Advances in the role of long non‑coding RNAs and RNA‑binding proteins in regulating DNA damage repair in cancer cells
- Authors:
- Songzhu Zou
- Xiaomei Gou
- Kunming Wen
-
Affiliations: Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China - Published online on: August 23, 2023 https://doi.org/10.3892/ijmm.2023.5296
- Article Number: 93
-
Copyright: © Zou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Ragunathan K, Upfold NLE and Oksenych V: Interaction between fibroblasts and immune cells following DNA Damage induced by ionizing radiation. Int J Mol Sci. 21:86352020. View Article : Google Scholar : PubMed/NCBI | |
Marshall CJ and Santangelo TJ: Archaeal DNA repair mechanisms. Biomolecules. 10:14722020. View Article : Google Scholar : PubMed/NCBI | |
Maremonti E, Brede DA, Olsen AK, Eide DM and Berg ES: Ionizing radiation, genotoxic stress, and mitochondrial DNA copy-number variation in Caenorhabditis elegans: Droplet digital PCR analysis. Mutat Res Genet Toxicol Environ Mutagen. 858-860:5032772020. View Article : Google Scholar : PubMed/NCBI | |
Pariset E, Malkani S, Cekanaviciute E and Costes SV: Ionizing radiation-induced risks to the central nervous system and countermeasures in cellular and rodent models. Int J Radiat Biol. 97(Suppl): S132–S150. 2021. View Article : Google Scholar | |
Wu R, Hogberg J, Adner M, Ramos-Ramirez P, Stenius U and Zheng H: Crystalline silica particles cause rapid NLRP3-dependent mitochondrial depolarization and DNA damage in airway epithelial cells. Part Fibre Toxicol. 17:392020. View Article : Google Scholar : PubMed/NCBI | |
Dussert F, Arthaud PA, Arnal ME, Dalzon B, Torres A, Douki T, Herlin N, Rabilloud T and Carriere M: Toxicity to RAW264.7 macrophages of silica nanoparticles and the E551 food additive, in combination with genotoxic agents. Nanomaterials (Basel). 10:14182020. View Article : Google Scholar : PubMed/NCBI | |
Huang R, Yu T, Li Y and Hu J: Upregulated has-miR-4516 as a potential biomarker for early diagnosis of dust-induced pulmonary fibrosis in patients with pneumoconiosis. Toxicol Res (Camb). 7:415–422. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gupta N, Khetan D, Chaudhary R and Shukla JS: Prospective cohort study to assess the effect of storage duration, Leuko-filtration, and gamma irradiation on cell-free DNA in red cell components. Transfus Med Hemother. 47:409–419. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lindahl T and Barnes DE: Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol. 65:127–133. 2000. View Article : Google Scholar | |
Jackson SP and Bartek J: The DNA-damage response in human biology and disease. Nature. 461:1071–1078. 2009. View Article : Google Scholar : PubMed/NCBI | |
Aguilera A and Garcia-Muse T: Causes of genome instability. Annu Rev Genet. 47:1–32. 2013. View Article : Google Scholar : PubMed/NCBI | |
Aguilera A and Gomez-Gonzalez B: Genome instability: A mechanistic view of its causes and consequences. Nat Rev Genet. 9:204–217. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li J, Sun H, Huang Y, Wang Y, Liu Y and Chen X: Pathways and assays for DNA double-strand break repair by homologous recombination. Acta Biochim Biophys Sin (Shanghai). 51:879–889. 2019. View Article : Google Scholar : PubMed/NCBI | |
O'Connor MJ: Targeting the DNA damage response in cancer. Mol Cell. 60:547–560. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lord CJ and Ashworth A: The DNA damage response and cancer therapy. Nature. 481:287–294. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pilie PG, Tang C, Mills GB and Yap TA: State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol. 16:81–104. 2019. View Article : Google Scholar | |
Marchese FP, Raimondi I and Huarte M: The multidimensional mechanisms of long noncoding RNA function. Genome Biol. 18:2062017. View Article : Google Scholar : PubMed/NCBI | |
