The role of heat shock proteins in the pathogenesis of heart failure (Review)
- Authors:
- Anastasia Pavlovna Sklifasovskaya
- Mikhail Blagonravov
- Anna Ryabinina
- Vyacheslav Goryachev
- Sergey Syatkin
- Sergey Chibisov
- Karina Akhmetova
- Daniil Prokofiev
- Enzo Agostinelli
-
Affiliations: Institute of Medicine, RUDN University, 117198 Moscow, Russia, Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, University Hospital Policlinico Umberto I, I‑00161 Rome, Italy - Published online on: September 27, 2023 https://doi.org/10.3892/ijmm.2023.5309
- Article Number: 106
-
Copyright: © Sklifasovskaya et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Safari S, Malekvandfard F, Babashah S, Alizadehasl A, Sadeghizadeh M and Motavaf M: Mesenchymal stem cell-derived exosomes: A novel potential therapeutic avenue for cardiac regeneration. Cell Mol Biol (Noisy-le-grand). 62:66–73. 2016.PubMed/NCBI | |
Tarone G and Brancaccio M: Keep your heart in shape: Molecular chaperone networks for treating heart disease. Cardiovasc Res. 102:346–361. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rabinovich-Nikitin I, Rasouli M, Reitz CJ, Posen I, Margulets V, Dhingra R, Khatua TN, Thliveris JA, Martino TA and Kirshenbaum LA: Mitochondrial autophagy and cell survival is regulated by the circadian Clock gene in cardiac myocytes during ischemic stress. Autophagy. 17:3794–3812. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cicalese SM, da Silva JF, Priviero F, Webb RC, Eguchi S and Tostes RC: Vascular stress signaling in hypertension. Circ Res. 128:969–992. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ma T, Huang X, Zheng H, Huang G, Li W, Liu X, Liang J, Cao Y, Hu Y and Huang Y: SFRP2 improves mitochondrial dynamics and mitochondrial biogenesis, oxidative stress, and apoptosis in diabetic cardiomyopathy. Oxid Med Cell Longev. 2021:92650162021. View Article : Google Scholar : PubMed/NCBI | |
Ranek MJ, Stachowski MJ, Kirk JA and Willis MS: The role of heat shock proteins and co-chaperones in heart failure. Philos Trans R Soc Lond B Biol Sci. 373:201605302018. View Article : Google Scholar | |
Maejima Y: The critical roles of protein quality control systems in the pathogenesis of heart failure. J Cardiol. 75:219–227. 2020. View Article : Google Scholar | |
Schwabl S and Teis D: Protein quality control at the Golgi. Curr Opin Cell Biol. 75:1020742022. View Article : Google Scholar : PubMed/NCBI | |
Wang X and Robbins J: Heart failure and protein quality control. Circ Res. 99:1315–1328. 2006. View Article : Google Scholar : PubMed/NCBI | |
Brownstein AJ, Ganesan S, Summers CM, Pearce S, Hale BJ, Ross JW, Gabler N, Seibert JT, Rhoads RP, Baumgard LH and Selsby JT: Heat stress causes dysfunctional autophagy in oxidative skeletal muscle. Physiol Rep. 5:e133172017. View Article : Google Scholar : PubMed/NCBI | |
Hagymasi AT, Dempsey JP and Srivastava PK: Heat-shock proteins. Curr Protoc. 2:e5922022. View Article : Google Scholar : PubMed/NCBI | |
Tedesco B, Vendredy L, Timmerman V and Poletti A: The chaperone-assisted selective autophagy complex dynamics and dysfunctions. Autophagy. 19:1619–1641. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yun CW, Kim HJ, Lim JH and Lee SH: Heat Shock Proteins: Agents of cancer development and therapeutic targets in anti-cancer therapy. Cells. 9:602019. View Article : Google Scholar : PubMed/NCBI | |
Haslbeck M and Vierling E: A first line of stress defense: Small heat shock proteins and their function in protein homeostasis. J Mol Biol. 427:1537–1548. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jacob P, Hirt H and Bendahmane A: The heat-shock protein/chaperone network and multiple stress resistance. Plant. Biotechnol J. 15:405–414. 2017. View Article : Google Scholar : | |
Schroder K and Tschopp J: The inflammasomes. Cell. 140:821–832. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gomez-Pastor R, Burchfiel ET, Neef DW, Jaeger AM, Cabiscol E, McKinstry SU, Doss A, Aballay A, Lo DC, Akimov SS, et al: Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington's disease. Nat Commun. 8:144052017. View Article : Google Scholar : PubMed/NCBI | |
Dowell J, Elser BA, Schroeder RE and Stevens HE: Cellular stress mechanisms of prenatal maternal stress: Heat shock factors and oxidative stress. Neurosci Lett. 709:1343682019. View Article : Google Scholar : PubMed/NCBI | |
Xie M, Kong Y, Tan W, May H, Battiprolu PK, Pedrozo Z, Wang ZV, Morales C, Luo X, Cho G, et al: Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation. 129:1139–1151. 2014. View Article : Google Scholar : PubMed/NCBI | |
Blagonravov ML, Korshunova AY, Azova MM, Bondar' SA and Frolov VA: Cardiomyocyte autophagia and morphological alterations in the left ventricular myocardium during acute focal ischemia. Bull Exp Biol Med. 160:398–400. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang HL, Jia KY, Sun D and Yang M: Protective effect of HSP27 in atherosclerosis and coronary heart disease by inhibiting reactive oxygen species. J Cell Biochem. 120:2859–2868. 2019. View Article : Google Scholar | |
