Role of CELF2 in ferroptosis: Potential targets for cancer therapy (Review)
- Authors:
- Jiahao Li
- Lei Xian
- Zifeng Zhu
- Yang Wang
- Wenlei Zhang
- Ruipeng Zheng
- Wang Xue
- Jiarui Li
-
Affiliations: Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China - Published online on: August 9, 2023 https://doi.org/10.3892/ijmm.2023.5291
- Article Number: 88
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, Xu S, Gao Y, Chen X, Sui X and Li G: The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 127:1101082020. View Article : Google Scholar : PubMed/NCBI | |
Peng JJ, Song WT, Yao F, Zhang X, Peng J, Luo XJ and Xia XB: Involvement of regulated necrosis in blinding diseases: Focus on necroptosis and ferroptosis. Exp Eye Res. 191:1079222020. View Article : Google Scholar | |
Ma T, Du J, Zhang Y, Wang Y, Wang B and Zhang T: GPX4-independent ferroptosis-a new strategy in disease's therapy. Cell Death Discov. 8:4342022. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Liu Z, Liu L, Guo C, Jiao D, Li L, Zhao J, Han X and Sun Y: CELF2 is a candidate prognostic and immunotherapy biomarker in triple-negative breast cancer and lung squamous cell carcinoma: A pan-cancer analysis. J Cell Mol Med. 25:7559–7574. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ramalingam S, Ramamoorthy P, Subramaniam D and Anant S: Reduced expression of RNA binding protein CELF2, a putative tumor suppressor gene in colon cancer. Immunogastroenterology. 1:27–33. 2012. View Article : Google Scholar | |
Sureban SM, Murmu N, Rodriguez P, May R, Maheshwari R, Dieckgraefe BK, Houchen CW and Anant S: Functional antagonism between RNA binding proteins HuR and CUGBP2 determines the fate of COX-2 mRNA translation. Gastroenterology. 132:1055–1065. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jakstaite A, Maziukiene A, Silkuniene G, Kmieliute K, Dauksa A, Paskauskas S, Gulbinas A and Dambrauskas Z: Upregulation of cugbp2 increases response of pancreatic cancer cells to chemotherapy. Langenbecks Arch Surg. 401:99–111. 2016. View Article : Google Scholar | |
Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and Hu LL: ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 19:1997–2007. 2020.PubMed/NCBI | |
Lee S, Rauch J and Kolch W: Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. Int J Mol Sci. 21:11022020. View Article : Google Scholar : PubMed/NCBI | |
Sui X, Kong N, Ye L, Han W, Zhou J, Zhang Q, He C and Pan H: p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett. 344:174–179. 2014. View Article : Google Scholar | |
Chang WT, Bow YD, Fu PJ, Li CY, Wu CY, Chang YH, Teng YN, Li RN, Lu MC, Liu YC and Chiu CC: A Marine terpenoid, heteronemin, induces both the apoptosis and ferroptosis of hepatocellular carcinoma cells and involves the ROS and MAPK pathways. Oxid Med Cell Longev. 2021:76890452021. View Article : Google Scholar : PubMed/NCBI | |
Zhou D, Wu Q, Qiu H, Li M and Ji Y: Simvastatin inhibits endometrial cancer malignant behaviors by suppressing R AS/ M itogen-Activated protei n k i nase ( M A PK) Pathway-Mediated reactive oxygen species (ROS) and ferroptosis. Evid Based Complement Alternat Med. 2022:61774772022. View Article : Google Scholar | |
He T, Lin X, Yang C, Chen Z, Wang L, Li Q, Ma J, Zhan F, Wang Y, Yan J and Quan Z: Theaflavin-3,3′-Digallate Plays a ROS-Mediated dual role in ferroptosis and apoptosis via the MAPK pathway in human osteosarcoma cell lines and xenografts. Oxid Med Cell Longev. 2022:89663682022. View Article : Google Scholar | |
Bhatt V, Lan T, Wang W, Kong J, Lopes EC, Wang J, Khayati K, Raju A, Rangel M, Lopez E, et al: Inhibition of autophagy and MEK promotes ferroptosis in Lkb1-deficient Kras-driven lung tumors. Cell Death Dis. 14:612023. View Article : Google Scholar : PubMed/NCBI | |
Santarpia L, Lippman SM and El-Naggar AK: Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets. 16:103–119. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ji S, Qin Y, Shi S, Liu X, Hu H, Zhou H, Gao J, Zhang B, Xu W, Liu J, et al: ERK kinase phosphorylates and destabilizes the tumor suppressor FBW7 in pancreatic cancer. Cell Res. 25:561–573. 2015. View Article : Google Scholar : PubMed/NCBI | |
Davis RJ, Welcker M and Clurman BE: Tumor suppression by the Fbw7 ubiquitin ligase: mechanisms and opportunities. Cancer Cell. 26:455–464. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Hu K, Xiao X, Wu W, Yan H, Chen H, Chen Z and Yin D: FBW7 suppresses cell proliferation and G2/M cell cycle transition via promoting γ-catenin K63-linked ubiquitylation. Biochem Biophys Res Commun. 497:473–479. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ye Z, Zhuo Q, Hu Q, Xu X, Mengqi Liu, Zhang Z, Xu W, Liu W, Fan G, Qin Y, et al: FBW7-NRA41-SCD1 axis synchronously regulates apoptosis and ferroptosis in pancreatic cancer cells. Redox Biol. 38:1018072021. View Article : Google Scholar | |
Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, Ishida N, Okumura F, Nakayama K and Nakayama KI: Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 23:2116–2125. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Ding C, Chen Y, Hu W, Lu Y, Wu W, Zhang Y, Yang B, Wu H, Peng C, et al: ACSL4 promotes hepatocellular carcinoma progression via c-Myc stability mediated by ERK/FBW7/c-Myc axis. Oncogenesis. 9:422020. View Article : Google Scholar : PubMed/NCBI | |
Benassi B, Fanciulli M, Fiorentino F, Porrello A, Chiorino G, Loda M, Zupi G and Biroccio A: c-Myc phosphorylation is required for cellular response to oxidative stress. Mol Cell. 21:509–519. 2006. View Article : Google Scholar | |
Lepore Signorile M, Grossi V, Fasano C, Forte G, Disciglio V, Sanese P, De Marco K, La Rocca F, Armentano R, Valentini AM, et al: c-MYC protein stability is sustained by MAPKs in colorectal cancer. Cancers (Basel). 14:48402022. View Article : Google Scholar : PubMed/NCBI | |
Lepore Signorile M, Grossi V, Di Franco S, Forte G, Disciglio V, Fasano C, Sanese P, De Marco K, Susca FC, Mangiapane LR, et al: Pharmacological targeting of the novel β-catenin chromatin-associated kinase p38α in colorectal cancer stem cell tumorspheres and organoids. Cell Death Dis. 12:3162021. View Article : Google Scholar | |