Huarte M: The emerging role of lncRNAs in cancer. Nat Med. 21:1253–1261. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fanale D, Castiglia M, Bazan V and Russo A: Involvement of Non-coding RNAs in Chemo- and Radioresistance of colorectal Cancer. Adv Exp Med Biol. 937:207–228. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou XL, Wang WW, Zhu WG, Yu CH, Tao GZ, Wu QQ, Song YQ, Pan P and Tong YS: High expression of long non-coding RNA AFAP1-AS1 predicts chemoradioresistance and poor prognosis in patients with esophageal squamous cell carcinoma treated with definitive chemoradiotherapy. Mol Carcinog. 55:2095–2105. 2016. View Article : Google Scholar : PubMed/NCBI | |
Haemmig S, Yang D, Sun X, Das D, Ghaffari S, Molinaro R, Chen L, Deng Y, Freeman D, Moullan N, et al: Long noncoding RNA SNHG12 integrates a DNA-PK-mediated DNA damage response and vascular senescence. Sci Transl Med. 12:eaaw18682020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Tao Y, Li Y, Zhao J, Zhang L, Zhang X, Dong C, Xie Y, Dai X, Zhang X and Liao Q: The regulatory network analysis of long noncoding RNAs in human colorectal cancer. Funct Integr Genomics. 18:261–275. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang Y and Wang Y, Luo W, Song X, Huang L, Xiao J, Jin F, Ren Z and Wang Y: Roles of long non-coding RNAs and emerging RNA-binding proteins in innate antiviral responses. Theranostics. 10:9407–9424. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ciccia A and Elledge SJ: The DNA damage response: Making it safe to play with knives. Mol Cell. 40:179–204. 2010. View Article : Google Scholar : PubMed/NCBI | |
Michelini F, Pitchiaya S, Vitelli V, Sharma S, Gioia U, Pessina F, Cabrini M, Wang Y, Capozzo I, Iannelli F, et al: Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat Cell Biol. 19:1400–1411. 2017. View Article : Google Scholar : PubMed/NCBI | |
Surova O and Zhivotovsky B: Various modes of cell death induced by DNA damage. Oncogene. 32:3789–3797. 2013. View Article : Google Scholar | |
Roos WP, Thomas AD and Kaina B: DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer. 16:20–33. 2016. View Article : Google Scholar | |
Sun X, Wang Y, Ji K, Liu Y, Kong Y, Nie S, Li N, Hao J, Xie Y, Xu C, et al: NRF2 preserves genomic integrity by facilitating ATR activation and G2 cell cycle arrest. Nucleic Acids Res. 48:9109–9123. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu R, Hu Y, Zhang S, Li X, Tang M, Yang M, Wu X, Li Z, Liao X, Xu Y, et al: LncRNA CTBP1-DT-encoded microprotein DDUP sustains DNA damage response signalling to trigger dual DNA repair mechanisms. Nucleic Acids Res. 50:8060–8079. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wu CH, Chen CY, Yeh CT and Lin KH: Radiosensitization of hepatocellular carcinoma through targeting radio-associated MicroRNA. Int J Mol Sci. 21:18592020. View Article : Google Scholar : PubMed/NCBI | |
Kitagawa R and Kastan MB: The ATM-dependent DNA damage signaling pathway. Cold Spring Harb Symp Quant Biol. 70:99–109. 2005. View Article : Google Scholar | |
Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER III, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, et al: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 316:1160–1166. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bartek J and Lukas J: DNA damage checkpoints: From initiation to recovery or adaptation. Curr Opin Cell Biol. 19:238–245. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shiloh Y: ATM and related protein kinases: Safeguarding genome integrity. Nat Rev Cancer. 3:155–168. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wan G, Mathur R, Hu X, Liu Y, Zhang X, Peng G and Lu X: Long non-coding RNA ANRIL (CDKN2B-AS) is induced by the ATM-E2F1 signaling pathway. Cell Signal. 25:1086–1095. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wan G, Hu X, Liu Y, Han C, Sood AK, Calin GA, Zhang X and Lu X: A novel non-coding RNA lncRNA-JADE connects DNA damage signalling to histone H4 acetylation. EMBO J. 32:2833–2847. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schoeftner S and Blasco MA: Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol. 10:228–236. 2008. View Article : Google Scholar | |