Shan R, Liu N, Yan Y and Liu B: Apoptosis, autophagy and atherosclerosis: Relationships and the role of Hsp27. Pharmacol Res. 166:1051692021. View Article : Google Scholar | |
Kovaleva OV, Shitova MS and Zborovskaya IB: Autophagy: Cell death or a way of survival? Clin Oncohematology. 7:103–113. 2014. | |
Del Re DP, Amgalan D, Linkermann A, Liu Q and Kitsis RN: Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev. 99:1765–1817. 2019. View Article : Google Scholar : PubMed/NCBI | |
Martine P and Rébé C: Heat shock proteins and inflammasomes. Int J Mol Sci. 20:45082019. View Article : Google Scholar : PubMed/NCBI | |
Choudhury A, Bullock D, Lim A, Argemi J, Orning P, Lien E, Bataller R and Mandrekar P: Inhibition of HSP90 and activation of HSF1 diminish macrophage NLRP3 inflammasome activity in alcohol-associated liver injury. Alcohol Clin Exp Res. 44:1300–1311. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jurisic V: Multiomic analysis of cytokines in immuno-oncology. Expert Rev Proteomics. 17:663–674. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jurisic V, Srdic-Rajic V, Konjevic G, Bogdanovic G and Colic M: TNF-α induced apoptosis is accompanied with rapid CD30 and slower CD45 shedding from K-562 cells. J Membr Biol. 239:115–122. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jurisic V, Terzic T, Colic S and Jurisic M: The concentration of TNF-alpha correlate with number of inflammatory cells and degree of vascularization in radicular cysts. Oral Dis. 14:600–605. 2008. View Article : Google Scholar : PubMed/NCBI | |
Swaroop S, Sengupta N, Suryawanshi AR, Adlakha YK and Basu A: HSP60 plays a regulatory role in IL-1β-induced microglial inflammation via TLR4-p38 MAPK axis. J Neuroinflammation. 13:272016. View Article : Google Scholar | |
Li XL, Wang YL, Zheng J, Zhang Y and Zhang XF: Inhibiting expression of HSP60 and TLR4 attenuates paraquat-induced microglial inflammation. Chem Biol Interact. 299:179–185. 2019. View Article : Google Scholar | |
Kelley N, Jeltema D, Duan Y and He Y: The NLRP3 Inflammasome: An overview of mechanisms of activation and regulation. Int J Mol Sci. 20:33282019. View Article : Google Scholar : PubMed/NCBI | |
Swaroop S, Mahadevan A, Shankar SK, Adlakha YK and Basu A: HSP60 critically regulates endogenous IL-1β production in activated microglia by stimulating NLRP3 inflammasome pathway. J Neuroinflammation. 15:1772018. View Article : Google Scholar | |
Aslan JE and McCarty OJ: Rho GTPases in platelet function. J Thromb Haemost. 11:35–46. 2013. View Article : Google Scholar | |
Elvers M: RhoGAPs and Rho GTPases in platelets. Hamostaseologie. 36:168–177. 2016. View Article : Google Scholar | |
Ngo ATP, Parra-Izquierdo I, Aslan JE and McCarty OJT: Rho GTPase regulation of reactive oxygen species generation and signaling in platelet function and disease. Small GTPases. 12:440–457. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Wu Y, Zhou J, Ahmad SS, Mutus B, Garbi N, Hämmerling G, Liu J and Essex DW: Platelet-derived ERp57 mediates platelet incorporation into a growing thrombus by regulation of the αIIbβ3 integrin. Blood. 122:3642–3650. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Li X, Shi X, Zhu M, Wang J, Huang S, Huang X, Wang H, Li L, Deng H, et al: Platelet integrin αIIbβ3: Signal transduction, regulation, and its therapeutic targeting. J Hematol Oncol. 12:262019. View Article : Google Scholar | |
Rigg RA, Healy LD, Nowak MS, Mallet J, Thierheimer ML, Pang J, McCarty OJ and Aslan JE: Heat shock protein 70 regulates platelet integrin activation, granule secretion and aggregation. Am J Physiol Cell Physiol. 310:C568–C575. 2016. View Article : Google Scholar : PubMed/NCBI | |
De Maio A: Extracellular Hsp70: Export and function. Curr Protein Pept Sci. 15:225–231. 2014. View Article : Google Scholar : PubMed/NCBI | |
Krause M, Heck TG, Bittencourt A, Scomazzon SP, Newsholme P, Curi R and Homem de Bittencourt PI Jr: The chaperone balance hypothesis: The importance of the extracellular to intracellular HSP70 ratio to inflammation-driven type 2 diabetes, the effect of exercise, and the implications for clinical management. Mediators Inflamm. 2015:2492052015. View Article : Google Scholar : PubMed/NCBI | |
Jackson JW, Rivera-Marquez GM, Beebe K, Tran AD, Trepel JB, Gestwicki JE, Blagg BSJ, Ohkubo S and Neckers LM: Pharmacologic dissection of the overlapping impact of heat shock protein family members on platelet function. J Thromb Haemost. 18:1197–1209. 2020. View Article : Google Scholar : PubMed/NCBI | |
Blagonravov ML, Sklifasovskaya AP, Korshunova AY, Azova MM and Kurlaeva AO: Heat shock protein HSP60 in left ventricular cardiomyocytes of hypertensive rats with and without insulin-dependent diabetes mellitus. Bull Exp Biol Med. 170:10–14. 2020. View Article : Google Scholar : PubMed/NCBI | |
