Single‑cell sequencing, genetics, and epigenetics reveal mesenchymal stem cell senescence in osteoarthritis (Review)
- Authors:
- Dunyong Tan
- Zeqi Huang
- Zhe Zhao
- Xiaoqiang Chen
- Jianquan Liu
- Daping Wang
- Zhiqin Deng
- Wencui Li
-
Affiliations: Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China - Published online on: November 7, 2023 https://doi.org/10.3892/ijmm.2023.5326
- Article Number: 2
-
Copyright: © Tan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Loeser RF, Goldring SR, Scanzello CR and Goldring MB: Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 64:1697–1707. 2012. View Article : Google Scholar : PubMed/NCBI | |
Abramoff B and Caldera FE: Osteoarthritis: Pathology, diagnosis, and treatment options. Med Clin North Am. 104:293–311. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lan T, Luo M and Wei X: Mesenchymal stem/stromal cells in cancer therapy. J Hematol Oncol. 14:1952021. View Article : Google Scholar : PubMed/NCBI | |
Hernandez-Segura A, Nehme J and Demaria M: Hallmarks of cellular senescence. Trends Cell Biol. 28:436–453. 2018. View Article : Google Scholar : PubMed/NCBI | |
López-Otín C, Blasco MA, Partridge L, Serrano M and Kroemer G: The hallmarks of aging. Cell. 153:1194–1217. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Bradley EW, Weivoda MM, Hwang SM, Pirtskhalava T, Decklever T, Curran GL, Ogrodnik M, Jurk D, Johnson KO, et al: Transplanted senescent cells induce an osteoarthritis-like condition in mice. J Gerontol A Biol Sci Med Sci. 72:780–785. 2017. | |
Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY and Campisi J: Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6:2853–2868. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Tchkonia T, Ding H, Ogrodnik M, Lubbers ER, Pirtskhalava T, White TA, Johnson KO, Stout MB, Mezera V, et al: JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Natl Acad Sci USA. 112:E6301–E6310. 2015. View Article : Google Scholar : PubMed/NCBI | |
Greene MA and Loeser RF: Aging-related inflammation in osteoarthritis. Osteoarthritis Cartilage. 23:1966–1971. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lotz M and Loeser RF: Effects of aging on articular cartilage homeostasis. Bone. 51:241–248. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jeon OH, Kim C, Laberge RM, Demaria M, Rathod S, Vasserot AP, Chung JW, Kim DH, Poon Y, David N, et al: Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med. 23:775–781. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ding DC, Shyu WC and Lin SZ: Mesenchymal stem cells. Cell Transplant. 20:5–14. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wu Q, Wang Y, Li L, Bu H and Bao J: Senescence of mesenchymal stem cells (Review). Int J Mol Med. 39:775–782. 2017. View Article : Google Scholar : PubMed/NCBI | |
Alt EU, Senst C, Murthy SN, Slakey DP, Dupin CL, Chaffin AE, Kadowitz PJ and Izadpanah R: Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res. 8:215–225. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chew JRJ, Chuah SJ, Teo KYW, Zhang S, Lai RC, Fu JH, Lim LP, Lim SK and Toh WS: Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration. Acta Biomater. 89:252–264. 2019. View Article : Google Scholar : PubMed/NCBI | |
Loeser RF, Collins JA and Diekman BO: Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 12:412–420. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, Deng Z, Liu J, Lin Z, Chen S, Deng Z and Li W: Chloride channel and inflammation-mediated pathogenesis of osteoarthritis. J Inflamm Res. 15:953–964. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Liang Y, Li X, Ouyang K, Wang M, Cao T, Li W, Liu J, Xiong J, Li B, et al: Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration. Biomaterials. 269:1205392021. View Article : Google Scholar | |
