1
|
Thormann U, Ray S, Sommer U, Elkhassawna
T, Rehling T, Hundgeburth M, Henß A, Rohnke M, Janek J, Lips KS, et
al: Bone formation induced by strontium modified calcium phosphate
cement in critical-size metaphyseal fracture defects in
ovariectomized rats. Biomaterials. 34:8589–8598. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Giannoudis PV, Dinopoulos H and Tsiridis
E: Bone substitutes: An update. Injury. 36(Suppl 3): S20–S27. 2005.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Sheng G: The developmental basis of
mesenchymal stem/stromal cells (MSCs). BMC Dev Biol. 15:442015.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Saeed H, Ahsan M, Saleem Z, Iqtedar M,
Islam M, Danish Z and Khan AM: Mesenchymal stem cells (MSCs) as
skeletal therapeutics-an update. J Biomed Sci. 23:412016.
View Article : Google Scholar
|
5
|
Ullah I, Subbarao RB and Rho GJ: Human
mesenchymal stem cells-current trends and future prospective.
Biosci Rep. 35:e001912015. View Article : Google Scholar
|
6
|
Pasin L, Boraso S and Tiberio I:
Initiation of renal-replacement therapy in the intensive care unit.
N Engl J Med. 375:1899–1902. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Xu Z, He J, Zhou X, Zhang Y, Huang Y, Xu N
and Yang H: Down-regulation of LECT2 promotes osteogenic
differentiation of MSCs via activating Wnt/beta-catenin pathway.
Biomed Pharmacother. 130:1105932020. View Article : Google Scholar
|
8
|
Ahmadzadeh A, Norozi F, Shahrabi S,
Shahjahani M and Saki N: Wnt/β-catenin signaling in bone marrow
niche. Cell Tissue Res. 363:321–335. 2016. View Article : Google Scholar
|
9
|
Canalis E: MANAGEMENT OF ENDOCRINE
DISEASE: Novel anabolic treatments for osteoporosis. Eur J
Endocrinol. 178:R33–R44. 2018. View Article : Google Scholar
|
10
|
Liu D, Chen L, Zhao H, Vaziri ND, Ma SC
and Zhao YY: Small molecules from natural products targeting the
Wnt/β-catenin pathway as a therapeutic strategy. Biomed
Pharmacother. 117:1089902019. View Article : Google Scholar
|
11
|
Nusse R and Clevers H: Wnt/β-catenin
signaling, disease, and emerging therapeutic modalities. Cell.
169:985–999. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
van Gastel N and Carmeliet G: Metabolic
regulation of skeletal cell fate and function in physiology and
disease. Nat Metab. 3:11–20. 2021. View Article : Google Scholar : PubMed/NCBI
|
13
|
Guntur AR, Le PT, Farber CR and Rosen CJ:
Bioenergetics during calvarial osteoblast differentiation reflect
strain differences in bone mass. Endocrinology. 155:1589–1595.
2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lee SY and Long F: Notch signaling
suppresses glucose metabolism in mesenchymal progenitors to
restrict osteoblast differentiation. J Clin Invest. 128:5573–5586.
2018. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Liu H and Rosen CJ: Nitric oxide and bone:
The phoenix rises again. J Clin Invest. 131:e1470722021. View Article : Google Scholar : PubMed/NCBI
|
16
|
Vallee A, Lecarpentier Y and Vallee JN:
The key role of the WNT/β-catenin pathway in metabolic
reprogramming in cancers under normoxic conditions. Cancers
(Basel). 13:55572021. View Article : Google Scholar
|
17
|
Pate KT, Stringari C, Sprowl-Tanio S, Wang
K, TeSlaa T, Hoverter NP, McQuade MM, Garner C, Digman MA, Teitell
MA, et al: Wnt signaling directs a metabolic program of glycolysis
and angiogenesis in colon cancer. EMBO J. 33:1454–1473. 2014.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Deng L, Yi S, Yin X, Li Y and Luan Q: MFN2
knockdown promotes osteogenic differentiation of iPSC-MSCs through
aerobic glycolysis mediated by the Wnt/β-catenin signaling pathway.