Xu Y and Komiyama M: Structure, function and targeting of human telomere RNA. Methods. 57:100–105. 2012. View Article : Google Scholar : PubMed/NCBI | |
Karlseder J, Broccoli D, Dai Y, Hardy S and de Lange T: p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science. 283:1321–1325. 1999. View Article : Google Scholar : PubMed/NCBI | |
Okamoto K, Bartocci C, Ouzounov I, Diedrich JK, Yates JR III and Denchi EL: A two-step mechanism for TRF2-mediated chromosome-end protection. Nature. 494:502–505. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zeng D, Cao J, Wang M, Shu B, Kuang G, Ou TM, Tan JH, Gu LQ, Huang ZS and Li D: Interaction of Quindoline derivative with telomeric repeat-containing RNA induces telomeric DNA-damage response in cancer cells through inhibition of telomeric repeat factor 2. Biochim Biophys Acta Gen Subj. 1861:3246–3256. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang A, Zhou N, Huang J, Liu Q, Fukuda K, Ma D, Lu Z, Bai C, Watabe K and Mo YY: The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res. 23:340–350. 2013. View Article : Google Scholar : | |
Meek DW and Anderson CW: Posttranslational modification of p53: Cooperative integrators of function. Cold Spring Harb Perspect Biol. 1:a0009502009. View Article : Google Scholar | |
Zilfou JT and Lowe SW: Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol. 1:a0018832009. View Article : Google Scholar : | |
Vousden KH and Prives C: Blinded by the light: The growing complexity of p53. Cell. 137:413–431. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang A, Xu M and Mo YY: Role of the lncRNA-p53 regulatory network in cancer. J Mol Cell Biol. 6:181–191. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shihabudeen Haider Ali MS, Cheng X, Moran M, Haemmig S, Naldrett MJ, Alvarez S, Feinberg MW and Sun X: LncRNA Meg3 protects endothelial function by regulating the DNA damage response. Nucleic Acids Res. 47:1505–1522. 2019. View Article : Google Scholar : | |
Wen D, Huang Z, Li Z, Tang X, Wen X, Liu J and Li M: LINC02535 co-functions with PCBP2 to regulate DNA damage repair in cervical cancer by stabilizing RRM1 mRNA. J Cell Physiol. 235:7592–7603. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li N and Richard S: Sam68 functions as a transcriptional coactivator of the p53 tumor suppressor. Nucleic Acids Res. 44:8726–8741. 2016. View Article : Google Scholar : PubMed/NCBI | |
Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, et al: Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA. 106:11667–11672. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, et al: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 142:409–419. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM, Shah N, Umbricht C, Wang P, et al: Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet. 43:621–629. 2011. View Article : Google Scholar : PubMed/NCBI | |
van Gent DC, Hoeijmakers JH and Kanaar R: Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet. 2:196–206. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K and Linn S: Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 73:39–85. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sharma V, Khurana S, Kubben N, Abdelmohsen K, Oberdoerffer P, Gorospe M and Misteli T: A BRCA1-interacting lncRNA regulates homologous recombination. EMBO Rep. 16:1520–1534. 2015. View Article : Google Scholar : PubMed/NCBI | |
Deng B, Xu W, Wang Z, Liu C, Lin P, Li B, Huang Q, Yang J, Zhou H and Qu L: An LTR retrotransposon-derived lncRNA interacts with RNF169 to promote homologous recombination. EMBO Rep. 20:e476502019. View Article : Google Scholar : PubMed/NCBI | |
