotes glutamine metabolism by targeting miR-16 in human bladder cancer. Jpn J Clin Oncol. 45:1055–1063. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sekar D: miRNA 21: A novel biomarker in the treatment of bladder cancer. Biomark Med. 14:1065–1067. 2020. View Article : Google Scholar : PubMed/NCBI | |
Irlam-Jones JJ, Eustace A, Denley H, Choudhury A, Harris AL, Hoskin PJ and West CM: Expression of miR-210 in relation to other measures of hypoxia and prediction of benefit from hypoxia modification in patients with bladder cancer. Br J Cancer. 115:571–578. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Zhan H, Lin F, Liu Y, Yang K, Gao Q, Ding M, Liu Y, Huang W and Cai Z: LincRNA-p21 suppresses glutamine catabolism and bladder cancer cell growth through inhibiting glutaminase expression. Biosci Rep. 39:BSR201823722019. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Wu W, Li X and Chen W: Long noncoding RNA UCA1 promotes glutamine-driven anaplerosis of bladder cancer by interacting with hnRNP I/L to upregulate GPT2 expression. Transl Oncol. 17:1013402022. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Fan B, Othmane B, Hu J, Li H, Cui Y, Ou Z, Chen J and Zu X: m6A-induced lncDBET promotes the malignant progression of bladder cancer through FABP5-mediated lipid metabolism. Theranostics. 12:6291–6307. 2022. View Article : Google Scholar : PubMed/NCBI | |
He J, Dong C, Zhang H, Jiang Y, Liu T and Man X: The oncogenic role of TFAP2A in bladder urothelial carcinoma via a novel long noncoding RNA TPRG1-AS1/DNMT3A/CRTAC1 axis. Cell Signal. 102:1105272023. View Article : Google Scholar : PubMed/NCBI | |
Salzman J: Circular RNA expression: Its potential regulation and function. Trends Genet. 32:309–316. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jeck WR and Sharpless NE: Detecting and characterizing circular RNAs. Nat Biotechnol. 32:453–461. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI | |
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Qi M, Fei X, Wang X and Wang K: Hsa_circRNA_0088036 acts as a ceRNA to promote bladder cancer progression by sponging miR-140-3p. Cell Death Dis. 13:3222022. View Article : Google Scholar : PubMed/NCBI | |
Su Y, Feng W, Shi J, Chen L, Huang J and Lin T: circRIP2 accelerates bladder cancer progression via miR-1305/Tgf-β2/smad3 pathway. Mol Cancer. 19:232020. View Article : Google Scholar : PubMed/NCBI | |
An M, Zheng H, Huang J, Lin Y, Luo Y, Kong Y, Pang M, Zhang D, Yang J, Chen J, et al: Aberrant nuclear export of circNCOR1 underlies SMAD7-Mediated lymph node metastasis of bladder cancer. Cancer Res. 82:2239–2253. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Wu S, He H, Ai K, Xu R, Zhang L and Zhu X: CircRNA-ST6GALNAC6 increases the sensitivity of bladder cancer cells to erastin-induced ferroptosis by regulating the HSPB1/P38 axis. Lab Invest. 102:1323–1334. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Luo Y, Zhao Y, Kong Y, Zheng H, Li Y, Gao B, Ai L, Huang H, Huang J, et al: circEHBP1 promotes lymphangiogenesis and lymphatic metastasis of bladder cancer via miR-130a-3p/TGFβR1/VEGF-D signaling. Mol Ther. 29:1838–1852. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li G, Guo BY, Wang HD, Lin GT, Lan TJ, Ying H and Xu J: CircRNA hsa_circ_0014130 function as a miR-132-3p sponge for playing oncogenic roles in bladder cancer via upregulating KCNJ12 expression. Cell Biol Toxicol. 38:1079–1096. 2022. View Article : Google Scholar : PubMed/NCBI | |
