1
|
Thorsteinsdottir S, Gudjonsson T, Nielsen
OH, Vainer B and Seidelin JB: Pathogenesis and biomarkers of
carcinogenesis in ulcerative colitis. Nat Rev Gastroenterol
Hepatol. 8:395–404. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Le Berre C, Honap S and Peyrin-Biroulet L:
Ulcerative colitis. Lancet. 402:571–584. 2023. View Article : Google Scholar : PubMed/NCBI
|
3
|
Aarestrup J, Jess T, Kobylecki CJ,
Nordestgaard BG and Allin KH: Cardiovascular risk profile among
patients with inflammatory bowel disease: A population-based study
of more than 100 000 individuals. J Crohns Colitis. 13:319–323.
2019. View Article : Google Scholar
|
4
|
Larabi A, Barnich N and Nguyen HTT: New
insights into the interplay between autophagy, gut microbiota and
inflammatory responses in IBD. Autophagy. 16:38–51. 2020.
View Article : Google Scholar :
|
5
|
Nikolaus S and Schreiber S: Diagnostics of
inflammatory bowel disease. Gastroenterology. 133:1670–1689. 2007.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhao J, Gao W, Cai X, Xu J, Zou D, Li Z,
Hu B and Zheng Y: Nanozyme-mediated catalytic nanotherapy for
inflammatory bowel disease. Theranostics. 9:2843–2855. 2019.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Huang S, Fu Y, Xu B, Liu C, Wang Q, Luo S,
Nong F, Wang X, Huang S, Chen J, et al: Wogonoside alleviates
colitis by improving intestinal epithelial barrier function via the
MLCK/pMLC2 pathway. Phytomedicine. 68:1531792020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhong Y, Liu W, Xiong Y, Li Y, Wan Q, Zhou
W, Zhao H, Xiao Q and Liu D: Astragaloside IV alleviates ulcerative
colitis by regulating the balance of Th17/Treg cells.
Phytomedicine. 104:1542872022. View Article : Google Scholar
|
9
|
Wang S, Liu W, Wang J and Bai X:
Curculigoside inhibits ferroptosis in ulcerative colitis through
the induction of GPX4. Life sci. 259:1183562020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Elmaksoud HAA, Motawea MH, Desoky AA,
Elharrif MG and Ibrahimi A: Hydroxytyrosol alleviate intestinal
inflammation, oxidative stress and apoptosis resulted in ulcerative
colitis. Biomed Pharmacother. 142:1120732021. View Article : Google Scholar : PubMed/NCBI
|
11
|
Roessner A, Kuester D, Malfertheiner P and
Schneider-Stock R: Oxidative stress in ulcerative
colitis-associated carcinogenesis. Pathol Res Pract. 204:511–524.
2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Colombo BB, Fattori V, Guazelli CFS,
Zaninelli TH, Carvalho TT, Ferraz CR, Bussmann AJC, Ruiz-Miyazawa
KW, Baracat MM, Casagrande R and Verri WA Jr: Vinpocetine
ameliorates acetic acid-induced colitis by inhibiting NF-κB
activation in mice. Inflammation. 41:1276–1289. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Torrente L and DeNicola GM: Targeting NRF2
and its downstream processes: Opportunities and challenges. Annu
Rev Pharmacol Toxicol. 62:279–300. 2022. View Article : Google Scholar
|
14
|
Liu S, Pi J and Zhang Q: Signal
amplification in the KEAP1-NRF2-ARE antioxidant response pathway.
Redox Biol. 54:1023892022. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bauer C, Duewell P, Mayer C, Lehr HA,
Fitzgerald KA, Dauer M, Tschopp J, Endres S, Latz E and Schnurr M:
Colitis induced in mice with dextran sulfate sodium (DSS) is
mediated by the NLRP3 inflammasome. Gut. 59:1192–1199. 2010.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Cai X, Hua S, Deng J, Du Z, Zhang D, Liu
Z, Khan NU, Zhou M and Chen Z: Astaxanthin activated the Nrf2/HO-1
pathway to enhance autophagy and inhibit ferroptosis, ameliorating
acetaminophen-induced liver injury. ACS Appl Mater Interfaces.
14:42887–42903. 2022. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gao K, Shi Q, Liu Y and Wang C: Enhanced
autophagy and NFE2L2/NRF2 pathway activation in SPOP
mutation-driven prostate cancer. Autophagy. 18:2013–2015. 2022.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Debnath J, Gammoh N and Ryan KM: Autophagy
and autophagy-related pathways in cancer. Nat Rev Mol Cell Bio.