Branzei D and Foiani M: Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol. 9:297–308. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lieber MR: The mechanism of human nonhomologous DNA end joining. J Biol Chem. 283:1–5. 2008. View Article : Google Scholar | |
San Filippo J, Sung P and Klein H: Mechanism of eukaryotic homologous recombination. Annu Rev Biochem. 77:229–257. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kumar A, Purohit S and Sharma NK: Aberrant DNA Double-strand break repair threads in breast carcinoma: Orchestrating genomic insult survival. J Cancer Prev. 21:227–234. 2016. View Article : Google Scholar | |
Yao Y, Li X, Chen W, Liu H, Mi L, Ren D, Mo A and Lu P: ATM promotes RAD51-mediated meiotic DSB repair by inter-sister-chromatid recombination in Arabidopsis. Front Plant Sci. 11:8392020. View Article : Google Scholar : PubMed/NCBI | |
Trenner A and Sartori AA: Harnessing DNA Double-strand break repair for cancer treatment. Front Oncol. 9:13882019. View Article : Google Scholar | |
Gomez-Mejiba SE and Ramirez DC: Trapping of DNA radicals with the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide and genotoxic damage: Recent advances using the immuno-spin trapping technology. Mutat Res Rev Mutat Res. 782:1082832019. View Article : Google Scholar : PubMed/NCBI | |
Dasika GK, Lin SC, Zhao S, Sung P, Tomkinson A and Lee EY: DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene. 18:7883–7899. 1999. View Article : Google Scholar | |
Zhao Y, Li H, Fang S, Kang Y, Wu W, Hao Y, Li Z, Bu D, Sun N, Zhang MQ and Chen R: NONCODE 2016: An informative and valuable data source of long non-coding RNAs. Nucleic Acids Res. 44:D203–D208. 2016. View Article : Google Scholar : | |
Dimitrova N, Zamudio JR, Jong RM, Soukup D, Resnick R, Sarma K, Ward AJ, Raj A, Lee JT, Sharp PA and Jacks T: LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell. 54:777–790. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schmitt AM, Garcia JT, Hung T, Flynn RA, Shen Y, Qu K, Payumo AY, Peres-da-Silva A, Broz DK, Baum R, et al: An inducible long noncoding RNA amplifies DNA damage signaling. Nat Genet. 48:1370–1376. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Li D, Zhang W, Guo M and Zhan Q: Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay. EMBO J. 31:4415–4427. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shen L, Wang Q, Liu R, Chen Z, Zhang X, Zhou P and Wang Z: LncRNA lnc-RI regulates homologous recombination repair of DNA double-strand breaks by stabilizing RAD51 mRNA as a competitive endogenous RNA. Nucleic Acids Res. 46:717–729. 2018. View Article : Google Scholar : | |
Huang R and Zhou PK: DNA damage repair: Historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther. 6:2542021. View Article : Google Scholar : PubMed/NCBI | |
Thapar R, Wang JL, Hammel M, Ye R, Liang K, Sun C, Hnizda A, Liang S, Maw SS, Lee L, et al: Mechanism of efficient double-strand break repair by a long non-coding RNA. Nucleic Acids Res. 48:10953–10972. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, He Q, Hu Z, Feng Y, Fan L, Tang Z, Yuan J, Shan W, Li C, Hu X, et al: Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer. Nat Struct Mol Biol. 23:522–530. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Liu H, Shi L, Yu X, Gu Y and Sun X: LINP1 facilitates DNA damage repair through non-homologous end joining (NHEJ) pathway and subsequently decreases the sensitivity of cervical cancer cells to ionizing radiation. Cell Cycle. 17:439–447. 2018. View Article : Google Scholar : PubMed/NCBI | |
Soutoglou E and Misteli T: Activation of the cellular DNA damage response in the absence of DNA lesions. Science. 320:1507–1510. 2008. View Article : Google Scholar : PubMed/NCBI | |