McCulloch K, Litherland GJ and Rai TS: Cellular senescence in osteoarthritis pathology. Aging Cell. 16:210–218. 2017. View Article : Google Scholar : PubMed/NCBI | |
Duan L, Liang Y, Xu X, Xiao Y and Wang D: Recent progress on the role of miR-140 in cartilage matrix remodelling and its implications for osteoarthritis treatment. Arthritis Res Ther. 22:1942020. View Article : Google Scholar : PubMed/NCBI | |
Fujii Y, Liu L, Yagasaki L, Inotsume M, Chiba T and Asahara H: Cartilage homeostasis and osteoarthritis. Int J Mol Sci. 23:63162022. View Article : Google Scholar : PubMed/NCBI | |
Liu CF and Lefebvre V: The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis. Nucleic Acids Res. 43:8183–8203. 2015. View Article : Google Scholar : PubMed/NCBI | |
Glasson SS, Askew R, Sheppard B, Carito B, Blanchet T, Ma HL, Flannery CR, Peluso D, Kanki K, Yang Z, et al: Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature. 434:644–648. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Sampson ER, Jin H, Li J, Ke QH, Im HJ and Chen D: MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis Res Ther. 15:R52013. View Article : Google Scholar : PubMed/NCBI | |
Philipot D, Guérit D, Platano D, Chuchana P, Olivotto E, Espinoza F, Dorandeu A, Pers YM, Piette J, Borzi RM, et al: p16INK4a and its regulator miR-24 link senescence and chondrocyte terminal differentiation-associated matrix remodeling in osteoarthritis. Arthritis Res Ther. 16:R582014. View Article : Google Scholar : PubMed/NCBI | |
Loeser RF: Aging and osteoarthritis: The role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthritis Cartilage. 17:971–979. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP and Fahmi H: Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 7:33–42. 2011. View Article : Google Scholar | |
Fang H, Deng Z, Liu J, Chen S, Deng Z and Li W: The mechanism of bone remodeling after bone aging. Clin Interv Aging. 17:405–415. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bian Q, Wang YJ, Liu SF and Li YP: Osteoarthritis: Genetic factors, animal models, mechanisms, and therapies. Front Biosci (Elite Ed). 4:74–100. 2012. View Article : Google Scholar | |
Molnar V, Matišić V, Kodvanj I, Bjelica R, Jeleč Ž, Hudetz D, Rod E, Čukelj F, Vrdoljak T, Vidović D, et al: Cytokines and chemokines involved in osteoarthritis pathogenesis. Int J Mol Sci. 22:92082021. View Article : Google Scholar : PubMed/NCBI | |
Hwang HS and Kim HA: Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int J Mol Sci. 16:26035–2604. 2015. View Article : Google Scholar : PubMed/NCBI | |
Deng Z, Chen X, Lin Z, Alahdal M, Wang D, Liu J and Li W: The homeostasis of cartilage matrix remodeling and the regulation of volume-sensitive ion channel. Aging Dis. 13:787–800. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen LX, Lin L, Wang HJ, Wei XL, Fu X, Zhang JY and Yu CL: Suppression of early experimental osteoarthritis by in vivo delivery of the adenoviral vector-mediated NF-kappaBp65-specific siRNA. Osteoarthritis Cartilage. 16:174–184. 2008. View Article : Google Scholar | |
Fei J, Liang B, Jiang C, Ni H and Wang L: Luteolin inhibits IL-1β-induced inflammation in rat chondrocytes and attenuates osteoarthritis progression in a rat model. Biomed Pharmacother. 109:1586–1592. 2019. View Article : Google Scholar | |
