1
|
Seto-Tetsuo F, Arioka M, Miura K, Inoue T,
Igawa K, Tomooka K, Takahashi-Yanaga F and Sasaguri T: DIF-1
inhibits growth and metastasis of triple-negative breast cancer
through AMPK-mediated inhibition of the mTORC1-S6K signaling
pathway. Oncogene. 40:5579–5589. 2021. View Article : Google Scholar : PubMed/NCBI
|
2
|
DeSantis CE, Fedewa SA, Goding Sauer A,
Kramer JL, Smith RA and Jemal A: Breast cancer statistics, 2015:
Convergence of incidence rates between black and white women. CA
Cancer J Clin. 66:31–42. 2016. View Article : Google Scholar
|
3
|
Chen L, Linden HM, Anderson BO and Li CI:
Trends in 5-year survival rates among breast cancer patients by
hormone receptor status and stage. Breast Cancer Res Treat.
147:609–616. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Weigelt B, Peterse JL and van 't Veer LJ:
Breast cancer metastasis: Markers and models. Nat Rev Cancer.
5:591–602. 2005. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Saraiva DP, Guadalupe Cabral M, Jacinto A
and Braga S: How many diseases is triple negative breast cancer:
The protagonism of the immune microenvironment. ESMO Open.
2:e0002082017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Dent R, Trudeau M, Pritchard KI, Hanna WM,
Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P and Narod SA:
Triple-negative breast cancer: Clinical features and patterns of
recurrence. Clin Cancer Res. 13:4429–4434. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Roskoski R Jr: The ErbB/HER family of
protein-tyrosine kinases and cancer. Pharmacol Res. 79:34–74. 2014.
View Article : Google Scholar
|
8
|
Peruzzi B and Bottaro DP: Targeting the
c-Met signaling pathway in cancer. Clin Cancer Res. 12:3657–3560.
2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Farabaugh SM, Boone DN and Lee AV: Role of
IGF1R in Breast Cancer Subtypes, Stemness, and Lineage
Differentiation. Front Endocrinol (Lausanne). 6:592015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Belfiore A and Frasca F: IGF and insulin
receptor signaling in breast cancer. J Mammary Gland Biol
Neoplasia. 13:381–406. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Eccles SA: The epidermal growth factor
receptor/Erb-B/HER family in normal and malignant breast biology.
Int J Dev Biol. 55:685–696. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Koutras AK and Evans TR: The epidermal
growth factor receptor family in breast cancer. Onco Targets Ther.
1:5–19. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Witton CJ, Reeves JR, Going JJ, Cooke TG
and Bartlett JM: Expression of the HER1-4 family of receptor
tyrosine kinases in breast cancer. J Pathol. 200:290–297. 2003.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Ho-Yen CM, Jones JL and Kermorgant S: The
clinical and functional significance of c-Met in breast cancer: A
review. Breast Cancer Res. 17:522015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Tamimi RM, Colditz GA, Wang Y, Collins LC,
Hu R, Rosner B, Irie HY, Connolly JL and Schnitt SJ: Expression of
IGF1R in normal breast tissue and subsequent risk of breast cancer.
Breast Cancer Res Treat. 128:243–250. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Buck E and Mulvihill M: Small molecule
inhibitors of the IGF-1R/IR axis for the treatment of cancer.
Expert Opin Investig Drugs. 20:605–621. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Takeda T, Tsubaki M, Matsuda T, Kimura A,
Jinushi M, Obana T, Takegami M and Nishida S: EGFR inhibition
reverses epithelial-mesenchymal transition, and decreases tamoxifen
resistance via Snail and Twist downregulation in breast cancer
cells. Oncol Rep. 47:1092022. View Article : Google Scholar
|
18
|
Kakinuma T and Hwang ST: Chemokines,
chemokine receptors, and cancer metastasis. J Leukoc Biol.