Downs JA and Jackson SP: A means to a DNA end: The many roles of Ku. Nat Rev Mol Cell Biol. 5:367–378. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Zhou Z, Wu E, Ouyang C, Wei G, Wang Y, He D, Cui Y, Zhang D, Chen X, et al: LRIK interacts with the Ku70-Ku80 heterodimer enhancing the efficiency of NHEJ repair. Cell Death Differ. 27:3337–3353. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo Z, Wang YH, Xu H, Yuan CS, Zhou HH, Huang WH, Wang H and Zhang W: LncRNA linc00312 suppresses radiotherapy resistance by targeting DNA-PKcs and impairing DNA damage repair in nasopharyngeal carcinoma. Cell Death Dis. 12:692021. View Article : Google Scholar : PubMed/NCBI | |
Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L and Shiloh Y: Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 22:5612–5621. 2003. View Article : Google Scholar : PubMed/NCBI | |
Prakash R, Zhang Y, Feng W and Jasin M: Homologous recombination and human health: The roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol. 7:a0166002015. View Article : Google Scholar : PubMed/NCBI | |
Gorgoulis VG, Pefani DE, Pateras IS and Trougakos IP: Integrating the DNA damage and protein stress responses during cancer development and treatment. J Pathol. 246:12–40. 2018. View Article : Google Scholar : PubMed/NCBI | |
Heyer WD, Ehmsen KT and Liu J: Regulation of homologous recombination in eukaryotes. Annu Rev Genet. 44:113–139. 2010. View Article : Google Scholar : PubMed/NCBI | |
Maréchal A and Zou L: DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol. 5:a0127162013. View Article : Google Scholar : PubMed/NCBI | |
Renkawitz J, Lademann CA and Jentsch S: Mechanisms and principles of homology search during recombination. Nat Rev Mol Cell Biol. 15:369–383. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ranjha L, Howard SM and Cejka P: Main steps in DNA double-strand break repair: An introduction to homologous recombination and related processes. Chromosoma. 127:187–214. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu N, Qin H, Zhang F, Liu T, Cao K, Yang Y, Chen Y and Cai J: The role and mechanism of long non-coding RNAs in homologous recombination repair of radiation-induced DNA damage. J Gene Med. 25:e34702023. View Article : Google Scholar | |
Ohta T, Sato K and Wu W: The BRCA1 ubiquitin ligase and homologous recombination repair. FEBS Lett. 585:2836–2844. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim H, Chen J and Yu X: Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science. 316:1202–1205. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Scully R, Sobhian B, Xie A, Shestakova E and Livingston DM: RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci. Genes Dev. 25:685–700. 2011. View Article : Google Scholar : PubMed/NCBI | |
Coleman KA and Greenberg RA: The BRCA1-RAP80 complex regulates DNA repair mechanism utilization by restricting end resection. J Biol Chem. 286:13669–13680. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Petit SA, Ficarro SB, Toomire KJ, Xie A, Lim E, Cao SA, Park E, Eck MJ, Scully R, et al: PARP1-driven poly-ADP-ribosylation regulates BRCA1 function in homologous recombination-mediated DNA repair. Cancer Discov. 4:1430–1447. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hu Z, Mi S, Zhao T, Peng C, Peng Y, Chen L, Zhu W, Yao Y, Song Q, Li X, et al: BGL3 lncRNA mediates retention of the BRCA1/BARD1 complex at DNA damage sites. EMBO J. 39:e1041332020. View Article : Google Scholar : PubMed/NCBI | |
Wang ZW, Pan JJ, Hu JF, Zhang JQ, Huang L, Huang Y, Liao CY, Yang C, Chen ZW, Wang YD, et al: SRSF3-mediated regulation of N6-methyladenosine modification-related lncRNA ANRIL splicing promotes resistance of pancreatic cancer to gemcitabine. Cell Rep. 39:1108132022. View Article : Google Scholar : PubMed/NCBI | |