Henstridge DC, Whitham M and Febbraio MA: Chaperoning to the metabolic party: The emerging therapeutic role of heat-shock proteins in obesity and type 2 diabetes. Mol Metab. 3:781–793. 2014. View Article : Google Scholar : PubMed/NCBI | |
Archer AE, Von Schulze AT and Geiger PC: Exercise, heat shock proteins and insulin resistance. Philos Trans R Soc Lond B Biol Sci. 373:201605292018. View Article : Google Scholar | |
Drew BG, Ribas V, Le JA, Henstridge DC, Phun J, Zhou Z, Soleymani T, Daraei P, Sitz D, Vergnes L, et al: HSP72 is a mitochondrial stress sensor critical for Parkin action, oxidative metabolism, and insulin sensitivity in skeletal muscle. Diabetes. 63:1488–1505. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kitano S, Kondo T, Matsuyama R, Ono K, Goto R, Takaki Y, Hanatani S, Sakaguchi M, Igata M, Kawashima J, et al: Impact of hepatic HSP72 on insulin signaling. Am J Physiol Endocrinol Metab. 316:E305–E318. 2019. View Article : Google Scholar | |
Xu L, Ma X, Bagattin A and Mueller E: The transcriptional coactivator PGC1α protects against hyperthermic stress via cooperation with the heat shock factor HSF1. Cell Death Dis. 7:e21022016. View Article : Google Scholar | |
Jornayvaz FR and Shulman GI: Regulation of mitochondrial biogenesis. Essays Biochem. 47:69–84. 2010. View Article : Google Scholar : PubMed/NCBI | |
Charos AE, Reed BD, Raha D, Szekely AM, Weissman SM and Snyder M: A highly integrated and complex PPARGC1A transcription factor binding network in HepG2 cells. Genome Res. 22:1668–1679. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Xu L, Alberobello AT, Gavrilova O, Bagattin A, Skarulis M, Liu J, Finkel T and Mueller E: Celastrol protects against obesity and metabolic dysfunction through activation of a HSF1-PGC1α transcriptional axis. Cell Metab. 22:695–708. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dang X, Du G, Hu W, Ma L, Wang P and Li Y: Peroxisome proliferator-activated receptor gamma coactivator-1α/HSF1 axis effectively alleviates lipopolysaccharide-induced acute lung injury via suppressing oxidative stress and inflammatory response. J Cell Biochem. 120:544–551. 2019. View Article : Google Scholar | |
Meyer BA and Doroudgar S: ER Stress-induced secretion of proteins and their extracellular functions in the heart. Cells. 9:20662020. View Article : Google Scholar : PubMed/NCBI | |
García R, Merino D, Gómez JM, Nistal JF, Hurlé MA, Cortajarena AL and Villar AV: Extracellular heat shock protein 90 binding to TGFβ receptor I participates in TGFβ-mediated collagen production in myocardial fibroblasts. Cell Signal. 28:1563–1579. 2016. View Article : Google Scholar | |
Shi C, Ulke-Lemée A, Deng J, Batulan Z and O'Brien ER: Characterization of heat shock protein 27 in extracellular vesicles: A potential anti-inflammatory therapy. FASEB J. 33:1617–1630. 2019. View Article : Google Scholar | |
Liu P, Bao HY, Jin CC, Zhou JC, Hua F, Li K, Lv XX, Cui B, Hu ZW and Zhang XW: Targeting extracellular heat shock protein 70 ameliorates doxorubicin-induced heart failure through resolution of toll-like receptor 2-mediated myocardial inflammation. J Am Heart Assoc. 8:e0123382019. View Article : Google Scholar : PubMed/NCBI | |
Jan RL, Yang SC, Liu YC, Yang RC, Tsai SP, Huang SE, Yeh JL and Hsu JH: Extracellular heat shock protein HSC70 protects against lipopolysaccharide-induced hypertrophic responses in rat cardiomyocytes. Biomed Pharmacother. 128:1103702020. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Xu Z, Zhou L, Chen Y, He M, Cheng L, Hu FB, Tanguay RM and Wu T: Plasma levels of Hsp70 and anti-Hsp70 antibody predict risk of acute coronary syndrome. Cell Stress Chaperones. 15:675–686. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jenei ZM, Gombos T, Förhécz Z, Pozsonyi Z, Karádi I, Jánoskuti L and Prohászka Z: Elevated extracellular HSP70 (HSPA1A) level as an independent prognostic marker of mortality in patients with heart failure. Cell Stress Chaperones. 18:809–813. 2013. View Article : Google Scholar : PubMed/NCBI | |
Song YJ, Zhong CB and Wang XB: Heat shock protein 70: A promising therapeutic target for myocardial ischemia-reperfusion injury. J Cell Physiol. 234:1190–1207. 2019. View Article : Google Scholar | |
Yang J, Yu XF, Li YY, Xue FT and Zhang S: Decreased HSP70 expression on serum exosomes contributes to cardiac fibrosis during senescence. Eur Rev Med Pharmacol Sci. 23:3993–4001. 2019.PubMed/NCBI | |
Yoon S, Kim M, Min HK, Lee YU, Kwon DH, Lee M, Lee S, Kook T, Joung H, Nam KI, et al: Inhibition of heat shock protein 70 blocks the development of cardiac hypertrophy by modulating the phosphorylation of histone deacetylase 2. Cardiovasc Res. 115:1850–1860. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez-Iturbe B, Johnson RJ, Sanchez-Lozada LG and Pons H: HSP70 and primary arterial hypertension. Biomolecules. 13:2722023. View Article : Google Scholar : PubMed/NCBI | |
Mathur S, Walley KR, Wang Y, Indrambarya T and Boyd JH: Extracellular heat shock protein 70 induces cardiomyocyte inflammation and contractile dysfunction via TLR2. Circ J. 75:2445–2452. 2011. View Article : Google Scholar : PubMed/NCBI | |