Jiang X, Guo S, Xu M, Ma B, Liu R, Xu Y and Zhang Y: TFAP2C-Mediated lncRNA PCAT1 inhibits ferroptosis in docetaxel-resistant prostate cancer through c-Myc/miR-25-3p/SLC7A11 signaling. Front Oncol. 12:8620152022. View Article : Google Scholar : PubMed/NCBI | |
Benassi B, Zupi G and Biroccio A: Gamma-glutamylcysteine synthetase mediates the c-Myc-dependent response to antineoplastic agents in melanoma cells. Mol Pharmacol. 72:1015–1023. 2007. View Article : Google Scholar | |
Kim BY, Kwak SY, Yang JS and Han YH: Phosphorylation and stabilization of c-Myc by NEMO renders cells resistant to ionizing radiation through up-regulation of γ-GCS. Oncol Rep. 26:1587–1593. 2011.PubMed/NCBI | |
Jiang Y, Mao C, Yang R, Yan B, Shi Y, Liu X, Lai W, Liu Y, Wang X, Xiao D, et al: EGLN1/c-Myc induced lymphoid-specific helicase inhibits ferroptosis through lipid metabolic gene expression changes. Theranostics. 7:3293–3305. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liang C, Shi S, Liu M, Qin Y, Meng Q, Hua J, Ji S, Zhang Y, Yang J, Xu J, et al: PIN1 maintains redox balance via the c-Myc/NRF2 axis to counteract kras-induced mitochondrial respiratory injury in pancreatic cancer cells. Cancer Res. 79:133–145. 2019. View Article : Google Scholar | |
Lu H, Yin H, Qu L, Ma X, Fu R and Fan D: Ginsenoside Rk1 regulates glutamine metabolism in hepatocellular carcinoma through inhibition of the ERK/c-Myc pathway. Food Funct. 13:3793–3811. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT and Dang CV: c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 458:762–765. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Qiu J, Lu X and Li G: C-MYC inhibited ferroptosis and promoted immune evasion in ovarian cancer cells through NCOA4 mediated ferritin autophagy. Cells. 11:41272022. View Article : Google Scholar : | |
Hongu T and Kanaho Y: Activation machinery of the small GTPase Arf6. Adv Biol Regul. 54:59–66. 2014. View Article : Google Scholar | |
Liang C, Qin Y, Zhang B, Ji S, Shi S, Xu W, Liu J, Xiang J, Liang D, Hu Q, et al: ARF6, induced by mutant Kras, promotes proliferation and Warburg effect in pancreatic cancer. Cancer Lett. 388:303–311. 2017. View Article : Google Scholar | |
Knizhnik AV, Kovaleva OV, Komelkov AV, Trukhanova LS, Rybko VA, Zborovskaya IB and Tchevkina EM: Arf6 promotes cell proliferation via the PLD-mTORC1 and p38MAPK pathways. J Cell Biochem. 113:360–371. 2012. View Article : Google Scholar | |
Ye Z, Hu Q, Zhuo Q, Zhu Y, Fan G, Liu M, Sun Q, Zhang Z, Liu W, Xu W, et al: Abrogation of ARF6 promotes RSL3-induced ferroptosis and mitigates gemcitabine resistance in pancreatic cancer cells. Am J Cancer Res. 10:1182–1193. 2020.PubMed/NCBI | |
Geng D and Wu H: Abrogation of ARF6 in promoting erastin-induced ferroptosis and mitigating capecitabine resistance in gastric cancer cells. J Gastrointest Oncol. 13:958–967. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yan F, Qian M, He Q, Zhu H and Yang B: The posttranslational modifications of Hippo-YAP pathway in cancer. Biochim Biophys Acta Gen Subj. 1864:1293972020. View Article : Google Scholar | |
Jang JW, Kim MK and Bae SC: Reciprocal regulation of YAP/TAZ by the Hippo pathway and the Small GTPase pathway. Small GTPases. 11:280–288. 2020. View Article : Google Scholar : | |
Meng XY, Zhang HZ, Ren YY, Wang KJ, Chen JF, Su R, Jiang JH, Wang P and Ma Q: Pinin promotes tumor progression via activating CREB through PI3K/AKT and ERK/MAPK pathway in prostate cancer. Am J Cancer Res. 11:1286–1303. 2021.PubMed/NCBI | |
Lee CW, Nam JS, Park YK, Choi HK, Lee JH, Kim NH, Cho J, Song DK, Suh HW, Lee J, et al: Lysophosphatidic acid stimulates CREB through mitogen- and stress-activated protein kinase-1. Biochem Biophys Res Commun. 305:455–461. 2003. View Article : Google Scholar | |
Ippolito F, Consalvi V, Noce V, Battistelli C, Cicchini C, Tripodi M, Amicone L and Marchetti A: Extracellular signal-Regulated Kinase 5 (ERK5) is required for the Yes-associated protein (YAP) co-transcriptional activity. Cell Death Dis. 14:322023. View Article : Google Scholar : PubMed/NCBI | |
Holmes B, Benavides-Serrato A, Saunders JT, Kumar S, Nishimura RN and Gera J: mTORC2-mediated direct phosphorylation regulates YAP activity promoting glioblastoma growth and invasive characteristics. Neoplasia. 23:951–965. 2021. View Article : Google Scholar : | |
Wang Y, Fang R, Cui M, Zhang W, Bai X, Wang H, Liu B, Zhang X and Ye L: The oncoprotein HBXIP up-regulates YAP through activation of transcription factor c-Myb to promote growth of liver cancer. Cancer Lett. 385:234–242. 2017. View Article : Google Scholar | |
Xiao W, Wang J, Ou C, Zhang Y, Ma L, Weng W, Pan Q and Sun F: Mutual interaction between YAP and c-Myc is critical for carcinogenesis in liver cancer. Biochem Biophys Res Commun. 439:167–172. 2013. View Article : Google Scholar | |
Qin Y, Pei Z, Feng Z, Lin P, Wang S, Li Y, Huo F, Wang Q, Wang Z, Chen ZN, et al: Oncogenic activation of YAP signaling sensitizes ferroptosis of hepatocellular carcinoma via ALOXE3-mediated lipid peroxidation accumulation. Front Cell Dev Biol. 9:7515932021. View Article : Google Scholar | |
Wu J, Minikes AM, Gao M, Bian H, Li Y, Stockwell BR, Chen ZN and Jiang X: Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature. 572:402–406. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fang K, Du S, Shen D, Xiong Z, Jiang K, Liang D, Wang J, Xu H, Hu L, Zhai X, et al: SUFU suppresses ferroptosis sensitivity in breast cancer cells via Hippo/YAP pathway. iScience. 25:1046182022. View Article : Google Scholar : PubMed/NCBI | |
Yang WH, Lin CC, Wu J, Chao PY, Chen K, Chen PH and Chi JT: The Hippo pathway effector YAP promotes ferroptosis via the E3 ligase SKP2. Mol Cancer Res. 19:1005–1014. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gao R, Kalathur RKR, Coto-Llerena M, Ercan C, Buechel D, Shuang S, Piscuoglio S, Dill MT, Camargo FD, Christofori G and Tang F: YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med. 13:e143512021. View Article : Google Scholar : | |