Syed A and Tainer JA: The MRE11-RAD50-NBS1 complex conducts the orchestration of damage signaling and outcomes to stress in DNA replication and repair. Annu Rev Biochem. 87:263–294. 2018. View Article : Google Scholar : PubMed/NCBI | |
Stracker TH and Petrini JH: The MRE11 complex: Starting from the ends. Nat Rev Mol Cell Biol. 12:90–103. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xu A, Huang MF, Zhu D, Gingold JA, Bazer DA, Chang B, Wang D, Lai CC, Lemischka IR, Zhao R and Lee DF: LncRNA H19 suppresses Osteosarcomagenesis by regulating snoRNAs and DNA repair protein complexes. Front Genet. 11:6118232020. View Article : Google Scholar | |
Wu C, Chen W, Yu F, Yuan Y, Chen Y, Hurst DR, Li Y, Li L and Liu Z: Long noncoding RNA HITTERS protects oral squamous cell carcinoma cells from endoplasmic reticulum stress-induced apoptosis via promoting MRE11-RAD50-NBS1 complex formation. Adv Sci (Weinh). 7:20027472020. View Article : Google Scholar : PubMed/NCBI | |
Paull TT: Mechanisms of ATM Activation. Annu Rev Biochem. 84:711–738. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao K, Wang X, Xue X, Li L and Hu Y: A long noncoding RNA sensitizes genotoxic treatment by attenuating ATM activation and homologous recombination repair in cancers. PLoS Biol. 18:e30006662020. View Article : Google Scholar : PubMed/NCBI | |
Bunting SF, Callén E, Wong N, Chen HT, Polato F, Gunn A, Bothmer A, Feldhahn N, Fernandez-Capetillo O, Cao L, et al: 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell. 141:243–254. 2010. View Article : Google Scholar : PubMed/NCBI | |
Escribano-Díaz C, Orthwein A, Fradet-Turcotte A, Xing M, Young JT, Tkáč J, Cook MA, Rosebrock AP, Munro M, Canny MD, et al: A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell. 49:872–883. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zimmermann M, Lottersberger F, Buonomo SB, Sfeir A and de Lange T: 53BP1 regulates DSB repair using Rif1 to control 5' end resection. Science. 339:700–704. 2013. View Article : Google Scholar : PubMed/NCBI | |
Poulsen M, Lukas C, Lukas J, Bekker-Jensen S and Mailand N: Human RNF169 is a negative regulator of the ubiquitin-dependent response to DNA double-strand breaks. J Cell Biol. 197:189–199. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hu Q, Botuyan MV, Cui G, Zhao D and Mer G: Mechanisms of Ubiquitin-nucleosome recognition and regulation of 53BP1 chromatin recruitment by RNF168/169 and RAD18. Mol Cell. 66:473–487.e479. 2017. View Article : Google Scholar : PubMed/NCBI | |
Muvarak N, Kelley S, Robert C, Baer MR, Perrotti D, Gambacorti-Passerini C, Civin C, Scheibner K and Rassool FV: c-MYC generates repair errors via increased transcription of Alternative-NHEJ Factors, LIG3 and PARP1, in tyrosine kinase-activated leukemias. Mol Cancer Res. 13:699–712. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ahrabi S, Sarkar S, Pfister SX, Pirovano G, Higgins GS, Porter AC and Humphrey TC: A role for human homologous recombination factors in suppressing microhomology-mediated end joining. Nucleic Acids Res. 44:5743–5757. 2016. View Article : Google Scholar : PubMed/NCBI | |
Leppard JB, Dong Z, Mackey ZB and Tomkinson AE: Physical and functional interaction between DNA ligase IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair. Mol Cell Biol. 23:5919–5927. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chiruvella KK, Liang Z and Wilson TE: Repair of double-strand breaks by end joining. Cold Spring Harb Perspect Biol. 5:a0127572013. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Lin J, Fang H, Fang J, Li C, Chen W, Liu S, Ondrejka S, Gong Z, Reu F, et al: Targeting the MALAT1/PARP1/LIG3 complex induces DNA damage and apoptosis in multiple myeloma. Leukemia. 32:2250–2262. 2018. View Article : Google Scholar : PubMed/NCBI | |