Birmpilis AI, Paschalis A, Mourkakis A, Christodoulou P, Kostopoulos IV, Antimissari E, Terzoudi G, Georgakilas AG, Armpilia C, Papageorgis P, et al: Immunogenic cell death, DAMPs and prothymosin α as a putative anticancer immune response biomarker. Cells. 11:14152022. View Article : Google Scholar | |
Bacmeister L, Schwarzl M, Warnke S, Stoffers B, Blankenberg S, Westermann D and Lindner D: Inflammation and fibrosis in murine models of heart failure. Basic Res Cardiol. 114:192019. View Article : Google Scholar : PubMed/NCBI | |
Shah AK, Bhullar SK, Elimban V and Dhalla NS: Oxidative stress as a mechanism for functional alterations in cardiac hypertrophy and heart failure. Antioxidants (Basel). 10:9312021. View Article : Google Scholar : PubMed/NCBI | |
Kruszewska J, Cudnoch-Jedrzejewska A and Czarzasta K: Remodeling and fibrosis of the cardiac muscle in the course of obesity-pathogenesis and involvement of the extracellular matrix. Int J Mol Sci. 23:41952022. View Article : Google Scholar : PubMed/NCBI | |
Khalil H, Kanisicak O, Prasad V, Correll RN, Fu X, Schips T, Vagnozzi RJ, Liu R, Huynh T, Lee SJ, et al: Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest. 127:3770–3783. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tian J, Zhang M, Suo M, Liu D, Wang X, Liu M, Pan J, Jin T and An F: Dapagliflozin alleviates cardiac fibrosis through suppressing EndMT and fibroblast activation via AMPKα/TGF-β/Smad signalling in type 2 diabetic rats. J Cell Mol Med. 25:7642–7659. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ko T, Nomura S, Yamada S, Fujita K, Fujita T, Satoh M, Oka C, Katoh M, Ito M, Katagiri M, et al: Cardiac fibroblasts regulate the development of heart failure via Htra3-TGF-β-IGFBP7 axis. Nat Commun. 13:32752022. View Article : Google Scholar | |
Cáceres RA, Chavez T, Maestro D, Palanca AR, Bolado P, Madrazo F, Aires A, Cortajarena AL and Villar AV: Reduction of cardiac TGFβ-mediated profibrotic events by inhibition of Hsp90 with engineered protein. J Mol Cell Cardiol. 123:75–87. 2018. View Article : Google Scholar | |
Zhang X, Zhang Y, Miao Q, Shi Z, Hu L, Liu S, Gao J, Zhao S, Chen H, Huang Z, et al: Inhibition of HSP90 S-nitrosylation alleviates cardiac fibrosis via TGFβ/SMAD3 signalling pathway. Br J Pharmacol. 178:4608–4625. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhong W, Chen W, Liu Y, Zhang J, Lu Y, Wan X, Qiao Y, Huang H, Zeng Z, Li W, et al: Extracellular HSP90α promotes cellular senescence by modulating TGF-β signaling in pulmonary fibrosis. FASEB J. 36:e224752022. View Article : Google Scholar | |
Christians ES, Ishiwata T and Benjamin IJ: Small heat shock proteins in redox metabolism: Implications for cardiovascular diseases. Int J Biochem Cell Biol. 44:1632–1645. 2012. View Article : Google Scholar : PubMed/NCBI | |
Collier MP and Benesch JLP: Small heat-shock proteins and their role in mechanical stress. Cell Stress Chaperones. 25:601–613. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nguyen VC, Deck CA and Pamenter ME: Naked mole-rats reduce the expression of ATP-dependent but not ATP-independent heat shock proteins in acute hypoxia. J Exp Biol. 222(Pt 22): jeb2112432019. View Article : Google Scholar : PubMed/NCBI | |
Janowska MK, Baughman HER, Woods CN and Klevit RE: Mechanisms of small heat shock proteins. Cold Spring Harb Perspect Biol. 11:a0340252019. View Article : Google Scholar : PubMed/NCBI | |
Alagar Boopathy LR, Jacob-Tomas S, Alecki C and Vera M: Mechanisms tailoring the expression of heat shock proteins to proteostasis challenges. J Biol Chem. 298:1017962022. View Article : Google Scholar : PubMed/NCBI | |
Carver JA, Ecroyd H, Truscott RJW, Thorn DC and Holt C: Proteostasis and the regulation of intra- and extracellular protein aggregation by ATP-independent molecular chaperones: Lens α-crystallins and milk caseins. Acc Chem Res. 51:745–752. 2018. View Article : Google Scholar : PubMed/NCBI | |
Izumi M: Heat shock proteins support refolding and shredding of misfolded proteins. Plant Physiol. 180:1777–1778. 2019. View Article : Google Scholar : PubMed/NCBI | |
Choudhary D, Mediani L, Carra S and Cecconi C: Studying heat shock proteins through single-molecule mechanical manipulation. Cell Stress Chaperones. 25:615–628. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dokladny K, Myers OB and Moseley PL: Heat shock response and autophagy-cooperation and control. Autophagy. 11:200–213. 2015. View Article : Google Scholar : | |
Shan Q, Ma F, Wei J, Li H, Ma H and Sun P: Physiological functions of heat shock proteins. Curr Protein Pept Sci. 21:751–760. 2020. View Article : Google Scholar | |
Hosaka Y, Araya J, Fujita Y and Kuwano K: Role of chaperone-mediated autophagy in the pathophysiology including pulmonary disorders. Inflamm Regen. 41:292021. View Article : Google Scholar : PubMed/NCBI | |