Hsu CY, Chang GC, Chen YJ, Hsu YC, Hsiao YJ, Su KY, Chen HY, Lin CY, Chen JS, Chen YJ, et al: FAM198B is associated with prolonged survival and inhibits metastasis in lung adenocarcinoma via blockage of ERK-mediated MMP-1 expression. Clin Cancer Res. 24:916–926. 2018. View Article : Google Scholar | |
Guo Q, Wu Y, Guo X, Cao L, Xu F, Zhao H, Zhu J, Wen H, Ju X and Wu X: The RNA-binding protein CELF2 inhibits ovarian cancer progression by stabilizing FAM198B. Mol Ther Nucleic Acids. 23:169–184. 2021. View Article : Google Scholar | |
Zheng X, Chen J, Nan T, Zheng L, Lan J, Jin X, Cai Y, Liu H and Chen W: FAM198B promotes colorectal cancer progression by regulating the polarization of tumor-associated macrophages via the SMAD2 signaling pathway. Bioengineered. 13:12435–12445. 2022. View Article : Google Scholar : | |
Buchholz M, Schatz A, Wagner M, Michl P, Linhart T, Adler G, Gress TM and Ellenrieder V: Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca2+/calcineurin signaling pathway. EMBO J. 25:3714–3724. 2006. View Article : Google Scholar : PubMed/NCBI | |
Xu W, Gu J, Ren Q, Shi Y, Xia Q and Wang J, Wang S, Wang Y and Wang J: NFATC1 promotes cell growth and tumorigenesis in ovarian cancer up-regulating c-Myc through ERK1/2/p38 MAPK signal pathway. Tumour Biol. 37:4493–4500. 2016. View Article : Google Scholar | |
Ren F, Zhu K, Wang Y, Zhou F, Pang S and Chen L: Proliferation, apoptosis and invasion of human lung cancer cells are associated with NFATc1. Exp Ther Med. 25:492023. View Article : Google Scholar : PubMed/NCBI | |
Russo R, Mallia S, Zito F and Lampiasi N: Long-lasting activity of ERK kinase depends on NFATc1 induction and is involved in cell migration-fusion in murine macrophages RAW264.7. Int J Mol Sci. 21:89652020. View Article : Google Scholar : PubMed/NCBI | |
Baumgart S, Chen NM, Siveke JT, König A, Zhang JS, Singh SK, Wolf E, Bartkuhn M, Esposito I, Heßmann E, et al: Inflammation-induced NFATc1-STAT3 transcription complex promotes pancreatic cancer initiation by KrasG12D. Cancer Discov. 4:688–701. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou L and Xie X: RNA-binding protein CELF2 inhibits breast cancer cell invasion and angiogenesis by downregulating NFATc1. Exp Ther Med. 22:8982021. View Article : Google Scholar : PubMed/NCBI | |
Faes S and Dormond O: PI3K and AKT: Unfaithful partners in cancer. Int J Mol Sci. 16:21138–21152. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hashemi M, Taheriazam A, Daneii P, Hassanpour A, Kakavand A, Rezaei S, Hejazi ES, Aboutalebi M, Gholamrezaie H, Saebfar H, et al: Targeting PI3K/Akt signaling in prostate cancer therapy. J Cell Commun Signal. Nov 11–2022. View Article : Google Scholar : Epub ahead of print. PubMed/NCBI | |
Ma RH, Ni ZJ, Thakur K, Cespedes-Acuña CL, Zhang JG and Wei ZJ: Transcriptome and proteomics conjoint analysis reveal metastasis inhibitory effect of 6-shogaol as ferroptosis activator through the PI3K/AKT pathway in human endometrial carcinoma in vitro and in vivo. Food Chem Toxicol. 170:1134992022. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Mao J, Xu Y, Pan H, Wang Y and Li W: Ropivacaine represses the ovarian cancer cell stemness and facilitates cell ferroptosis through inactivating the PI3K/AKT signaling pathway. Hum Exp Toxicol. 41:96032712211206522022. View Article : Google Scholar | |
Wang L, Wang J and Chen L: TIMP1 represses sorafenib-triggered ferroptosis in colorectal cancer cells by activating the PI3K/Akt signaling pathway. Immunopharmacol Immunotoxicol. 45:419–425. 2022. View Article : Google Scholar | |
Liu H, Zhao L, Wang M, Yang K, Jin Z, Zhao C and Shi G: FNDC5 causes resistance to sorafenib by activating the PI3K/Akt/Nrf2 pathway in hepatocellular carcinoma cells. Front Oncol. 12:8520952022. View Article : Google Scholar : PubMed/NCBI | |
Huang W, Chen K, Lu Y, Zhang D, Cheng Y, Li L, Huang W, He G, Liao H, Cai L, et al: ABCC5 facilitates the acquired resistance of sorafenib through the inhibition of SLC7A11-induced ferroptosis in hepatocellular carcinoma. Neoplasia. 23:1227–1239. 2021. View Article : Google Scholar : | |
Jain AK and Jaiswal AK: GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. J Biol Chem. 282:16502–16510. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rizvi F, Shukla S and Kakkar P: Essential role of PH domain and leucine-rich repeat protein phosphatase 2 in Nrf2 suppression via modulation of Akt/GSK3 beta/Fyn kinase axis during oxidative hepatocellular toxicity. Cell Death Dis. 5:e11532014. View Article : Google Scholar | |
Liao S, Wu JN, Liu RM, Wang SX, Luo J, Yang Y, Qin Y, Li T, Zheng X, Song J, et al: A novel compound DBZ ameliorates neuroinflammation in LPS-stimulated microglia and ischemic stroke rats: Role of Akt(Ser473)/GSK3β(Ser9)-mediated Nrf2 activation. Redox Biol. 36:1016442020. View Article : Google Scholar | |
Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, Saito T, Yang Y, Kouno T, Fukutomi T, et al: Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell. 51:618–631. 2013. View Article : Google Scholar | |
Yi J, Zhu J, Wu J, Thompson CB and Jiang X: Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci USA. 117:31189–31897. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wang Y, Liu J, Kang R and Tang D: Interplay between MTOR and GPX4 signaling modulates autophagy-dependent ferroptotic cancer cell death. Cancer Gene Ther. 28:55–63. 2021. View Article : Google Scholar | |
Zhang L, Liu W, Liu F, Wang Q, Song M, Yu Q, Tang K, Teng T, Wu D, Wang X, et al: IMCA induces ferroptosis mediated by SLC7A11 through the AMPK/mTOR pathway in colorectal cancer. Oxid Med Cell Longev. 2020:16756132020. View Article : Google Scholar : PubMed/NCBI | |
Li S, Oh YT, Yue P, Khuri FR and Sun SY: Inhibition of mTOR complex 2 induces GSK3/FBXW7-dependent degradation of sterol regulatory element-binding protein 1 (SREBP1) and suppresses lipogenesis in cancer cells. Oncogene. 35:642–650. 2016. View Article : Google Scholar | |