Langelier MF, Ruhl DD, Planck JL, Kraus WL and Pascal JM: The Zn3 domain of human poly(ADP-ribose) polymerase-1 (PARP-1) functions in both DNA-dependent poly(ADP-ribose) synthesis activity and chromatin compaction. J Biol Chem. 285:18877–18887. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Lin C, Dong H, Piao Z, Jin C, Han H and Jin D: Targeting MALAT1 induces DNA damage and sensitize non-small cell lung cancer cells to cisplatin by repressing BRCA1. Cancer Chemother Pharmacol. 86:663–672. 2020. View Article : Google Scholar : PubMed/NCBI | |
Goldstein M and Kastan MB: The DNA damage response: Implications for tumor responses to radiation and chemotherapy. Annu Rev Med. 66:129–143. 2015. View Article : Google Scholar | |
Yao RW, Wang Y and Chen LL: Cellular functions of long noncoding RNAs. Nat Cell Biol. 21:542–551. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kang M, Ren M, Li Y, Fu Y, Deng M and Li C: Exosome-mediated transfer of lncRNA PART1 induces gefitinib resistance in esophageal squamous cell carcinoma via functioning as a competing endogenous RNA. J Exp Clin Cancer Res. 37:1712018. View Article : Google Scholar : PubMed/NCBI | |
Xiong XD, Ren X, Cai MY, Yang JW, Liu X and Yang JM: Long non-coding RNAs: An emerging powerhouse in the battle between life and death of tumor cells. Drug Resist Updat. 26:28–42. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Zhou Y, Tu B, Bu Y, Liu A and Kong J: Long noncoding RNA MALAT1 affects the efficacy of radiotherapy for esophageal squamous cell carcinoma by regulating Cks1 expression. J Oral Pathol Med. 46:583–590. 2017. View Article : Google Scholar | |
Sun M, Jin FY, Xia R, Kong R, Li JH, Xu TP, Liu YW, Zhang EB, Liu XH and De W: Decreased expression of long noncoding RNA GAS5 indicates a poor prognosis and promotes cell proliferation in gastric cancer. BMC Cancer. 14:3192014. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Ben Q, Lu E, He X, Yang X, Ma J, Zhang W, Wang Z, Liu T, Zhang J and Wang H: Long noncoding RNA PANDAR blocks CDKN1A gene transcription by competitive interaction with p53 protein in gastric cancer. Cell Death Dis. 9:1682018. View Article : Google Scholar : PubMed/NCBI | |
Shao L, Zuo X, Yang Y, Zhang Y, Yang N, Shen B, Wang J, Wang X, Li R, Jin G, et al: The inherited variations of a p53-responsive enhancer in 13q12.12 confer lung cancer risk by attenuating TNFRSF19 expression. Genome Biol. 20:1032019. View Article : Google Scholar : PubMed/NCBI | |
Zhen Y, Ye Y, Wang H, Xia Z, Wang B, Yi W and Deng X: Knockdown of SNHG8 repressed the growth, migration, and invasion of colorectal cancer cells by directly sponging with miR-663. Biomed Pharmacother. 116:1090002019. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Yang C, Gu Y, Li C, Zhang H, Zhang W, Wang X, Wu N and Zheng C: Knockdown of the lncRNA SNHG8 inhibits cell growth in Epstein-Barr virus-associated gastric carcinoma. Cell Mol Biol Lett. 23:172018. View Article : Google Scholar : PubMed/NCBI | |
Tian X, Liu Y, Wang Z and Wu S: lncRNA SNHG8 promotes aggressive behaviors of nasopharyngeal carcinoma via regulating miR-656-3p/SATB1 axis. Biomed Pharmacother. 131:1105642020. View Article : Google Scholar : PubMed/NCBI | |
Miao W, Lu T, Liu X, Yin W and Zhang H: LncRNA SNHG8 induces ovarian carcinoma cells cellular process and stemness through Wnt/β-catenin pathway. Cancer Biomark. 28:459–471. 2020. View Article : Google Scholar | |
Fan D, Qiu B, Yang XJ, Tang HL, Peng SJ, Yang P, Dong YM, Yang L, Bao GQ and Zhao HD: LncRNA SNHG8 promotes cell migration and invasion in breast cancer cell through miR-634/ZBTB20 axis. Eur Rev Med Pharmacol Sci. 24:11639–11649. 2020.PubMed/NCBI | |
Zhu W, Tan L, Ma T, Yin Z and Gao J: Long noncoding RNA SNHG8 promotes chemoresistance in gastric cancer via binding with hnRNPA1 and stabilizing TROY expression. Dig Liver Dis. 54:1573–1582. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Wang X, Rong Z, Dai L, Qin C, Wang S and Geng W: LncRNA LINC01134 contributes to radioresistance in hepatocellular carcinoma by regulating DNA damage response via MAPK signaling pathway. Front Pharmacol. 12:7918892021. View Article : Google Scholar | |