Huang X, Xi Y, Pan Q, Mao Z, Zhang R, Ma X and You H: Caffeic acid protects against IL-1β-induced inflammatory responses and cartilage degradation in articular chondrocytes. Biomed Pharmacother. 107:433–439. 2018. View Article : Google Scholar : PubMed/NCBI | |
Meszaros E and Malemud CJ: Prospects for treating osteoarthritis: Enzyme-protein interactions regulating matrix metalloproteinase activity. Ther Adv Chronic Dis. 3:219–229. 2012. View Article : Google Scholar | |
Verma P and Dalal K: ADAMTS-4 and ADAMTS-5: Key enzymes in osteoarthritis. J Cell Biochem. 112:3507–3514. 2011. View Article : Google Scholar : PubMed/NCBI | |
Deng Z, Lin Z, Zhong Q, Lu M, Fang H, Liu J, Duan L, Chen L, Wang L, Wang D and Li W: Interleukin 1 beta-induced chloride currents are important in osteoarthritis onset: An in vitro study. Acta Biochim Biophys Sin (Shanghai). 53:400–409. 2021. View Article : Google Scholar : PubMed/NCBI | |
oman-Blas JA and Jimenez SA: NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage. 14:839–848. 2006. View Article : Google Scholar | |
Lepetsos P, Papavassiliou KA and Papavassiliou AG: Redox and NF-κB signaling in osteoarthritis. Free Radic Biol Med. 132:90–100. 2019. View Article : Google Scholar | |
Tang J, Cui W, Song F, Zhai C, Hu H, Zuo Q and Fan W: Effects of mesenchymal stem cells on interleukin-1β-treated chondrocytes and cartilage in a rat osteoarthritic model. Mol Med Rep. 12:1753–1760. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang T and He C: Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev. 44:38–50. 2018. View Article : Google Scholar : PubMed/NCBI | |
Song H and Park KH: Regulation and function of SOX9 during cartilage development and regeneration. Semin Cancer Biol. 67:12–23. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lefebvre V and Dvir-Ginzberg M: SOX9 and the many facets of its regulation in the chondrocyte lineage. Connect Tissue Res. 58:2–14. 2017. View Article : Google Scholar : | |
Kawakami Y, Tsuda M, Takahashi S, Taniguchi N, Esteban CR, Zemmyo M, Furumatsu T, Lotz M, Izpisúa Belmonte JC and Asahara H: Transcriptional coactivator PGC-1alpha regulates chondrogenesis via association with Sox9. Proc Natl Acad Sci USA. 102:2414–2419. 2005. View Article : Google Scholar : PubMed/NCBI | |
Akiyama H, Stadler HS, Martin JF, Ishii TM, Beachy PA, Nakamura T and de Crombrugghe B: Misexpression of Sox9 in mouse limb bud mesenchyme induces polydactyly and rescues hypodactyly mice. Matrix Biol. 26:224–233. 2007. View Article : Google Scholar : PubMed/NCBI | |
Barter MJ, Gomez R, Hyatt S, Cheung K, Skelton AJ, Xu Y, Clark IM and Young DA: The long non-coding RNA ROCR contributes to SOX9 expression and chondrogenic differentiation of human mesenchymal stem cells. Development. 144:4510–4521. 2017.PubMed/NCBI | |
Nakamura Y, He X, Kato H, Wakitani S, Kobayashi T, Watanabe S, Iida A, Tahara H, Warman ML, Watanapokasin R and Postlethwait JH: Sox9 is upstream of microRNA-140 in cartilage. Appl Biochem Biotechnol. 166:64–71. 2012. View Article : Google Scholar | |
Yang J, Qin S, Yi C, Ma G, Zhu H, Zhou W, Xiong Y, Zhu X, Wang Y, He L and Guo X: MiR-140 is co-expressed with Wwp2-C transcript and activated by Sox9 to target Sp1 in maintaining the chondrocyte proliferation. FEBS Lett. 585:2992–2997. 2011. View Article : Google Scholar : PubMed/NCBI | |