Yang Q, Mao Y, Wang J, Yu H, Zhang X, Pei X, Duan Z, Xiao C and Ma M: Gestational bisphenol A exposure impairs hepatic lipid metabolism by altering mTOR/CRTC2/SREBP1 in male rat offspring. Hum Exp Toxicol. 41:96032712211298522022. View Article : Google Scholar : PubMed/NCBI | |
Masoud GN and Li W: HIF-1α pathway: Role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 5:378–389. 2015. View Article : Google Scholar : PubMed/NCBI | |
van den Beucken T, Koritzinsky M and Wouters BG: Translational control of gene expression during hypoxia. Cancer Biol Ther. 5:749–755. 2006. View Article : Google Scholar | |
Alvarez-Tejado M, Alfranca A, Aragonés J, Vara A, Landázuri MO and del Peso L: Lack of evidence for the involvement of the phosphoinositide 3-kinase/Akt pathway in the activation of hypoxia-inducible factors by low oxygen tension. J Biol Chem. 277:13508–13517. 2002. View Article : Google Scholar : PubMed/NCBI | |
Arsham AM, Plas DR, Thompson CB and Simon MC: Phosphatidylinositol 3-kinase/Akt signaling is neither required for hypoxic stabilization of HIF-1 alpha nor sufficient for HIF-1-dependent target gene transcription. J Biol Chem. 277:15162–15170. 2002. View Article : Google Scholar : PubMed/NCBI | |
Tanaka H, Yamamoto M, Hashimoto N, Miyakoshi M, Tamakawa S, Yoshie M, Tokusashi Y, Yokoyama K, Yaginuma Y and Ogawa K: Hypoxia-independent overexpression of hypoxia-inducible factor 1alpha as an early change in mouse hepatocarcinogenesis. Cancer Res. 66:11263–11270. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sun S, Guo C, Gao T, Ma D, Su X, Pang Q and Zhang R: Hypoxia enhances glioma resistance to sulfasalazine-induced ferroptosis by upregulating SLC7A11 via PI3K/AKT/HIF-1α axis. Oxid Med Cell Longev. 2022:78624302022. View Article : Google Scholar | |
Lin Z, Song J, Gao Y, Huang S, Dou R, Zhong P, Huang G, Han L, Zheng J, Zhang X, et al: Hypoxia-induced HIF-1α/lncRNA-PMAN inhibits ferroptosis by promoting the cytoplasmic translocation of ELAVL1 in peritoneal dissemination from gastric cancer. Redox Biol. 52:1023122022. View Article : Google Scholar | |
Guo S, Miyake M, Liu KJ and Shi H: Specific inhibition of hypoxia inducible factor 1 exaggerates cell injury induced by in vitro ischemia through deteriorating cellular redox environment. J Neurochem. 108:1309–1321. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q and Wang Y: MiR-210-3p targets CELF2 to facilitate progression of lung squamous carcinoma through PI3K/AKT pathway. Med Oncol. 39:1612022. View Article : Google Scholar | |
Wu JZ, Jiang N, Lin JM and Liu X: STYXL1 promotes malignant progression of hepatocellular carcinoma via downregulating CELF2 through the PI3K/Akt pathway. Eur Rev Med Pharmacol Sci. 24:2977–2985. 2020.PubMed/NCBI | |
Shi M, Yang R, Lin J, Wei QI, Chen L, Gong W, Li Y and Guo X: LncRNA-SNHG16 promotes proliferation and migration of acute myeloid leukemia cells via PTEN/PI3K/AKT axis through suppressing CELF2 protein. J Biosci. 46:42021. View Article : Google Scholar : PubMed/NCBI | |
Yeung YT, Fan S, Lu B, Yin S, Yang S, Nie W, Wang M, Zhou L, Li T, Li X, et al: CELF2 suppresses non-small cell lung carcinoma growth by inhibiting the PREX2-PTEN interaction. Carcinogenesis. 41:377–389. 2020. View Article : Google Scholar : | |
Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G and Tang D: Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol. 66:89–100. 2020. View Article : Google Scholar | |
Kang R and Tang D: Autophagy and Ferroptosis-What's the connection? Curr Pathobiol Rep. 5:153–159. 2017. View Article : Google Scholar : PubMed/NCBI | |
Denton D and Kumar S: Autophagy-dependent cell death. Cell Death Differ. 26:605–616. 2019. View Article : Google Scholar | |
Gao M, Monian P, Pan Q, Zhang W, Xiang J and Jiang X: Ferroptosis is an autophagic cell death process. Cell Res. 26:1021–1032. 2016. View Article : Google Scholar : | |
Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ III, Kang R and Tang D: Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 12:1425–1428. 2016. View Article : Google Scholar : PubMed/NCBI | |
Park E and Chung SW: ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis. 10:8222019. View Article : Google Scholar : | |
Gryzik M, Srivastava A, Longhi G, Bertuzzi M, Gianoncelli A, Carmona F, Poli M and Arosio P: Expression and characterization of the ferritin binding domain of Nuclear Receptor Coactivator-4 (NCOA4). Biochim Biophys Acta Gen Subj. 1861:2710–2716. 2017. View Article : Google Scholar | |
Ohshima T, Yamamoto H, Sakamaki Y, Saito C and Mizushima N: NCOA4 drives ferritin phase separation to facilitate macroferritinophagy and microferritinophagy. J Cell Biol. 221:e2022031022022. View Article : Google Scholar : | |
Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S, Triantafellow E, Menon S, Wang Z, Honda A, Pardee G, et al: Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol. 16:1069–1079. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ohnstad AE, Delgado JM, North BJ, Nasa I, Kettenbach AN, Schultz SW and Shoemaker CJ: Receptor-mediated clustering of FIP200 bypasses the role of LC3 lipidation in autophagy. EMBO J. 39:e1049482020. View Article : Google Scholar : PubMed/NCBI | |
Kuno S, Fujita H, Tanaka YK, Ogra Y and Iwai K: Iron-induced NCOA4 condensation regulates ferritin fate and iron homeostasis. EMBO Rep. 23:e542782022. View Article : Google Scholar : PubMed/NCBI | |
Goodwin JM, Dowdle WE, DeJesus R, Wang Z, Bergman P, Kobylarz M, Lindeman A, Xavier RJ, McAllister G, Nyfeler B, et al: Autophagy-independent lysosomal targeting regulated by ULK1/2-FIP200 and ATG9. Cell Rep. 20:2341–2356. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fuhrmann DC, Mondorf A, Beifuß J, Jung M and Brüne B: Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biol. 36:1016702020. View Article : Google Scholar : PubMed/NCBI | |