Sun Y, Wang J, Ma Y, Li J, Sun X, Zhao X, Shi X, Hu Y, Qu F and Zhang X: Radiation induces NORAD expression to promote ESCC radiotherapy resistance via EEPD1/ATR/Chk1 signalling and by inhibiting pri-miR-199a1 processing and the exosomal transfer of miR-199a-5p. J Exp Clin Cancer Res. 40:3062021. View Article : Google Scholar : PubMed/NCBI | |
Yao P, Li Y, Shen W, Xu X, Zhu W, Yang X, Cao J and Xing C: ANKHD1 silencing suppresses the proliferation, migration and invasion of CRC cells by inhibiting YAP1-induced activation of EMT. Am J Cancer Res. 8:2311–2324. 2018.PubMed/NCBI | |
Yao PA, Wu Y, Zhao K, Li Y, Cao J and Xing C: The feedback loop of ANKHD1/lncRNA MALAT1/YAP1 strengthens the radioresistance of CRC by activating YAP1/AKT signaling. Cell Death Dis. 13:1032022. View Article : Google Scholar : PubMed/NCBI | |
Takahashi H, Nishimura J, Kagawa Y, Kano Y, Takahashi Y, Wu X, Hiraki M, Hamabe A, Konno M, Haraguchi N, et al: Significance of Polypyrimidine Tract-binding Protein 1 expression in colorectal cancer. Mol Cancer Ther. 14:1705–1716. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huan L, Guo T, Wu Y, Xu L, Huang S, Xu Y, Liang L and He X: Hypoxia induced LUCAT1/PTBP1 axis modulates cancer cell viability and chemotherapy response. Mol Cancer. 19:112020. View Article : Google Scholar : PubMed/NCBI | |
Jin MH and Oh DY: ATM in DNA repair in cancer. Pharmacol Ther. 203:1073912019. View Article : Google Scholar : PubMed/NCBI | |
Cimprich KA and Cortez D: ATR: An essential regulator of genome integrity. Nat Rev Mol Cell Biol. 9:616–627. 2008. View Article : Google Scholar : PubMed/NCBI | |
Panzarino NJ, Krais JJ, Cong K, Peng M, Mosqueda M, Nayak SU, Bond SM, Calvo JA, Doshi MB, Bere M, et al: Replication gaps underlie BRCA deficiency and therapy response. Cancer Res. 81:1388–1397. 2021. View Article : Google Scholar | |
Zhang B, Bao W, Zhang S, Chen B, Zhou X, Zhao J, Shi Z, Zhang T, Chen Z, Wang L, et al: LncRNA HEPFAL accelerates ferroptosis in hepatocellular carcinoma by regulating SLC7A11 ubiquitination. Cell Death Dis. 13:7342022. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Guo H, Tong T, Xie F, Qin X, Wang X, Chen W and Zhang J: lncRNA lnc-POP1-1 upregulated by VN1R5 promotes cisplatin resistance in head and neck squamous cell carcinoma through interaction with MCM5. Mol Ther. 30:448–467. 2022. View Article : Google Scholar : | |
Choi PS and Thomas-Tikhonenko A: RNA-binding proteins of COSMIC importance in cancer. J Clin Invest. 131:e1516272021. View Article : Google Scholar : PubMed/NCBI | |
Fabbri L, Chakraborty A, Robert C and Vagner S: The plasticity of mRNA translation during cancer progression and therapy resistance. Nat Rev Cancer. 21:558–577. 2021. View Article : Google Scholar : PubMed/NCBI | |
Duffy AG, Makarova-Rusher OV, Ulahannan SV, Rahma OE, Fioravanti S, Walker M, Abdullah S, Raffeld M, Anderson V, Abi-Jaoudeh N, et al: Modulation of tumor eIF4E by antisense inhibition: A phase I/II translational clinical trial of ISIS 183750-an antisense oligonucleotide against eIF4E-in combination with irinotecan in solid tumors and irinotecan-refractory colorectal cancer. Int J Cancer. 139:1648–1657. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shen L and Pelletier J: Selective targeting of the DEAD-box RNA helicase eukaryotic initiation factor (eIF) 4A by natural products. Nat Prod Rep. 37:609–616. 2020. View Article : Google Scholar | |
Zhu H, Chen K, Chen Y, Liu J, Zhang X, Zhou Y, Liu Q, Wang B, Chen T and Cao X: RNA-binding protein ZCCHC4 promotes human cancer chemoresistance by disrupting DNA-damage-induced apoptosis. Signal Transduct Target Ther. 7:2402022. View Article : Google Scholar : PubMed/NCBI |