Si HB, Zeng Y, Liu SY, Zhou ZK, Chen YN, Cheng JQ, Lu YR and Shen B: Intra-articular injection of microRNA-140 (miRNA-140) alleviates osteoarthritis (OA) progression by modulating extracellular matrix (ECM) homeostasis in rats. Osteoarthritis Cartilage. 25:1698–1707. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Mishima H, Sakai S, Liu YK, Ohyabu Y and Uemura T: Gene expression analysis of major lineage-defining factors in human bone marrow cells: Effect of aging, gender, and age-related disorders. J Orthop Res. 26:910–917. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kearns AE, Khosla S and Kostenuik PJ: Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev. 29:155–192. 2008. View Article : Google Scholar | |
Li F and Li X, Liu G, Gao C and Li X: Bone marrow mesenchymal stem cells decrease the expression of RANKL in collagen-induced arthritis rats via reducing the levels of IL-22. J Immunol Res. 2019:84592812019. View Article : Google Scholar : PubMed/NCBI | |
Lin TH, Gibon E, Loi F, Pajarinen J, Córdova LA, Nabeshima A, Lu L, Yao Z and Goodman SB: Decreased osteogenesis in mesenchymal stem cells derived from the aged mouse is associated with enhanced NF-κB activity. J Orthop Res. 35:281–288. 217 | |
Wang X, Manner PA, Horner A, Shum L, Tuan RS and Nuckolls GH: Regulation of MMP-13 expression by RUNX2 and FGF2 in osteoarthritic cartilage. Osteoarthritis Cartilage. 12:963–973. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Kim DJ, Shen J, Zou Z and O'Keefe RJ: Runx2 plays a central role in osteoarthritis development. J Orthop Translat. 23:132–139. 2019. View Article : Google Scholar | |
Li Z, Liu C, Xie Z, Song P, Zhao RC, Guo L, Liu Z and Wu Y: Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PLoS One. 6:e205262011. View Article : Google Scholar : PubMed/NCBI | |
Ji Q, Xu X, Xu Y, Fan Z, Kang L, Li L, Liang Y, Guo J, Hong T, Li Z, et al: miR-105/Runx2 axis mediates FGF2-induced ADAMTS expression in osteoarthritis cartilage. J Mol Med (Berl). 94:681–694. 2016. View Article : Google Scholar : PubMed/NCBI | |
Aubourg G, Rice SJ, Bruce-Wootton P and Loughlin J: Genetics of osteoarthritis. Osteoarthritis Cartilage. 30:636–649. 2022. View Article : Google Scholar : | |
Tachmazidou I, Hatzikotoulas K, Southam L, Esparza-Gordillo J, Haberland V, Zheng J, Johnson T, Koprulu M, Zengini E, Steinberg J, et al: Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nat Genet. 51:230–236. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cheung KS, Sposito N, Stumpf PS, Wilson DI, Sanchez-Elsner T and Oreffo RO: MicroRNA-146a regulates human foetal femur derived skeletal stem cell differentiation by down-regulating SMAD2 and SMAD3. PLoS One. 9:e980632014. View Article : Google Scholar : PubMed/NCBI | |
Tardif G, Pelletier JP, Fahmi H, Hum D, Zhang Y, Kapoor M and Martel-Pelletier J: NFAT3 and TGF-β/SMAD3 regulate the expression of miR-140 in osteoarthritis. Arthritis Res Ther. 15:R1972013. View Article : Google Scholar | |
Nishimura R, Hata K, Nakamura E, Murakami T and Takahata Y: Transcriptional network systems in cartilage development and disease. Histochem Cell Biol. 149:353–363. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kanaan RA and Kanaan LA: Transforming growth factor beta1, bone connection. Med Sci Monit. 12:RA164–RA169. 2006.PubMed/NCBI | |
Dai J, Yu D, Wang Y, Chen Y, Sun H, Zhang X, Zhu S, Pan Z, Heng BC, Zhang S and Ouyang H: Kdm6b regulates cartilage development and homeostasis through anabolic metabolism. Ann Rheum Dis. 76:1295–1303. 2017. View Article : Google Scholar : PubMed/NCBI | |
Simon TC and Jeffries MA: The epigenomic landscape in osteoarthritis. Curr Rheumatol Rep. 19:302017. View Article : Google Scholar : PubMed/NCBI | |