24:560–575. 2023. View Article : Google Scholar
|
19
|
Kumariya S, Ubba V, Jha RK and Gayen JR:
Autophagy in ovary and polycystic ovary syndrome: Role, dispute and
future perspective. Autophagy. 17:2706–2733. 2021. View Article : Google Scholar : PubMed/NCBI
|
20
|
Gao Z, Yi W, Tang J, Sun Y, Huang J, Lan
T, Dai X, Xu S, Jin ZG and Wu X: Urolithin A protects against
acetaminophen-induced liver injury in mice via sustained activation
of Nrf2. Int J Biol Sci. 18:2146–2162. 2022. View Article : Google Scholar : PubMed/NCBI
|
21
|
Negrette-Guzmán M, Huerta-Yepez S, Tapia E
and Pedraza-Chaverri J: Modulation of mitochondrial functions by
the indirect antioxidant sulforaphane: A seemingly contradictory
dual role and an integrative hypothesis. Free Radical Bio Med.
65:1078–1089. 2013. View Article : Google Scholar
|
22
|
Piotrowska M, Swierczynski M, Fichna J and
Piechota-Polanczyk A: The Nrf2 in the pathophysiology of the
intestine: Molecular mechanisms and therapeutic implications for
inflammatory bowel diseases. Pharmacol Res. 163:1052432021.
View Article : Google Scholar
|
23
|
Wirtz S, Neufert C, Weigmann B and Neurath
MF: Chemically induced mouse models of intestinal inflammation. Nat
Protoc. 2:541–546. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Corpetti C, Del Re A, Seguella L, Palenca
I, Rurgo S, De Conno B, Pesce M, Sarnelli G and Esposito G:
Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced
cytotoxicity and inflammation through a PPARγ-dependent
TLR4/NLRP3/Caspase-1 signaling suppression in Caco-2 cell line.
Phytother Res. 35:6893–6903. 2021. View Article : Google Scholar : PubMed/NCBI
|
25
|
Geng H, Bu HF, Liu F, Wu L, Pfeifer K,
Chou PM, Wang X, Sun J, Lu L, Pandey A, et al: In inflamed
intestinal tissues and epithelial cells, interleukin 22 signaling
increases expression of H19 long noncoding RNA, which promotes
mucosal regeneration. Gastroenterology. 155:144–155. 2018.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Podolsky DK: Inflammatory bowel disease.
New Engl J Med. 347:417–429. 2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wu Y, Jha R, Li A, Liu H, Zhang Z, Zhang
C, Zhai Q and Zhang J: Probiotics (Lactobacillus plantarum HNU082)
supplementation relieves ulcerative colitis by affecting intestinal
barrier functions, immunity-related gene expression, gut
microbiota, and metabolic pathways in mice. Microbiol Spectr.
10:e1651222022. View Article : Google Scholar
|
28
|
Foerster EG, Mukherjee T, Cabral-Fernandes
L, Rocha JDB, Girardin SE and Philpott DJ: How autophagy controls
the intestinal epithelial barrier. Autophagy. 18:86–103. 2022.
View Article : Google Scholar :
|
29
|
Michielan A and D'Incà R: Intestinal
permeability in inflammatory bowel disease: Pathogenesis, clinical
evaluation, and therapy of leaky gut. Mediat Inflamm.
2015:6281572015. View Article : Google Scholar
|
30
|
Perico L, Morigi M, Rota C, Breno M, Mele
C, Noris M, Introna M, Capelli C, Longaretti L, Rottoli D, et al:
Human mesenchymal stromal cells transplanted into mice stimulate
renal tubular cells and enhance mitochondrial function. Nat Commun.
8:9832017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Tang Z, Hu B, Zang F, Wang J, Zhang X and
Chen H: Nrf2 drives oxidative stress-induced autophagy in nucleus
pulposus cells via a Keap1/Nrf2/p62 feedback loop to protect
intervertebral disc from degeneration. Cell Death Dis. 10:5102019.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Ghafouri-Fard S, Eghtedarian R and Taheri
M: The crucial role of non-coding RNAs in the pathophysiology of
inflammatory bowel disease. Biomed Pharmacother. 129:1105072020.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Le Berre C, Roda G, Nedeljkovic PM, Danese
S and Peyrin-Biroulet L: Modern use of 5-aminosalicylic acid
compounds for ulcerative colitis. Expert Opin Biol Ther.