Wick G, Jakic B, Buszko M, Wick MC and Grundtman C: The role of heat shock proteins in atherosclerosis. Nat Rev Cardiol. 11:516–529. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bakthisaran R, Tangirala R and Rao ChM: Small heat shock proteins: Role in cellular functions and pathology. Biochim Biophys Acta. 1854:291–319. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hashikawa N, Ido M, Morita Y and Hashikawa-Hobara N: Effects from the induction of heat shock proteins in a murine model due to progression of aortic atherosclerosis. Sci Rep. 11:70252021. View Article : Google Scholar : PubMed/NCBI | |
Cuerrier CM, Chen YX, Tremblay D, Rayner K, McNulty M, Zhao X, Kennedy CR, de BelleRoche J, Pelling AE and O'Brien ER: Chronic over-expression of heat shock protein 27 attenuates atherogenesis and enhances plaque remodeling: A combined histological and mechanical assessment of aortic lesions. PLoS One. 8:e558672013. View Article : Google Scholar : PubMed/NCBI | |
Liu A, Ming JY, Fiskesund R, Ninio E, Karabina SA, Bergmark C, Frostegård AG and Frostegård J: Induction of dendritic cell-mediated T-cell activation by modified but not native low-density lipoprotein in humans and inhibition by annexin a5: Involvement of heat shock proteins. Arterioscler Thromb Vasc Biol. 35:197–205. 2015. View Article : Google Scholar | |
Gong R, Li XY, Chen HJ, Xu CC, Fang HY, Xiang J and Wu YQ: Role of heat shock protein 22 in the protective effect of geranylgeranylacetone in response to oxidized-LDL. Drug Des Devel Ther. 13:2619–2632. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nahomi RB, Palmer A, Green KM, Fort PE and Nagaraj RH: Pro-inflammatory cytokines downregulate Hsp27 and cause apoptosis of human retinal capillary endothelial cells. Biochim Biophys Acta. 1842:164–174. 2014. View Article : Google Scholar : | |
Batulan Z, Pulakazhi Venu VK, Li Y, Koumbadinga G, Alvarez-Olmedo DG, Shi C and O'Brien ER: Extracellular release and signaling by heat shock protein 27: Role in modifying vascular inflammation. Front Immunol. 7:2852016. View Article : Google Scholar : PubMed/NCBI | |
Zhou XY, Sun JY, Wang WQ, Li SX, Li HX, Yang HJ, Yang MF, Yuan H, Zhang ZY, Sun BL and Han JX: TAT-HSP27 Peptide improves neurologic deficits via reducing apoptosis after experimental subarachnoid hemorrhage. Front Cell Neurosci. 16:8786732022. View Article : Google Scholar : PubMed/NCBI | |
Jin C, Cleveland JC, Ao L, Li J, Zeng Q, Fullerton DA and Meng X: Human myocardium releases heat shock protein 27 (HSP27) after global ischemia: The proinflammatory effect of extracellular HSP27 through toll-like receptor (TLR)-2 and TLR4. Mol Med. 20:280–289. 2014. View Article : Google Scholar : PubMed/NCBI | |
Inia JA and O'Brien ER: Role of Heat Shock Protein 27 in Modulating Atherosclerotic Inflammation. J Cardiovasc Transl Res. 14:3–12. 2021. View Article : Google Scholar | |
Forouzanfar F, Butler AE, Banach M, Barreto GE and Sahbekar A: Modulation of heat shock proteins by statins. Pharmacol Res. 134:134–144. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sklifasovskaya AP and Blagonravov ML: Small heat shock proteins HSP10 and HSP27 in the left ventricular myocardium in rats with arterial hypertension and insulin-dependent diabetes mellitus. Bull Exp Biol Med. 170:699–705. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sada K, Nishikawa T, Kukidome D, Yoshinaga T, Kajihara N, Sonoda K, Senokuchi T, Motoshima H, Matsumura T and Araki E: Hyperglycemia induces cellular hypoxia through production of mitochondrial ROS followed by suppression of aquaporin-1. PLoS One. 11:e01586192016. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Chen S, Liang Q, Huang C, Zhang W, Hu L, Yu Y, Liu L, Cheng X and Bao H: Rosiglitazone reduces diabetes angiopathy by inhibiting mitochondrial dysfunction dependent on regulating HSP22 expression. iScience. 26:1061942023. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Liang Q, Zhang W, Liao M, Wen M, Zhan B, Bao H and Cheng X: HSP22 suppresses diabetes-induced endothelial injury by inhibiting mitochondrial reactive oxygen species formation. Redox Biol. 21:1010952019. View Article : Google Scholar : PubMed/NCBI | |
Li X, Fang P, Yang WY, Chan K, Lavallee M, Xu K, Gao T, Wang H and Yang X: Mitochondrial ROS, uncoupled from ATP synthesis, determine endothelial activation for both physiological recruitment of patrolling cells and pathological recruitment of inflammatory cells. Can J Physiol Pharmacol. 95:247–252. 2017. View Article : Google Scholar | |
Fang H, Hu N, Zhao Q, Wang B, Zhou H, Fu Q, Shen L, Chen X, Shen F and Lyu J: mtDNA haplogroup N9a increases the risk of type 2 diabetes by altering mitochondrial function and intracellular mitochondrial signals. Diabetes. 67:1441–1453. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rodríguez ME, Cogno IS, Milla Sanabria LS, Morán YS and Rivarola VA: Heat shock proteins in the context of photodynamic therapy: Autophagy, apoptosis and immunogenic cell death. Photochem Photobiol Sci. 15:1090–1102. 2016. View Article : Google Scholar : PubMed/NCBI | |