Luo C, Hajkova P and Ecker JR: Dynamic DNA methylation: In the right place at the right time. Science. 361:1336–1340. 2018. View Article : Google Scholar : PubMed/NCBI | |
Barter MJ, Bui C, Cheung K, Falk J, Gómez R, Skelton AJ, Elliott HR, Reynard LN and Young DA: DNA hypomethylation during MSC chondrogenesis occurs predominantly at enhancer regions. Sci Rep. 10:11692020. View Article : Google Scholar : PubMed/NCBI | |
Takahashi A, de Andrés MC, Hashimoto K, Itoi E and Oreffo RO: Epigenetic regulation of interleukin-8, an inflammatory chemokine, in osteoarthritis. Osteoarthritis Cartilage. 23:1946–1954. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shen J, Wang C, Li D, Xu T, Myers J, Ashton JM, Wang T, Zuscik MJ, McAlinden A and O'Keefe RJ: DNA methyltransferase 3b regulates articular cartilage homeostasis by altering metabolism. JCI Insight. 2:e936122017. View Article : Google Scholar : PubMed/NCBI | |
Hashimoto K, Oreffo RO, Gibson MB, Goldring MB and Roach HI: DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes. Arthritis Rheum. 60:3303–3313. 2009. View Article : Google Scholar : PubMed/NCBI | |
Roach HI, Yamada N, Cheung KS, Tilley S, Clarke NM, Oreffo RO, Kokubun S and Bronner F: Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum. 52:3110–3124. 2005. View Article : Google Scholar : PubMed/NCBI | |
Goldring SR and Goldring MB: The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin Orthop Relat Res. 427(427 Suppl): S27–S36. 2004. View Article : Google Scholar | |
Aida Y, Maeno M, Suzuki N, Namba A, Motohashi M, Matsumoto M, Makimura M and Matsumura H: The effect of IL-1beta on the expression of inflammatory cytokines and their receptors in human chondrocytes. Life Sci. 79:764–771. 2006. View Article : Google Scholar : PubMed/NCBI | |
Seto E and Yoshida M: Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 6:a0187132014. View Article : Google Scholar : PubMed/NCBI | |
Hong S, Derfoul A, Pereira-Mouries L and Hall DJ: A novel domain in histone deacetylase 1 and 2 mediates repression of cartilage-specific genes in human chondrocytes. FASEB J. 23:3539–3552. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huber LC, Brock M, Hemmatazad H, Giger OT, Moritz F, Trenkmann M, Distler JH, Gay RE, Kolling C, Moch H, et al: Histone deacetylase/acetylase activity in total synovial tissue derived from rheumatoid arthritis and osteoarthritis patients. Arthritis Rheum. 56:1087–1093. 2007. View Article : Google Scholar : PubMed/NCBI | |
Meng F, Li Z, Zhang Z, Yang Z, Kang Y, Zhao X, Long D, Hu S, Gu M, He S, et al: MicroRNA-193b-3p regulates chondrogenesis and chondrocyte metabolism by targeting HDAC3. Theranostics. 8:2862–2883. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cao K, Wei L, Zhang Z, Guo L, Zhang C, Li Y, Sun C, Sun X, Wang S, Li P and Wei X: Decreased histone deacetylase 4 is associated with human osteoarthritis cartilage degeneration by releasing histone deacetylase 4 inhibition of runt-related transcription factor-2 and increasing osteoarthritis-related genes: A novel mechanism of human osteoarthritis cartilage degeneration. Arthritis Res Ther. 16:4912014. View Article : Google Scholar | |
Higashiyama R, Miyaki S, Yamashita S, Yoshitaka T, Lindman G, Ito Y, Sasho T, Takahashi K, Lotz M and Asahara H: Correlation between MMP-13 and HDAC7 expression in human knee osteoarthritis. Mod Rheumatol. 20:11–17. 2010. View Article : Google Scholar : | |