Du L, Zhang L and Sun F: Puerarin inhibits the progression of bladder cancer by regulating circ_0020394/miR-328-3p/NRBP1 axis. Cancer Biother Radiopharm. 37:435–450. 2022.PubMed/NCBI | |
Wei WS, Wang N, Deng MH, Dong P, Liu JY, Xiang Z, Li XD, Li ZY, Liu ZH, Peng YL, et al: LRPPRC regulates redox homeostasis via the circANKHD1/FOXM1 axis to enhance bladder urothelial carcinoma tumorigenesis. Redox Biol. 48:1022012021. View Article : Google Scholar : PubMed/NCBI | |
Esteller M: Non-coding RNAs in human disease. Nat Rev Genet. 12:861–874. 2011. View Article : Google Scholar : PubMed/NCBI | |
Williams GT and Farzaneh F: Are snoRNAs and snoRNA host genes new players in cancer? Nat Rev Cancer. 12:84–88. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee J, Harris AN, Holley CL, Mahadevan J, Pyles KD, Lavagnino Z, Scherrer DE, Fujiwara H, Sidhu R, Zhang J, et al: Rpl13a small nucleolar RNAs regulate systemic glucose metabolism. J Clin Invest. 126:4616–4625. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dong W, Liu X, Yang C, Wang D, Xue Y, Ruan X, Zhang M, Song J, Cai H, Zheng J and Liu Y: Glioma glycolipid metabolism: MSI2-SNORD12B-FIP1L1-ZBTB4 feedback loop as a potential treatment target. Clin Transl Med. 11:e4112021. View Article : Google Scholar : PubMed/NCBI | |
Sletten AC, Davidson JW, Yagabasan B, Moores S, Schwaiger-Haber M, Fujiwara H, Gale S, Jiang X, Sidhu R, Gelman SJ, et al: Loss of SNORA73 reprograms cellular metabolism and protects against steatohepatitis. Nat Commun. 12:52142021. View Article : Google Scholar : PubMed/NCBI | |
Farazi TA, Juranek SA and Tuschl T: The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development. 135:1201–1214. 2008. View Article : Google Scholar : PubMed/NCBI | |
Luteijn MJ and Ketting RF: PIWI-interacting RNAs: From generation to transgenerational epigenetics. Nat Rev Genet. 14:523–534. 2013. View Article : Google Scholar : PubMed/NCBI | |
Siomi MC, Sato K, Pezic D and Aravin AA: PIWIinteracting small RNAs: The vanguard of genome defence. Nat Rev Mol Cell Biol. 12:246–258. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chu H, Hui G, Yuan L, Shi D, Wang Y, Du M, Zhong D, Ma L, Tong N, Qin C, et al: Identification of novel piRNAs in bladder cancer. Cancer Lett. 356:561–567. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hu S, Balakrishnan A, Bok RA, Anderton B, Larson PE, Nelson SJ, Kurhanewicz J, Vigneron DB and Goga A: 13C-pyruvate imaging reveals alterations in glycolysis that precede c-Myc-induced tumor formation and regression. Cell Metab. 14:131–142. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gao P, Sun L, He X, Cao Y and Zhang H: MicroRNAs and the Warburg effect: New players in an old arena. Curr Gene Ther. 12:285–291. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Zhao P, Liu Z, Li Z, Yuan Y, Zhang X, Yu Z, Fang J and Xiao K: MiR-204-3p inhibited the proliferation of bladder cancer cells via modulating lactate dehydrogenase-mediated glycolysis. Front Oncol. 9:12422019. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Cheng Y, Li P, Tao J, Deng X, Zhang X, Gu M, Lu Q and Yin C: A lentiviral sponge for miRNA-21 diminishes aerobic glycolysis in bladder cancer T24 cells via the PTEN/PI3K/AKT/mTOR axis. Tumour Biol. 36:383–391. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu JH, Sun KN, Chen ZH, He YJ and Sheng L: Exosome-mediated miR-4792 transfer promotes bladder cancer cell proliferation via enhanced FOXC1/c-Myc signaling and Warburg effect. J Oncol. 2022:56803532022.PubMed/NCBI | |