20:363–378. 2020. View Article : Google Scholar
|
34
|
Guo H, Zheng L, Guo Y, Han L, Yu J and Lai
F: Curculigoside represses the proliferation and metastasis of
osteosarcoma via the JAK/STAT and NF-κB signaling pathways. Biol
Pharm Bull. 45:1466–1475. 2022. View Article : Google Scholar
|
35
|
Han J, Wan M, Ma Z, Hu C and Yi H:
Prediction of targets of curculigoside A in osteoporosis and
rheumatoid arthritis using network pharmacology and experimental
verification. Drug Des Devel Ther. 14:5235–5250. 2020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Shen Q, Zeng D, Zhou Y, Xia L, Zhao Y,
Qiao G, Xu L, Liu Y, Zhu Z and Jiang X: Curculigoside promotes
osteogenic differentiation of bone marrow stromal cells from
ovariectomized rats. J Pharm Pharmacol. 65:1005–1013. 2013.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Yamamoto M, Kensler TW and Motohashi H:
The KEAP1-NRF2 system: A thiol-based sensor-effector apparatus for
maintaining redox homeostasis. Physiol Rev. 98:1169–1203. 2018.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Huang CY, Deng JS, Huang WC, Jiang WP and
Huang GJ: Attenuation of lipopolysaccharide-induced acute lung
injury by hispolon in mice, through regulating the
TLR4/PI3K/Akt/mTOR and Keap1/Nrf2/HO-1 pathways, and suppressing
oxidative stress-mediated ER stress-induced apoptosis and
autophagy. Nutrients. 12:17422020. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wu C, Chen RL, Wang Y, Wu WY and Li G:
Acacetin alleviates myocardial ischaemia/reperfusion injury by
inhibiting oxidative stress and apoptosis via the Nrf-2/HO-1
pathway. Pharm Biol. 60:553–561. 2022. View Article : Google Scholar : PubMed/NCBI
|
40
|
Xue R, Wan Y, Sun X, Zhang X, Gao W and Wu
W: Nicotinic mitigation of neuroinflammation and oxidative stress
after chronic sleep deprivation. Front Immunol. 10:25462019.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Zou L, Liang B, Gao Y, Ye T, Li M, Zhang
Y, Lu Q, Hu X, Li H, Yuan Y and Xing D: Nicotinic acid riboside
regulates Nrf-2/P62-related oxidative stress and autophagy to
attenuate doxorubicin-induced cardiomyocyte injury. Biomed Res Int.
2022:62933292022. View Article : Google Scholar : PubMed/NCBI
|
42
|
Nair N and Gongora E: Oxidative stress and
cardiovascular aging: Interaction between NRF-2 and ADMA. Curr
Cardiol Rev. 13:183–188. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Nazmeen A, Chen G and Maiti S: Dependence
between estrogen sulfotransferase (SULT1E1) and nuclear
transcription factor Nrf-2 regulations via oxidative stress in
breast cancer. Mol Biol Rep. 47:4691–4698. 2020. View Article : Google Scholar : PubMed/NCBI
|
44
|
Xu J, Chu T, Yu T, Li N, Wang C, Li C,
Zhang Y, Meng H and Nie G: Design of diselenide-bridged hyaluronic
acid nano-antioxidant for efficient ROS scavenging to relieve
colitis. Acs Nano. 16:13037–13048. 2022. View Article : Google Scholar : PubMed/NCBI
|
45
|
Moniruzzaman M, Ghosal I, Das D and
Chakraborty SB: Melatonin ameliorates
H2O2-induced oxidative stress through
modulation of Erk/Akt/NFkB pathway. Biol Res. 51:172018. View Article : Google Scholar
|
46
|
Giustarini D, Dalle-Donne I, Milzani A,
Fanti P and Rossi R: Analysis of GSH and GSSG after derivatization
with N-ethylmaleimide. Nat Protoc. 8:1660–1669. 2013. View Article : Google Scholar : PubMed/NCBI
|
47
|
Tan SC, Rajendran R, Bhattamisra SK,
Krishnappa P, Davamani F, Chitra E, Ambu S, Furman B and Candasamy
M: Effect of madecassoside in reducing oxidative stress and blood
glucose in streptozotocin-nicotinamide-induced diabetes in rats. J
Pharm Pharmacol. 75:1034–1045. 2023. View Article : Google Scholar : PubMed/NCBI
|