Stem Cell Res Ther. 13:1622022. View Article : Google Scholar
|
19
|
Gomez S, Adalid-Peralta L, Palafox-Fonseca
H, Cantu-Robles VA, Soberon X, Sciutto E, Fragoso G, Bobes RJ,
Laclette JP, Yauner L and Ochoa-Leyva A: Genome analysis of
Excretory/Secretory proteins in Taenia solium reveals their
abundance of antigenic regions (AAR). Sci Rep. 5:96832015.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Garg G and Ranganathan S: Helminth
secretome database (HSD): A collection of helminth
excretory/secretory proteins predicted from expressed sequence tags
(ESTs). BMC Genomics. 13(Suppl 7): S82012. View Article : Google Scholar
|
21
|
Liu W and Chen YH: High epitope density in
a single protein molecule significantly enhances antigenicity as
well as immunogenicity: A novel strategy for modern vaccine
development and a preliminary investigation about B cell
discrimination of monomeric proteins. Eur J Immunol. 35:505–514.
2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ma Z, Alhameed AM, Kaminga AC, Lu B, Li X,
Zhang J and Wu X: Bioinformatics of excretory/secretory proteins of
Toxoplasma gondii strain ME49. Microb Pathog. 140:1039512020.
View Article : Google Scholar
|
23
|
Ramirez-Flores CJ, Cruz-Miron R,
Mondragon-Castelan ME, Gonzalez-Pozos S, Rios-Castro E and
Mondragon-Flores R: Proteomic and structural characterization of
self-assembled vesicles from excretion/secretion products of
Toxoplasma gondii. J Proteomics. 208:1034902019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
25
|
Muscella A, Vetrugno C, Cossa LG and
Marsigliante S: TGF-β1 activates RSC96 Schwann cells migration and
invasion through MMP-2 and MMP-9 activities. J Neurochem.
153:525–538. 2020. View Article : Google Scholar
|
26
|
Shibuya T, Honma M, Fujii M, Iinuma S and
Ishida-Yamamoto A: Podoplanin suppresses the cell adhesion of
epidermal keratinocytes via functional regulation of
beta1-integrin. Arch Dermatol Res. 311:45–53. 2019. View Article : Google Scholar
|
27
|
Forni MF, Peloggia J, Trudeau K, Shirihai
O and Kowaltowski AJ: Murine mesenchymal stem cell commitment to
differentiation is regulated by mitochondrial dynamics. Stem Cells.
34:743–755. 2016. View Article : Google Scholar
|
28
|
Wanet A, Remacle N, Najar M, Sokal E,
Arnould T, Najimi M and Renard P: Mitochondrial remodeling in
hepatic differentiation and dedifferentiation. Int J Biochem Cell
Biol. 54:174–185. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Esen E, Chen J, Karner CM, Okunade AL,
Patterson BW and Long F: WNT-LRP5 signaling induces Warburg effect
through mTORC2 activation during osteoblast differentiation. Cell
Metab. 17:745–755. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Florencio-Silva R, Sasso GR, Sasso-Cerri
E, Simoes MJ and Cerri PS: Biology of bone tissue: Structure,
function, and factors that influence bone cells. Biomed Res Int.
2015:4217462015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Bahney CS, Zondervan RL, Allison P,
Theologis A, Ashley JW, Ahn J, Miclau T, Marcucio RS and Hankenson
KD: Cellular biology of fracture healing. J Orthop Res. 37:35–50.