Hara Y, Yanatori I, Tanaka A, Kishi F, Lemasters JJ, Nishina S, Sasaki K and Hino K: Iron loss triggers mitophagy through induction of mitochondrial ferritin. EMBO Rep. 21:e502022020. View Article : Google Scholar : PubMed/NCBI | |
Zorov DB, Juhaszova M and Sollott SJ: Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 94:909–950. 2014. View Article : Google Scholar : | |
Rademaker G, Boumahd Y, Peiffer R, Anania S, Wissocq T, Liégeois M, Luis G, Sounni NE, Agirman F, Maloujahmoum N, et al: Myoferlin targeting triggers mitophagy and primes ferroptosis in pancreatic cancer cells. Redox Biol. 53:1023242022. View Article : Google Scholar : PubMed/NCBI | |
Basit F, van Oppen LM, Schöckel L, Bossenbroek HM, van Emst-de Vries SE, Hermeling JC, Grefte S, Kopitz C, Heroult M, Hgm Willems P and Koopman WJ: Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis. 8:e27162017. View Article : Google Scholar : PubMed/NCBI | |
Wei S, Qiu T, Yao X, Wang N, Jiang L, Jia X, Tao Y, Wang Z, Pei P, Zhang J, et al: Arsenic induces pancreatic dysfunction and ferroptosis via mitochondrial ROS-autophagy-lysosomal pathway. J Hazard Mater. 384:1213902020. View Article : Google Scholar | |
Liu M, Fan Y, Li D, Han B, Meng Y, Chen F, Liu T, Song Z, Han Y, Huang L, et al: Ferroptosis inducer erastin sensitizes NSCLC cells to celastrol through activation of the ROS-mitochondrial fission-mitophagy axis. Mol Oncol. 15:2084–2105. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xiao B, Deng X, Lim GGY, Xie S, Zhou ZD, Lim KL and Tan EK: Superoxide drives progression of Parkin/PINK1-dependent mitophagy following translocation of Parkin to mitochondria. Cell Death Dis. 8:e30972017. View Article : Google Scholar : PubMed/NCBI | |
Gan ZY, Callegari S, Cobbold SA, Cotton TR, Mlodzianoski MJ, Schubert AF, Geoghegan ND, Rogers KL, Leis A, Dewson G, et al: Activation mechanism of PINK1. Nature. 602:328–335. 2022. View Article : Google Scholar : | |
Wang C, Liu K, Cao J, Wang L, Zhao Q, Li Z, Zhang H, Chen Q and Zhao T: PINK1-mediated mitophagy maintains pluripotency through optineurin. Cell Prolif. 54:e130342021. View Article : Google Scholar | |
Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, et al: PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol. 189:211–221. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li C, Zhang Y, Liu J, Kang R, Klionsky DJ and Tang D: Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy. 17:948–960. 2021. View Article : Google Scholar : | |
Zhu L, Wu W, Jiang S, Yu S, Yan Y, Wang K, He J, Ren Y and Wang B: Pan-cancer analysis of the Mitophagy-Related protein PINK1 as a biomarker for the immunological and prognostic role. Front Oncol. 10:5698872020. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Huang C, Lu L, Yu K, Zhao J, Chen M, Liu L, Sun Q, Lin Z, Zheng J, et al: STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib. J Hematol Oncol. 14:162021. View Article : Google Scholar : | |
Chen Y, Chen HN, Wang K, Zhang L, Huang Z, Liu J, Zhang Z, Luo M, Lei Y, Peng Y, et al: Ketoconazole exacerbates mitophagy to induce apoptosis by downregulating cyclooxygenase-2 in hepatocellular carcinoma. J Hepatol. 70:66–77. 2019. View Article : Google Scholar | |
Kung-Chun Chiu D, Pui-Wah Tse A, Law CT, Ming-Jing Xu I, Lee D, Chen M, Kit-Ho Lai R, Wai-Hin Yuen V, Wing-Sum Cheu J, Wai-Hung Ho D, et al: Hypoxia regulates the mitochondrial activity of hepatocellular carcinoma cells through HIF/HEY1/PINK1 pathway. Cell Death Dis. 10:9342019. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Wang T, Liu Y, Li X, Xu S, Wu C, Zou H, Cao M, Jin G, Lang J, et al: Mitophagy promotes sorafenib resistance through hypoxia-inducible ATAD3A dependent Axis. J Exp Clin Cancer Res. 39:2742020. View Article : Google Scholar : PubMed/NCBI | |
Lv H and Shang P: The significance, trafficking and determination of labile iron in cytosol, mitochondria and lysosomes. Metallomics. 10:899–916. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rizzollo F, More S, Vangheluwe P and Agostinis P: The lysosome as a master regulator of iron metabolism. Trends Biochem Sci. 46:960–975. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kurz T, Gustafsson B and Brunk UT: Cell sensitivity to oxidative stress is influenced by ferritin autophagy. Free Radic Biol Med. 50:1647–1658. 2011. View Article : Google Scholar : PubMed/NCBI | |
Torii S, Shintoku R, Kubota C, Yaegashi M, Torii R, Sasaki M, Suzuki T, Mori M, Yoshimoto Y, Takeuchi T, et al: An essential role for functional lysosomes in ferroptosis of cancer cells. Biochem J. 473:769–777. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Yang Z, Wang S, Ma Q, Li L, Wu X, Guo Q, Tao L and Shen X: Boosting ROS-Mediated lysosomal membrane permeabilization for cancer ferroptosis therapy. Adv Healthc Mater. 12:e22021502023. View Article : Google Scholar | |
Fernández B, Fdez E, Gómez-Suaga P, Gil F, Molina-Villalba I, Ferrer I, Patel S, Churchill GC and Hilfiker S: Iron overload causes endolysosomal deficits modulated by NAADP-regulated 2-pore channels and RAB7A. Autophagy. 12:1487–1506. 2016. View Article : Google Scholar : PubMed/NCBI | |
Halcrow PW, Lakpa KL, Khan N, Afghah Z, Miller N, Datta G, Chen X and Geiger JD: HIV-1 gp120-Induced endolysosome de-Acidification leads to efflux of endolysosome iron, and increases in mitochondrial iron and reactive oxygen species. J Neuroimmune Pharmacol. 17:181–194. 2022. View Article : Google Scholar | |
New J, Subramaniam D, Ramalingam S, Enders J, Sayed AAA, Ponnurangam S, Standing D, Ramamoorthy P, O'Neil M, Dixon DA, et al: Pleotropic role of RNA binding protein CELF2 in autophagy induction. Mol Carcinog. 58:1400–1409. 2019. View Article : Google Scholar : PubMed/NCBI | |
He Y, She H, Zhang T, Xu H, Cheng L, Yepes M, Zhao Y and Mao Z: p38 MAPK inhibits autophagy and promotes microglial inflammatory responses by phosphorylating ULK1. J Cell Biol. 217:315–328. 2018. View Article : Google Scholar : | |
Trelford CB and Di Guglielmo GM: Canonical and Non-canonical TGFβ signaling activate autophagy in an ULK1-Dependent manner. Front Cell Dev Biol. 9:7121242021. View Article : Google Scholar | |