Penke B, Bogár F, Crul T, Sántha M, Tóth ME and Vígh L: Heat shock proteins and autophagy pathways in neuroprotection: From molecular bases to pharmacological interventions. Int J Mol Sci. 19:3252018. View Article : Google Scholar : PubMed/NCBI | |
Kanugovi Vijayavittal A, Kumar P, Sugunan S, Joseph C, Devaki B, Paithankar K and Amere Subbarao S: Heat shock transcription factor HSF2 modulates the autophagy response through the BTG2-SOD2 axis. Biochem Biophys Res Commun. 600:44–50. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cuervo AM and Wong E: Chaperone-mediated autophagy: Roles in disease and aging. Cell Res. 24:92–104. 2014. View Article : Google Scholar : | |
Wu Z, Geng Y, Lu X, Shi Y, Wu G, Zhang M, Shan B, Pan H and Yuan J: Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci USA. 116:2996–3005. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hale BJ, Hager CL, Seibert JT, Selsby JT, Baumgard LH, Keating AF and Ross JW: Heat stress induces autophagy in pig ovaries during follicular development. Biol Reprod. 97:426–437. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ganesan S, Pearce SC, Gabler NK, Baumgard LH, Rhoads RP and Selsby JT: Short-term heat stress results in increased apoptotic signaling and autophagy in oxidative skeletal muscle in Sus scrofa. J Therm Biol. 72:73–80. 2018. View Article : Google Scholar : PubMed/NCBI | |
Roths M, Freestone AD, Rudolph TE, Michael A, Baumgard LH and Selsby JT: Environment-induced heat stress causes structural and biochemical changes in the heart. J Therm Biol. 113:1034922023. View Article : Google Scholar : PubMed/NCBI | |
Li DL, Wang ZV, Ding G, Tan W, Luo X, Criollo A, Xie M, Jiang N, May H, Kyrychenko V, et al: Doxorubicin blocks cardiomyocyte autophagic flux by inhibiting lysosome acidification. Circulation. 26(133): 1668–1687. 2016. View Article : Google Scholar | |
Packer M: Role of impaired nutrient and oxygen deprivation signaling and deficient autophagic flux in diabetic CKD development: Implications for understanding the effects of sodium-glucose cotransporter 2-inhibitors. J Am Soc Nephrol. 31:907–919. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gu S, Tan J, Li Q, Liu S, Ma J, Zheng Y, Liu J, Bi W, Sha P, Li X, et al: Downregulation of LAPTM4B contributes to the impairment of the autophagic flux via unopposed activation of mTORC1 signaling during myocardial ischemia/reperfusion injury. Circ Res. 127:e148–e165. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sciarretta S, Maejima Y, Zablocki D and Sadoshima J: The role of autophagy in the heart. Annu Rev Physiol. 80:1–26. 2018. View Article : Google Scholar | |
Lavandero S, Troncoso R, Rothermel BA, Martinet W, Sadoshima J and Hill JA: Cardiovascular autophagy: Concepts, controversies, and perspectives. Autophagy. 9:1455–1466. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ott C, Jung T, Brix S, John C, Betz IR, Foryst-Ludwig A, Deubel S, Kuebler WM, Grune T, Kintscher U and Grune J: Hypertrophy-reduced autophagy causes cardiac dysfunction by directly impacting cardiomyocyte contractility. Cells. 10:8052021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu D, Hu H, Zhang P, Xie R and Cui W: HIF-1α/BNIP3 signaling pathway-induced-autophagy plays protective role during myocardial ischemia-reperfusion injury. Biomed. Pharmacother. 120:1094642019. View Article : Google Scholar | |
Liu W, Chen C, Gu X, Zhang L, Mao X, Chen Z and Tao L: AM1241 alleviates myocardial ischemia-reperfusion injury in rats by enhancing Pink1/Parkin-mediated autophagy. Life Sci. 272:1192282021. View Article : Google Scholar : PubMed/NCBI | |
Sui Z, Wang MM, Xing Y, Qi J and Wang W: Targeting MCOLN1/TRPML1 channels to protect against ischemia-reperfusion injury by restoring the inhibited autophagic flux in cardiomyocytes. Autophagy. 18:3053–3055. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Jin X, Hu CF, Li R, Zhou Z and Shen CX: Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways. Cell Physiol Biochem. 43:52–68. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xiang M, Lu Y, Xin L, Gao J, Shang C, Jiang Z, Lin H, Fang X, Qu Y, Wang Y, et al: Role of oxidative stress in reperfusion following myocardial ischemia and its treatments. Oxid Med Cell Longev. 2021:66140092021. View Article : Google Scholar : PubMed/NCBI | |
Xing Y, Sui Z, Liu Y, Wang MM, Wei X, Lu Q, Wang X, Liu N, Lu C, Chen R, et al: Blunting TRPML1 channels protects myocardial ischemia/reperfusion injury by restoring impaired cardiomyocyte autophagy. Basic Res Cardiol. 117:202022. View Article : Google Scholar : PubMed/NCBI | |
Kim YC and Guan KL: mTOR: A pharmacologic target for autophagy regulation. J Clin Invest. 125:25–32. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang Y and Zhang H: Regulation of autophagy by mTOR signaling pathway. Adv Exp Med Biol. 1206:67–83. 2019. View Article : Google Scholar : PubMed/NCBI | |