2019. View Article : Google Scholar :
|
32
|
Hankenson KD, Gagne K and Shaughnessy M:
Extracellular signaling molecules to promote fracture healing and
bone regeneration. Adv Drug Deliv Rev. 94:3–12. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Garg P, Mazur MM, Buck AC, Wandtke ME, Liu
J and Ebraheim NA: Prospective review of mesenchymal stem cells
differentiation into osteoblasts. Orthop Surg. 9:13–19. 2017.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhang L, Jiao G, Ren S, Zhang X, Li C, Wu
W, Wang H, Liu H, Zhou H and Chen Y: Exosomes from bone marrow
mesenchymal stem cells enhance fracture healing through the
promotion of osteogenesis and angiogenesis in a rat model of
nonunion. Stem Cell Res Ther. 11:382020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Gao C, Seuntjens J, Kaufman GN, Tran-Khanh
N, Butler A, Li A, Wang H, Buschmann MD, Harvey EJ and Henderson
JE: Mesenchymal stem cell transplantation to promote bone healing.
J Orthop Res. 30:1183–1189. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Saadatnia G, Mohamed Z, Ghaffarifar F,
Osman E, Moghadam ZK and Noordin R: Toxoplasma gondii excretory
secretory antigenic proteins of diagnostic potential. APMIS.
120:47–55. 2012. View Article : Google Scholar
|
37
|
Ramirez-Flores CJ, Cruz-Miron R,
Lagunas-Cortes N, Mondragon-Castelan M, Mondragon-Gonzalez R,
Gonzalez-Pozos S and Mondragon-Flores R: Toxoplasma gondii
excreted/secreted proteases disrupt intercellular junction proteins
in epithelial cell monolayers to facilitate tachyzoites
paracellular migration. Cell Microbiol. 23:e132832021. View Article : Google Scholar
|
38
|
Ramirez-Flores CJ, Cruz-Miron R, Arroyo R,
Mondragon-Castelan ME, Nopal-Guerrero T, Gonzalez-Pozos S,
Rios-Castro E and Mondragon-Flores R: Characterization of
metalloproteases and serine proteases of Toxoplasma gondii
tachyzoites and their effect on epithelial cells. Parasitol Res.
118:289–306. 2019. View Article : Google Scholar
|
39
|
Rafalski VA, Mancini E and Brunet A:
Energy metabolism and energy-sensing pathways in mammalian
embryonic and adult stem cell fate. J Cell Sci. 125:5597–5608.
2012. View Article : Google Scholar
|
40
|
Wanet A, Arnould T, Najimi M and Renard P:
Connecting mitochondria, metabolism, and stem cell fate. Stem Cells
Dev. 24:1957–1971. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Hsu YC, Wu YT, Yu TH and Wei YH:
Mitochondria in mesenchymal stem cell biology and cell therapy:
From cellular differentiation to mitochondrial transfer. Semin Cell
Dev Biol. 52:119–131. 2016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Regan JN, Lim J, Shi Y, Joeng KS, Arbeit
JM, Shohet RV and Long F: Up-regulation of glycolytic metabolism is
required for HIF1alpha-driven bone formation. Proc Natl Acad Sci
USA. 111:8673–8678. 2014. View Article : Google Scholar
|
43
|
Tormos KV, Anso E, Hamanaka RB, Eisenbart
J, Joseph J, Kalyanaraman B and Chandel NS: Mitochondrial complex
III ROS regulate adipocyte differentiation. Cell Metab. 14:537–544.
2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Li B, Shi Y, Liu M, Wu F, Hu X, Yu F, Wang
C and Ye L: Attenuates of NAD(+) impair BMSC osteogenesis and
fracture repair through OXPHOS. Stem Cell Res Ther. 13:772022.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Maupin KA, Droscha CJ and Williams BO: A
comprehensive overview of skeletal phenotypes associated with
alterations in wnt/β-catenin signaling in humans and mice. Bone
Res. 1:27–71. 2013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Yang YY, Zhou YM, Xu JZ, Sun LH, Tao B,
Wang WQ, Wang JQ, Zhao HY and Liu JM: Lgr4 promotes aerobic
glycolysis and differentiation in osteoblasts via the canonical
Wnt/beta-catenin pathway. J Bone Miner Res. 36:1605–1620. 2021.
View Article : Google Scholar : PubMed/NCBI
|