Keil E, Höcker R, Schuster M, Essmann F, Ueffing N, Hoffman B, Liebermann DA, Pfeffer K, Schulze-Osthoff K and Schmitz I: Phosphorylation of Atg5 by the Gadd45β-MEKK4-p38 pathway inhibits autophagy. Cell Death Differ. 20:321–332. 2013. View Article : Google Scholar | |
Comes F, Matrone A, Lastella P, Nico B, Susca FC, Bagnulo R, Ingravallo G, Modica S, Lo Sasso G, Moschetta A, et al: A novel cell type-specific role of p38alpha in the control of autophagy and cell death in colorectal cancer cells. Cell Death Differ. 14:693–702. 2007. View Article : Google Scholar | |
Webber JL and Tooze SA: Coordinated regulation of autophagy by p38alpha MAPK through mAtg9 and p38IP. EMBO J. 29:27–40. 2010. View Article : Google Scholar | |
Zhao Y, Wu H, Xing X, Ma Y, Ji S, Xu X, Zhao X, Wang S, Jiang W, Fang C, et al: CD13 induces autophagy to promote hepatocellular carcinoma cell chemoresistance through the P38/Hsp27/CREB/ATG7 pathway. J Pharmacol Exp Ther. 374:512–520. 2020. View Article : Google Scholar : PubMed/NCBI | |
Choi CH, Lee BH, Ahn SG and Oh SH: Proteasome inhibition-induced p38 MAPK/ERK signaling regulates autophagy and apoptosis through the dual phosphorylation of glycogen synthase kinase 3β. Biochem Biophys Res Commun. 418:759–764. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xie X, Le L, Fan Y, Lv L and Zhang J: Autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition. Autophagy. 8:1071–1084. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sun T, Li D, Wang L, Xia L, Ma J, Guan Z, Feng G and Zhu X: c-Jun NH2-terminal kinase activation is essential for up-regulation of LC3 during ceramide-induced autophagy in human nasopharyngeal carcinoma cells. J Transl Med. 9:1612011. View Article : Google Scholar : | |
Zhang XY, Wu XQ, Deng R, Sun T, Feng GK and Zhu XF: Upregulation of sestrin 2 expression via JNK pathway activation contributes to autophagy induction in cancer cells. Cell Signal. 25:150–158. 2013. View Article : Google Scholar | |
Li DD, Wang LL, Deng R, Tang J, Shen Y, Guo JF, Wang Y, Xia LP, Feng GK, Liu QQ, et al: The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents-induced autophagy in cancer cells. Oncogene. 28:886–898. 2009. View Article : Google Scholar | |
Wong CH, Iskandar KB, Yadav SK, Hirpara JL, Loh T and Pervaiz S: Simultaneous induction of non-canonical autophagy and apoptosis in cancer cells by ROS-dependent ERK and JNK activation. PLoS One. 5:e99962010. View Article : Google Scholar : PubMed/NCBI | |
Byun JY, Yoon CH, An S, Park IC, Kang CM, Kim MJ and Lee SJ: The Rac1/MKK7/JNK pathway signals upregulation of Atg5 and subsequent autophagic cell death in response to oncogenic Ras. Carcinogenesis. 30:1880–1888. 2009. View Article : Google Scholar : PubMed/NCBI | |
Park JH, Ko J, Park YS, Park J, Hwang J and Koh HC: Clearance of damaged mitochondria through PINK1 stabilization by JNK and ERK MAPK signaling in Chlorpyrifos-Treated neuroblastoma cells. Mol Neurobiol. 54:1844–1857. 2017. View Article : Google Scholar | |
Dagda RK, Zhu J, Kulich SM and Chu CT: Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: Implications for Parkinson's disease. Autophagy. 4:770–782. 2008. View Article : Google Scholar : PubMed/NCBI | |
Meng Y, Yang Z, Huo T and Jiang H: Realgar facilitates the Nrf2-Keap1-p62 positive feedback signaling axis via MAPKs and AKT to interfere with autophagy-induced apoptosis and oxidative stress in the hippocampus. Biomed Pharmacother. 150:1129642022. View Article : Google Scholar : PubMed/NCBI | |
Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, et al: Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 20:1981–1991. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M and Kim DH: ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 20:1992–2003. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Kundu M, Viollet B and Guan KL: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 13:132–141. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, Bordi M, Gretzmeier C, Dengjel J, Piacentini M, Fimia GM and Cecconi F: mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol. 15:406–416. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Zhang S, He L, Rong Y, Brier LW, Sun Q, Liu R, Fan W, Chen S, Yue Z, et al: MTORC1-mediated NRBF2 phosphorylation functions as a switch for the class III PtdIns3K and autophagy. Autophagy. 13:592–607. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim YM, Jung CH, Seo M, Kim EK, Park JM, Bae SS and Kim DH: mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. Mol Cell. 57:207–218. 2015. View Article : Google Scholar : | |
Koren I, Reem E and Kimchi A: DAP1, a novel substrate of mTOR, negatively regulates autophagy. Curr Biol. 20:1093–1098. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Li Y, Hu W, Wang X, Hu J, Yuan C, Zhou C, Wang H, Du J, Wang Y and Tong X: TEOA promotes autophagic cell death via ROS-Mediated inhibition of mTOR/p70S6k signaling pathway in pancreatic cancer cells. Front Cell Dev Biol. 9:7348182021. View Article : Google Scholar : | |
Nàger M, Sallán MC, Visa A, Pushparaj C, Santacana M, Macià A, Yeramian A, Cantí C and Herreros J: Inhibition of WNT-CTNNB1 signaling upregulates SQSTM1 and sensitizes glioblastoma cells to autophagy blockers. Autophagy. 14:619–636. 2018. View Article : Google Scholar : PubMed/NCBI | |
Petherick KJ, Williams AC, Lane JD, Ordóñez-Morán P, Huelsken J, Collard TJ, Smartt HJ, Batson J, Malik K, Paraskeva C and Greenhough A: Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO J. 32:1903–1916. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fan B, Su B, Song G, Liu X, Yan Z, Wang S, Hu F and Yang J: miR-363-3p induces EMT via the Wnt/β-catenin pathway in glioma cells by targeting CELF2. J Cell Mol Med. 25:10418–10429 | |
Wei H, Tang X, Chen Q, Yue T and Dong B: An endoplasmic reticulum-targeting fluorescent probe for the visualization of the viscosity fluctuations during ferroptosis in live cells. Anal Chim Acta. 1232:3404542022. View Article : Google Scholar : PubMed/NCBI | |