Al-Bari MAA and Xu P: Molecular regulation of autophagy machinery by mTOR-dependent and -independent pathways. Ann N Y Acad Sci. 1467:3–20. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu GS, Zhu H, Cai WF, Wang X, Jiang M, Essandoh K, Vafiadaki E, Haghighi K, Lam CK, Gardner G, et al: Regulation of BECN1-mediated autophagy by HSPB6: Insights from a human HSPB6S10F mutant. Autophagy. 14:80–97. 2018. View Article : Google Scholar : | |
Nicolaou P, Knöll R, Haghighi K, Fan GC, Dorn GW II, Hasenfub G and Kranias EG: Human mutation in the anti-apoptotic heat shock protein 20 abrogates its cardioprotective effects. J Biol Chem. 283:33465–33471. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shatov VM and Gusev NB: Physico-chemical properties of two point mutants of small heat shock protein HspB6 (Hsp20) with abrogated cardioprotection. Biochimie. 174:126–135. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lavandero S, Chiong M, Rothermel BA and Hill JA: Autophagy in cardiovascular biology. J Clin Invest. 125:55–64. 2015. View Article : Google Scholar : PubMed/NCBI | |
Parzych KR and Klionsky DJ: An overview of autophagy: Morphology, mechanism, and regulation. Antioxid Redox Signal. 20:460–473. 2014. View Article : Google Scholar : | |
Cao W, Li J, Yang K and Cao D: An overview of autophagy: Mechanism, regulation and research progress. Bull Cancer. 108:304–322. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Manghwar H, Hu W and Liu F: Degradation mechanism of autophagy-related proteins and research progress. Int J Mol Sci. 23:73012022. View Article : Google Scholar : PubMed/NCBI | |
Li W, He P, Huang Y, Li YF, Lu J, Li M, Kurihara H, Luo Z, Meng T, Onishi M, et al: Selective autophagy of intracellular organelles: Recent research advances. Theranostics. 11:222–256. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Li S and Wu H: Ubiquitination-proteasome system (UPS) and autophagy two main protein degradation machineries in response to cell stress. Cells. 11:8512022. View Article : Google Scholar : PubMed/NCBI | |
Popov SV, Mukhomedzyanov AV, Voronkov NS, Derkachev IA, Boshchenko AA, Fu F, Sufianova GZ, Khlestkina MS and Maslov LN: Regulation of autophagy of the heart in ischemia and reperfusion. Apoptosis. 28:55–80. 2023. View Article : Google Scholar | |
Dong Y, Chen H, Gao J, Liu Y, Li J and Wang J: Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol. 136:27–41. 2019. View Article : Google Scholar : PubMed/NCBI | |
Denton D and Kumar S: Autophagy-dependent cell death. Cell Death Differ. 26:605–616. 2019. View Article : Google Scholar : | |
Mahapatra KK, Mishra SR, Behera BP, Patil S, Gewirtz DA and Bhutia SK: The lysosome as an imperative regulator of autophagy and cell death. Cell Mol. Life Sci. 78:7435–7449. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xu HD and Qin ZH: Beclin 1, Bcl-2 and Autophagy. Adv Exp Med Biol. 1206:109–126. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Liu W and Yang H: Balancing apoptosis and autophagy for Parkinson's disease therapy: Targeting BCL-2. ACS Chem. Neurosci. 10:792–802. 2019. | |
Blagonravov ML, Sklifasovskaya AP, Demurov EA and Karimov AA: Beclin-1-dependent autophagy of left ventricular cardiomyocytes in SHR and Wistar-Kyoto rats with type 1 diabetes mellitus. Bull Exp Biol Med. 171:23–27. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sklifasovskaya AP, Blagonravov ML, Ryabinina AY, Azova MM and Goryachev VA: Expression of Bax and Bcl-2 Proteins in Left-Ventricular Cardiomyocytes in Wistar-Kyoto and SHR Rats with Insulin-Dependent Diabetes Mellitus. Bull Exp Biol Med. 171:576–581. 2021. View Article : Google Scholar : PubMed/NCBI | |
Van Opdenbosch N and Lamkanfi M: Caspases in cell death, inflammation, and disease. Immunity. 50:1352–1364. 2019. View Article : Google Scholar : PubMed/NCBI | |
Araya LE, Soni IV, Hardy JA and Julien O: Deorphanizing caspase-3 and caspase-9 substrates in and out of apoptosis with deep substrate profiling. ACS Chem Biol. 16:2280–2296. 2021. View Article : Google Scholar : PubMed/NCBI | |
Green DR: Caspase activation and inhibition. Cold Spring Harb Perspect Biol. 14:a0410202022. View Article : Google Scholar : PubMed/NCBI | |
Kashyap D, Garg VK and Goel N: Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv Protein Chem Struct Biol. 125:73–120. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lossi L: The concept of intrinsic versus extrinsic apoptosis. Biochem J. 479:357–384. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tang D, Kang R, Berghe TV, Vandenabeele P and Kroemer G: The molecular machinery of regulated cell death. Cell Res. 29:347–364. 2019. View Article : Google Scholar : PubMed/NCBI | |
Obeng E: Apoptosis (programmed cell death) and its signals-A review. Braz J Biol. 81:1133–1143. 2021. View Article : Google Scholar | |
Kennedy D, Jäger R, Mosser DD and Samali A: Regulation of apoptosis by heat shock proteins. IUBMB Life. 66:327–338. 2014. View Article : Google Scholar : PubMed/NCBI | |