79:639–651. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tanaka T, Bai Z, Srinoulprasert Y, Yang
BG, Hayasaka H and Miyasaka M: Chemokines in tumor progression and
metastasis. Cancer Sci. 96:317–322. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Motzer RJ, Escudier B, Oudard S, Hutson
TE, Porta C, Bracarda S, Grünwald V, Thompson JA, Figlin RA,
Hollaender N, et al: Efficacy of everolimus in advanced renal cell
carcinoma: A double-blind, randomised, placebo-controlled phase III
trial. Lancet. 372:449–456. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yao JC, Shah MH, Ito T, Bohas CL, Wolin
EM, Van Cutsem E, Hobday TJ, Okusaka T, Capdevila J, de Vries EG,
et al: Everolimus for advanced pancreatic neuroendocrine tumors. N
Engl J Med. 364:514–523. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lebwohl D, Anak O, Sahmoud T, Klimovsky J,
Elmroth I, Haas T, Posluszny J, Saletan S and Berg W: Development
of everolimus, a novel oral mTOR inhibitor, across a spectrum of
diseases. Ann N Y Acad Sci. 1291:14–32. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Fuereder T, Jaeger-Lansky A, Hoeflmayer D,
Preusser M, Strommer S, Cejka D, Koehrer S, Crevenna R and Wacheck
V: mTOR inhibition by everolimus counteracts VEGF induction by
sunitinib and improves anti-tumor activity against gastric cancer
in vivo. Cancer Lett. 296:249–256. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Bradshaw-Pierce EL, Pitts TM, Kulikowski
G, Selby H, Merz AL, Gustafson DL, Serkova NJ, Eckhardt SG and
Weekes CD: Utilization of quantitative in vivo pharmacology
approaches to assess combination effects of everolimus and
irinotecan in mouse xenograft models of colorectal cancer. PLoS
One. 8:e580892013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Pantaleo MA, Nicoletti G, Nanni C, Gnocchi
C, Landuzzi L, Quarta C, Boschi S, Nannini M, Di Battista M,
Castellucci P, et al: Preclinical evaluation of KIT/PDGFRA and mTOR
inhibitors in gastrointestinal stromal tumors using small animal
FDG PET. J Exp Clin Cancer Res. 29:1732010. View Article : Google Scholar
|
26
|
Lyu H, Han A, Polsdofer E, Liu S and Liu
B: Understanding the biology of HER3 receptor as a therapeutic
target in human cancer. Acta Pharm Sin B. 8:503–510. 2018.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Beji A, Horst D, Engel J, Kirchner T and
Ullrich A: Toward the prognostic significance and therapeutic
potential of HER3 receptor tyrosine kinase in human colon cancer.
Clin Cancer Res. 18:956–968. 2012. View Article : Google Scholar
|
28
|
Wu X, Chen Y, Li G, Xia L, Gu R, Wen X,
Ming X and Chen H: Her3 is associated with poor survival of gastric
adenocarcinoma: Her3 promotes proliferation, survival and migration
of human gastric cancer mediated by PI3K/AKT signaling pathway. Med
Oncol. 31:9032014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mishra R, Patel H, Alanazi S, Yuan L and
Garrett JT: HER3 signaling and targeted therapy in cancer. Oncol
Rev. 12:3552018.PubMed/NCBI
|
30
|
Saini KS, Loi S, de Azambuja E,
Metzger-Filho O, Saini ML, Ignatiadis M, Dancey JE and
Piccart-Gebhart MJ: Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK
pathways in the treatment of breast cancer. Cancer Treat Rev.
39:935–946. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Desbois-Mouthon C, Baron A, Blivet-Van
Eggelpoël MJ, Fartoux L, Venot C, Bladt F, Housset C and Rosmorduc
O: Insulin-like growth factor-1 receptor inhibition induces a
resistance mechanism via the epidermal growth factor
receptor/HER3/AKT signaling pathway: Rational basis for cotargeting
insulin-like growth factor-1 receptor and epidermal growth factor
receptor in hepatocellular carcinoma. Clin Cancer Res. 15:5445–456.
2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sithanandam G and Anderson LM: The ERBB3
receptor in cancer and cancer gene therapy. Cancer Gene Ther.
15:413–448. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zlotnik A: New insights on the role of
CXCR4 in cancer metastasis. J Pathol. 215:211–213. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Müller A, Homey B, Soto H, Ge N, Catron D,
Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, et al:
Involvement of chemokine receptors in breast cancer metastasis.
Nature. 410:50–56. 2001. View
Article : Google Scholar : PubMed/NCBI
|
35
|
Zhu M, Guo J, Xia H, Li W, Lu Y, Dong X,
Chen Y, Xie X, Fu S and Li M: Alpha-fetoprotein activates AKT/mTOR
signaling to promote CXCR4 expression and migration of hepatoma
cells. Oncoscience. 2:59–70. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Anandappa G, Hollingdale A and Eisen T:
Everolimus-a new approach in the treatment of renal cell carcinoma.
Cancer Manag Res. 2:61–70. 2010.PubMed/NCBI
|
37
|
Fouqué A, Delalande O, Jean M, Castellano
R, Josselin E, Malleter M, Shoji KF, Hung MD, Rampanarivo H,
Collette Y, et al: A Novel Covalent mTOR Inhibitor, DHM25, Shows in
Vivo Antitumor Activity against Triple-Negative Breast Cancer
Cells. J Med Chem. 58:6559–6573. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
O'Shaughnessy J, Thaddeus Beck J and Royce
M: Everolimusbased combination therapies for HR+, HER2-metastatic
breast cancer. Cancer Treat Rev. 69:204–214. 2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Hortobagyi GN: Everolimus plus exemestane
for the treatment of advanced breast cancer: A review of
subanalyses from BOLERO-2. Neoplasia. 17:279–288. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Fan Y, Sun T, Shao Z, Zhang Q, Ouyang Q,
Tong Z, Wang S, Luo Y, Teng Y, Wang X, et al: Effectiveness of
Adding Everolimus to the First-line Treatment of Advanced Breast
Cancer in Premenopausal Women Who Experienced Disease Progression
While Receiving Selective Estrogen Receptor Modulators: A Phase 2
Randomized Clinical Trial. JAMA Oncol. 7:e2134282021. View Article : Google Scholar : PubMed/NCBI
|