Open Access

Quercetin ameliorates ferroptosis of rat cardiomyocytes via activation of the SIRT1/p53/SLC7A11 signaling pathway to alleviate sepsis‑induced cardiomyopathy

  • Authors:
    • Xin Lin
    • Xiaoxia Zhao
    • Qingfeng Chen
    • Xiaoyue Wang
    • Yongya Wu
    • Hao Zhao
  • View Affiliations

  • Published online on: October 18, 2023     https://doi.org/10.3892/ijmm.2023.5319
  • Article Number: 116
  • Copyright: © Lin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Sepsis‑induced cardiomyopathy (SIC) is a manifestation of multiple organ failure as a result of sepsis and is a serious threat to life. Here, the effect and mechanisms of quercetin (QUE) in SIC were assessed. It was found that patients with SIC expressed lower serum levels of glutathione peroxidase 4 (GPX4) and SIRT1 but higher levels of CK‑MB, cTnI, TNF‑α, and IL‑6 compared with healthy individuals. A dose of 80 µM QUE increased the viability and reduced the ferroptosis of H9C2 cells treated with 1.0 µg/ml LPS in vitro. The administration of QUE decreased the levels of MDA, NADPH, lipid peroxidation and cytoplasmic cytochrome C and upregulated the levels of GSH and TOM 20, thus exerting an anti‑oxidative effect via mediating SIRT1 expression. It also activated the SIRT1/p53/SLC7A11 signaling pathway to reduce cellular Fe2+ and PTGS2 levels, decreased cell apoptosis rate, and upregulated the levels of GPX4 and ferritin to inhibit ferroptosis of H9C2 cells in vitro. Injection of QUE into rats activated the SIRT1/p53/SLC7A11 signaling pathway, reduced the levels of CK‑MB, cTnI, inflammatory cell infiltration, MDA, NADPH, cytoplasmic cytochrome C, cellular Fe2+, and PTGS2 but upregulated the levels of GSH, TOM 20, GPX4, and ferritin to alleviate SIC in a dose‑dependent manner in vivo. To conclude, QUE exerted an anti‑ferroptotic effect via activation of the SIRT1/p53/SLC7A11 signaling pathway to dampen SIC both in vivo and in vitro. These findings highlighted a potential therapeutic strategy for the management of SIC.
View Figures
View References

Related Articles

Journal Cover

December-2023
Volume 52 Issue 6

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Lin X, Zhao X, Chen Q, Wang X, Wu Y and Zhao H: Quercetin ameliorates ferroptosis of rat cardiomyocytes via activation of the SIRT1/p53/SLC7A11 signaling pathway to alleviate sepsis‑induced cardiomyopathy. Int J Mol Med 52: 116, 2023
APA
Lin, X., Zhao, X., Chen, Q., Wang, X., Wu, Y., & Zhao, H. (2023). Quercetin ameliorates ferroptosis of rat cardiomyocytes via activation of the SIRT1/p53/SLC7A11 signaling pathway to alleviate sepsis‑induced cardiomyopathy. International Journal of Molecular Medicine, 52, 116. https://doi.org/10.3892/ijmm.2023.5319
MLA
Lin, X., Zhao, X., Chen, Q., Wang, X., Wu, Y., Zhao, H."Quercetin ameliorates ferroptosis of rat cardiomyocytes via activation of the SIRT1/p53/SLC7A11 signaling pathway to alleviate sepsis‑induced cardiomyopathy". International Journal of Molecular Medicine 52.6 (2023): 116.
Chicago
Lin, X., Zhao, X., Chen, Q., Wang, X., Wu, Y., Zhao, H."Quercetin ameliorates ferroptosis of rat cardiomyocytes via activation of the SIRT1/p53/SLC7A11 signaling pathway to alleviate sepsis‑induced cardiomyopathy". International Journal of Molecular Medicine 52, no. 6 (2023): 116. https://doi.org/10.3892/ijmm.2023.5319