Song W, Zhang W, Yue L and Lin W: Revealing the effects of endoplasmic reticulum stress on ferroptosis by Two-Channel Real-Time Imaging of pH and viscosity. Anal Chem. 94:6557–6565. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao C, Yu D, He Z, Bao L, Feng L, Chen L, Liu Z, Hu X, Zhang N, Wang T and Fu Y: Endoplasmic reticulum stress-mediated autophagy activation is involved in cadmium-induced ferroptosis of renal tubular epithelial cells. Free Radic Biol Med. 175:236–248. 2021. View Article : Google Scholar : PubMed/NCBI | |
He Z, Shen P, Feng L, Hao H, He Y, Fan G, Liu Z, Zhu K, Wang Y, Zhang N, et al: Cadmium induces liver dysfunction and ferroptosis through the endoplasmic stress-ferritinophagy axis. Ecotoxicol Environ Saf. 245:1141232022. View Article : Google Scholar : PubMed/NCBI | |
Fu F, Wang W, Wu L, Wang W, Huang Z, Huang Y, Wu C and Pan X: Inhalable biomineralized liposomes for cyclic Ca2+-Burst-Centered endoplasmic reticulum stress enhanced lung cancer ferroptosis therapy. ACS Nano. 17:5486–5502. 2023. View Article : Google Scholar | |
Chen PH, Wu J, Xu Y, Ding CC, Mestre AA, Lin CC, Yang WH and Chi JT: Zinc transporter ZIP7 is a novel determinant of ferroptosis. Cell Death Dis. 12:1982021. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Mi Y, Zhang X, Ma Q, Song Y, Zhang L, Wang D, Xing J, Hou B, Li H, et al: Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells. J Exp Clin Cancer Res. 38:4022019. View Article : Google Scholar : | |
Wei R, Zhao Y, Wang J, Yang X, Li S, Wang Y, Yang X, Fei J, Hao X, Zhao Y, et al: Tagitinin C induces ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal cancer cells. Int J Biol Sci. 17:2703–1277. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Liu B, Liu X, Li P, Zhang P, Ye F, Zhao T, Kuang Y, Chen W, Jin X and Li Q: PERK regulates the sensitivity of hepatocellular carcinoma cells to High-LET carbon ions via either apoptosis or ferroptosis. J Cancer. 13:669–680. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao R, Lv Y, Feng T, Zhang R, Ge L, Pan J, Han B, Song G and Wang L: ATF6α promotes prostate cancer progression by enhancing PLA2G4A-mediated arachidonic acid metabolism and protecting tumor cells against ferroptosis. Prostate. 82:617–629. 2022. View Article : Google Scholar : | |
Hwang J and Qi L: Quality control in the endoplasmic reticulum: Crosstalk between ERAD and UPR pathways. Trends Biochem Sci. 43:593–605. 2018. View Article : Google Scholar : PubMed/NCBI | |
Krshnan L, van de Weijer ML and Carvalho P: Endoplasmic reticulum-associated protein degradation. Cold Spring Harb Perspect Biol. 14:a0412472022. View Article : Google Scholar : PubMed/NCBI | |
Lopata A, Kniss A, Löhr F, Rogov VV and Dötsch V: Ubiquitination in the ERAD process. Int J Mol Sci. 21:53692020. View Article : Google Scholar : PubMed/NCBI | |
Haynes CM, Titus EA and Cooper AA: Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol Cell. 15:767–776. 2004. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Yang X, Long G, Hu Y, Gu Z, Boisclair YR and Long Q: ERAD deficiency promotes mitochondrial dysfunction and transcriptional rewiring in human hepatic cells. J Biol Chem. 295:16743–16753. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Torres M, Sha H, Halbrook CJ, Van den Bergh F, Reinert RB, Yamada T, Wang S, Luo Y, Hunter AH, et al: Endoplasmic reticulum-associated degradation regulates mitochondrial dynamics in brown adipocytes. Science. 368:54–60. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Wang QC, Sun Z, Li T, Yang K, An C, Guo C and Tang TS: ER stress mediated degradation of diacylglycerol acyltransferase impairs mitochondrial functions in TMCO1 deficient cells. Biochem Biophys Res Commun. 512:914–920. 2019. View Article : Google Scholar : PubMed/NCBI | |
Takashi Y, Tomita K, Kuwahara Y, Roudkenar MH, Roushandeh AM, Igarashi K, Nagasawa T, Nishitani Y and Sato T: Mitochondrial dysfunction promotes aquaporin expression that controls hydrogen peroxide permeability and ferroptosis. Free Radic Biol Med. 161:60–70. 2020. View Article : Google Scholar : | |
Sereti E, Tsimplouli C, Kalaitsidou E, Sakellaridis N and Dimas K: Study of the Relationship between sigma receptor expression levels and some common sigma ligand activity in cancer using human cancer cell lines of the NCI-60 cell line panel. Biomedicines. 9:382021. View Article : Google Scholar : PubMed/NCBI | |
Oyer HM, Sanders CM and Kim FJ: Small-molecule modulators of sigma1 and Sigma2/TMEM97 in the context of cancer: Foundational concepts and emerging themes. Front Pharmacol. 10:11412019. View Article : Google Scholar : PubMed/NCBI | |
Gueguinou M, Crottès D, Chantôme A, Rapetti-Mauss R, Potier-Cartereau M, Clarysse L, Girault A, Fourbon Y, Jézéquel P, Guérin-Charbonnel C, et al: The SigmaR1 chaperone drives breast and colorectal cancer cell migration by tuning SK3-dependent Ca2+ homeostasis. Oncogene. 36:3640–3647. 2017. View Article : Google Scholar | |
Bai T, Lei P, Zhou H, Liang R, Zhu R, Wang W, Zhou L and Sun Y: Sigma-1 receptor protects against ferroptosis in hepatocellular carcinoma cells. J Cell Mol Med. 23:7349–7359. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bai T, Wang S, Zhao Y, Zhu R, Wang W and Sun Y: Haloperidol, a sigma receptor 1 antagonist, promotes ferroptosis in hepatocellular carcinoma cells. Biochem Biophys Res Commun. 491:919–925. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zou Y, Li H, Graham ET, Deik AA, Eaton JK, Wang W, Sandoval-Gomez G, Clish CB, Doench JG and Schreiber SL: Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol. 16:302–309. 2020. View Article : Google Scholar : PubMed/NCBI | |
Acharya P, Liao M, Engel JC and Correia MA: Liver cytochrome P450 3A endoplasmic reticulum-associated degradation: A major role for the p97 AAA ATPase in cytochrome P450 3A extraction into the cytosol. J Biol Chem. 286:3815–3828. 2011. View Article : Google Scholar : | |