Leung AM, Redlak MJ and Miller TA: Role of heat shock proteins in oxygen radical-induced gastric apoptosis. J Surg Res. 193:135–144. 2015. View Article : Google Scholar | |
Yu Y, Hu LL, Liu L, Yu LL, Li JP, Rao JA, Zhu LJ, Bao HH and Cheng XS: Hsp22 ameliorates lipopolysaccharide-induced myocardial injury by inhibiting inflammation, oxidative stress, and apoptosis. Bioengineered. 12:12544–12554. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ruan L, Zhou C, Jin E, Kucharavy A, Zhang Y, Wen Z, Florens L and Li R: Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature. 543:443–446. 2017. View Article : Google Scholar : PubMed/NCBI | |
Koike N, Hatano Y and Ushimaru T: Heat shock transcriptional factor mediates mitochondrial unfolded protein response. Curr Genet. 64:907–917. 2018. View Article : Google Scholar : PubMed/NCBI | |
Verma A, Sumi S and Seervi M: Heat shock proteins-driven stress granule dynamics: Yet another avenue for cell survival. Apoptosis. 26:371–384. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liyanagamage DSNK and Martinus RD: Role of mitochondrial stress protein HSP60 in diabetes-induced neuroinflammation. Mediators Inflamm. 2020:80735162020. View Article : Google Scholar : PubMed/NCBI | |
Kumar R, Chaudhary AK, Woytash J, Inigo JR, Gokhale AA, Bshara W, Attwood K, Wang J, Spernyak JA, Rath E, et al: A mitochondrial unfolded protein response inhibitor suppresses prostate cancer growth in mice via HSP60. J Clin Invest. 132:e1499062022. View Article : Google Scholar : PubMed/NCBI | |
Duan Y, Tang H, Mitchell-Silbaugh K, Fang X, Han Z and Ouyang K: Heat shock protein 60 in cardiovascular physiology and diseases. Front Mol Biosci. 7:732020. View Article : Google Scholar : PubMed/NCBI | |
Song E, Tang S, Xu J, Yin B, Bao E and Hartung J: Lenti-siRNA Hsp60 promote bax in mitochondria and induces apoptosis during heat stress. Biochem Biophys Res Commun. 481:125–131. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tian X, Zhao L, Song X, Yan Y, Liu N, Li T, Yan B and Liu B: HSP27 inhibits homocysteine-induced endothelial apoptosis by modulation of ROS production and mitochondrial caspase-dependent apoptotic pathway. Biomed Res Int. 2016:48478742016. View Article : Google Scholar : PubMed/NCBI | |
Kennedy D, Mnich K, Oommen D, Chakravarthy R, Almeida-Souza L, Krols M, Saveljeva S, Doyle K, Gupta S, Timmerman V, et al: HSPB1 facilitates ERK-mediated phosphorylation and degradation of BIM to attenuate endoplasmic reticulum stress-induced apoptosis. Cell Death Dis. 8:e30262017. View Article : Google Scholar : PubMed/NCBI | |
Önay Uçar E and Şengelen A: Resveratrol and siRNA in combination reduces Hsp27 expression and induces caspase-3 activity in human glioblastoma cells. Cell Stress Chaperones. 24:763–775. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guo S, Gao C, Xiao W, Zhang J, Qu Y, Li J and Ye F: Matrine protects cardiomyocytes from ischemia/reperfusion injury by regulating HSP70 expression via activation of the JAK2/STAT3 pathway. Shock. 50:664–670. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xin BR, Li P, Liu XL and Zhang XF: Visfatin relieves myocardial ischemia-reperfusion injury through activation of PI3K/Akt/HSP70 signaling axis. Eur Rev Med Pharmacol Sci. 24:10779–10789. 2020.PubMed/NCBI | |
Huang C, Deng H, Zhao W and Xian L: Knockdown of miR-384-3p protects against myocardial ischemia-reperfusion injury in rats through targeting HSP70. Heart Surg Forum. 24:E143–E150. 2021. View Article : Google Scholar : PubMed/NCBI | |
Song N, Ma J, Meng XW, Liu H, Wang H, Song SY, Chen QC, Liu HY, Zhang J, Peng K and Ji FH: Heat shock protein 70 protects the heart from ischemia/reperfusion injury through inhibition of p38 MAPK Signaling. Oxid Med Cell Longev. 2020:39086412020. View Article : Google Scholar : PubMed/NCBI | |
Choudhury S, Bae S, Ke Q, Lee JY, Kim J and Kang PM: Mitochondria to nucleus translocation of AIF in mice lacking Hsp70 during ischemia/reperfusion. Basic Res Cardiol. 106:397–407. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Liu X, Miao J, Wang S, Wu L, Yan D, Li J, Guo W, Wu X and Shen A: Heat shock protein 70 protects cardiomyocytes through suppressing SUMOylation and nucleus translocation of phosphorylated eukaryotic elongation factor 2 during myocardial ischemia and reperfusion. Apoptosis. 22:608–625. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun A, Zou Y, Wang P, Xu D, Gong H, Wang S, Qin Y, Zhang P, Chen Y, Harada M, et al: Mitochondrial aldehyde dehydrogenase 2 plays protective roles in heart failure after myocardial infarction via suppression of the cytosolic JNK/p53 pathway in mice. J Am Heart Assoc. 3:e0007792014. View Article : Google Scholar : PubMed/NCBI | |
Jenei ZM, Széplaki G, Merkely B, Karádi I, Zima E and Prohászka Z: Persistently elevated extracellular HSP70 (HSPA1A) level as an independent prognostic marker in post-cardiac-arrest patients. Cell Stress Chaperones. 18:447–454. 2013. View Article : Google Scholar : PubMed/NCBI |