Yuan D, Zheng S, Wang L, Li J, Yang J, Wang B, Chen X and Zhang X: MiR-200c inhibits bladder cancer progression by targeting lactate dehydrogenase A. Oncotarget. 8:67663–67669. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cai W, Wei M and Su Z: MITF-Mediated lncRNA CCDC183-As1 promotes the tumorigenic properties and aerobic glycolysis of bladder cancer via upregulating TCF7L2. J Oncol. 2022:67859562022. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Li Y, Yan S, Wang H, Shao X, Xiao M, Yang B, Qin G, Kong R, Chen R and Zhang N: Interactome analysis reveals that lncRNA HULC promotes aerobic glycolysis through LDHA and PKM2. Nat Commun. 11:31622020. View Article : Google Scholar : PubMed/NCBI | |
Ho KH, Huang TW, Shih CM, Lee YT, Liu AJ, Chen PH and Chen KC: Glycolysis-associated lncRNAs identify a subgroup of cancer patients with poor prognoses and a high-infiltration immune microenvironment. BMC Med. 19:592021. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Li X, Wu S, Xue M and Chen W: Long non-coding RNA UCA1 promotes glycolysis by upregulating hexokinase 2 through the mTOR-STAT3/microRNA143 pathway. Cancer Sci. 105:951–955. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wei Y, Zhang Y, Meng Q, Cui L and Xu C: Hypoxia-induced circular RNA has_circRNA_403658 promotes bladder cancer cell growth through activation of LDHA. Am J Transl Res. 11:6838–6849. 2019.PubMed/NCBI | |
Fernandez-Hernando C, Suarez Y, Rayner KJ and Moore KJ: MicroRNAs in lipid metabolism. Curr Opin Lipidol. 22:86–92. 2011. View Article : Google Scholar : PubMed/NCBI | |
Santos CR and Schulze A: Lipid metabolism in cancer. FEBS J. 279:2610–2623. 2012. View Article : Google Scholar : PubMed/NCBI | |
Currie E, Schulze A, Zechner R, Walther TC and Farese RV Jr: Cellular fatty acid metabolism and cancer. Cell Metab. 18:153–161. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bian X, Liu R, Meng Y, Xing D, Xu D and Lu Z: Lipid metabolism and cancer. J Exp Med. 218:e202016062021. View Article : Google Scholar : PubMed/NCBI | |
Vettore L, Westbrook RL and Tennant DA: New aspects of amino acid metabolism in cancer. Br J Cancer. 122:150–156. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Z and Zhang H: Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci. 73:377–392. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hu Q, Li Y, Li D, Yuan Y, Wang K, Yao L, Cheng Z and Han T: Amino acid metabolism regulated by lncRNAs: The propellant behind cancer metabolic reprogramming. Cell Commun Signal. 21:872023. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Xia Z, Sun X, Wei B, Fu Y, Shi D and Zhu Y: Identification of a glutamine metabolism reprogramming signature for predicting prognosis, immunotherapy efficacy, and drug candidates in bladder cancer. Front Immunol. 14:11113192023. View Article : Google Scholar : PubMed/NCBI | |
Chen CW: Comment on ‘Long noncoding RNA UCA1 promotes glutamine-driven anaplerosis of bladder cancer by interacting with hnRNP I/L to upregulate GPT2 expression’ by Chen et al.’”. Transl Oncol. 18:1013722022. View Article : Google Scholar : PubMed/NCBI | |
Roh J, Im M, Chae Y, Kang J and Kim W: The involvement of long non-coding RNAs in glutamine-metabolic reprogramming and therapeutic resistance in cancer. Int J Mol Sci. 23:148082022. View Article : Google Scholar : PubMed/NCBI | |
Ortiz-Pedraza Y, Muñoz-Bello JO, Olmedo-Nieva L, Contreras-Paredes A, Martínez-Ramírez I, Langley E and Lizano M: Non-coding RNAs as key regulators of glutaminolysis in cancer. Int J Mol Sci. 21:28722020. View Article : Google Scholar : PubMed/NCBI |