Prochazka L, Tesarik R and Turanek J: Regulation of alternative splicing of CD44 in cancer. Cell Signal. 26:2234–2239. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lai S, Wang Y, Li T, Dong Y, Lin Y, Wang L, Weng S, Zhang X and Lin C: N6-methyladenosine-mediated CELF2 regulates CD44 alternative splicing affecting tumorigenesis via ERAD pathway in pancreatic cancer. Cell Biosci. 12:1252022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhao G, Condello S, Huang H, Cardenas H, Tanner EJ, Wei J, Ji Y, Li J, Tan Y, et al: Frizzled-7 identifies platinum-tolerant ovarian cancer cells susceptible to ferroptosis. Cancer Res. 81:384–399. 2021. View Article : Google Scholar : | |
Nuñez F, Bravo S, Cruzat F, Montecino M and De Ferrari GV: Wnt/β-catenin signaling enhances cyclooxygenase-2 (COX2) transcriptional activity in gastric cancer cells. PLoS One. 6:e185622011. View Article : Google Scholar | |
Wang H, Zhang H, Chen Y, Wang H, Tian Y, Yi X, Shi Q, Zhao T, Zhang B, Gao T, et al: Targeting Wnt/β-Catenin signaling exacerbates ferroptosis and increases the efficacy of melanoma immunotherapy via the regulation of MITF. Cells. 11:35802022. View Article : Google Scholar | |
Chen QF, Shi F, Huang T, Huang C, Shen L, Wu P and Li W: ASTN1 is associated with immune infiltrates in hepatocellular carcinoma, and inhibits the migratory and invasive capacity of liver cancer via the Wnt/β-catenin signaling pathway. Oncol Rep. 44:1425–1440. 2020.PubMed/NCBI | |
Tu B, Ma TT, Peng XQ, Wang Q, Yang H and Huang XL: Targeting of COX-2 expression by recombinant adenovirus shRNA attenuates the malignant biological behavior of breast cancer cells. Asian Pac J Cancer Prev. 15:8829–8836. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zheng L, Shang W, Yang Z, Li T, Liu F, Shao W, Lv L, Chai L, Qu L, et al: Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ. 29:2190–2202. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Zhou Y, Duan W, Song J, Wei S, Xia S, Wang Y, Du X, Li E, Ren C, et al: Glutathione peroxidase 4-dependent glutathione high-consumption drives acquired platinum chemoresistance in lung cancer-derived brain metastasis. Clin Transl Med. 11:e5172021. View Article : Google Scholar : PubMed/NCBI | |
Krejci P, Aklian A, Kaucka M, Sevcikova E, Prochazkova J, Masek JK, Mikolka P, Pospisilova T, Spoustova T, Weis M, et al: Receptor tyrosine kinases activate canonical WNT/β-catenin signaling via MAP kinase/LRP6 pathway and direct β-catenin phosphorylation. PLoS One. 7:e358262012. View Article : Google Scholar | |
Červenka I, Wolf J, Mašek J, Krejci P, Wilcox WR, Kozubík A, Schulte G, Gutkind JS and Bryja V: Mitogen-activated protein kinases promote WNT/beta-catenin signaling via phosphorylation of LRP6. Mol Cell Biol. 31:179–189. 2011. View Article : Google Scholar | |
Siddharth S, Mohapatra P, Preet R, Das D, Satapathy SR, Choudhuri T and Kundu CN: Induction of apoptosis by 4-(3-(tert-butylamino)imidazo[1,2-α]pyridine-2-yl) benzoic acid in breast cancer cells via upregulation of PTEN. Oncol Res. 21:1–13. 2013. View Article : Google Scholar | |
Khare V, Dammann K, Asboth M, Krnjic A, Jambrich M and Gasche C: Overexpression of PAK1 promotes cell survival in inflammatory bowel diseases and colitis-associated cancer. Inflamm Bowel Dis. 21:287–296. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ji H, Wang J, Nika H, Hawke D, Keezer S, Ge Q, Fang B, Fang X, Fang D, Litchfield DW, et al: EGF-induced ERK activation promotes CK2-mediated disassociation of alpha-Catenin from beta-Catenin and transactivation of beta-Catenin. Mol Cell. 36:547–559. 2009. View Article : Google Scholar : | |
Gao C, Cao W, Bao L, Zuo W, Xie G, Cai T, Fu W, Zhang J, Wu W, Zhang X and Chen YG: Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat Cell Biol. 12:781–790. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nasiri-Aghdam M, Garcia-Garduño TC and Jave-Suárez LF: CELF family proteins in cancer: Highlights on the RNA-binding protein/noncoding RNA regulatory axis. Int J Mol Sci. 22:110562021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Yin C, Wei C, Xia S, Qiao Z, Zhang XW, Yu B, Zhou J and Wang R: Exosomal miR-625-3p secreted by cancer-associated fibroblasts in colorectal cancer promotes EMT and chemotherapeutic resistance by blocking the CELF2/WWOX pathway. Pharmacol Res. 186:1065342022. View Article : Google Scholar | |
Zhao Y, Zhou H and Dong W: LncRNA RHPN1-AS1 promotes the progression of nasopharyngeal carcinoma by targeting CELF2 expression. Exp Mol Pathol. 122:1046712021. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Liu L, Sun Y, Xue Y, Qu J, Pan S, Li H, Qu H, Wang J and Zhang J: miR-615-3p promotes proliferation and migration and inhibits apoptosis through its potential target CELF2 in gastric cancer. Biomed Pharmacother. 101:406–413. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Wang F and Wang L: Suppression of miR-106a-5p expression inhibits tumorigenesis via increasing CELF-2 expression in spinal cord glioma. Oncol Lett. 22:6272021. View Article : Google Scholar : PubMed/NCBI | |
Ge L, Zhou F, Nie J, Wang X and Zhao Q: Hypoxic colorectal cancer-secreted exosomes deliver miR-210-3p to normoxic tumor cells to elicit a protumoral effect. Exp Biol Med (Maywood). 246:1895–1906. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fan HN, Zhao XY, Liang R, Chen XY, Zhang J, Chen NW and Zhu JS: CircPTK2 inhibits the tumorigenesis and metastasis of gastric cancer by sponging miR-134-5p and activating CELF2/PTEN signaling. Pathol Res Pract. 227:1536152021. View Article : Google Scholar | |
Xie SC, Zhang JQ, Jiang XL, Hua YY, Xie SW, Qin YA and Yang YJ: LncRNA CRNDE facilitates epigenetic suppression of CELF2 and LATS2 to promote proliferation, migration and chemoresistance in hepatocellular carcinoma. Cell Death Dis. 11:6762020. View Article : Google Scholar : PubMed/NCBI | |
Subramaniam D, Ramalingam S, Linehan DC, Dieckgraefe BK, Postier RG, Houchen CW, Jensen RA and Anant S: RNA binding protein CUGBP2/CELF2 mediates curcumin-induced mitotic catastrophe of pancreatic cancer cells. PLoS One. 6:e169582011. View Article : Google Scholar : PubMed/NCBI |