Liao W, Sun J, Liu W, Li W, Jia J, Ou F, Su K, Zheng Y, Zhang Z and Sun Y: HDAC10 upregulation contributes to interleukin 1β-mediated inflammatory activation of synovium-derived mesenchymal stem cells in temporomandibular joint. J Cell Physiol. 234:12646–12662. 2019. View Article : Google Scholar | |
Jung JW, Lee S, Seo MS, Park SB, Kurtz A, Kang SK and Kang KS: Histone deacetylase controls adult stem cell aging by balancing the expression of polycomb genes and jumonji domain containing 3. Cell Mol Life Sci. 67:1165–1176. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dvir-Ginzberg M, Gagarina V, Lee EJ and Hall DJ: Regulation of cartilage-specific gene expression in human chondrocytes by SirT1 and nicotinamide phosphoribosyltransferase. J Biol Chem. 283:36300–36310. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tsuda M, Takahashi S, Takahashi Y and Asahara H: Transcriptional co-activators CREB-binding protein and p300 regulate chondrocyte-specific gene expression via association with Sox9. J Biol Chem. 278:27224–27229. 2003. View Article : Google Scholar : PubMed/NCBI | |
Fujita N, Matsushita T, Ishida K, Kubo S, Matsumoto T, Takayama K, Kurosaka M and Kuroda R: Potential involvement of SIRT1 in the pathogenesis of osteoarthritis through the modulation of chondrocyte gene expressions. J Orthop Res. 29:511–515. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Liu X, Zhu W, Chen H, Hu X, Jiang Z, Xu Y, Wang L, Zhou Y, Chen P, et al: SIRT1 ameliorates age-related senescence of mesenchymal stem cells via modulating telomere shelterin. Front Aging Neurosci. 6:1032014. View Article : Google Scholar : PubMed/NCBI | |
Diao Z, Ji Q, Wu Z, Zhang W, Cai Y, Wang Z, Hu J, Liu Z, Wang Q, Bi S, et al: SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Res. 49:4203–4219. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fu Y, Kinter M, Hudson J, Humphries KM, Lane RS, White JR, Hakim M, Pan Y, Verdin E and Griffin TM: Aging promotes sirtuin 3-dependent cartilage superoxide dismutase 2 acetylation and osteoarthritis. Arthritis Rheumatol. 68:1887–1898. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Chen L, Wang Y, Li W, Lin Y, Yu D, Zhang L, Li F and Pan Z: Overexpression of Sirtuin 6 suppresses cellular senescence and NF-κB mediated inflammatory responses in osteoarthritis development. Sci Rep. 5:176022015. View Article : Google Scholar | |
Collins JA, Kim CJ, Coleman A, Little A, Perez MM, Clarke EJ, Diekman B, Peffers MJ, Chubinskaya S, Tomlinson RE, et al: Cartilage-specific Sirt6 deficiency represses IGF-1 and enhances osteoarthritis severity in mice. Ann Rheum Dis. ard-2023-2243852023.Epub ahead of print. | |
Zhai XY, Yan P, Zhang J, Song HF, Yin WJ, Gong H, Li H, Wu J, Xie J and Li RK: Knockdown of SIRT6 enables human bone marrow mesenchymal stem cell senescence. Rejuvenation Res. 19:373–384. 2016. View Article : Google Scholar | |
Ji ML, Jiang H, Li Z, Geng R, Hu JZ, Lin YC and Lu J: Sirt6 attenuates chondrocyte senescence and osteoarthritis progression. Nat Commun. 13:76582022. View Article : Google Scholar : PubMed/NCBI | |
Wu SY, Du YC and Yue CF: Sirt7 protects chondrocytes degeneration in osteoarthritis via autophagy activation. Eur Rev Med Pharmacol Sci. 24:9246–9255. 2020.PubMed/NCBI | |
Mohrin M, Shin J, Liu Y, Brown K, Luo H, Xi Y, Haynes CM and Chen D: Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science. 347:1374–1377. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hsu YC, Wu YT, Tsai CL and Wei YH: Current understanding and future perspectives of the roles of sirtuins in the reprogramming and differentiation of pluripotent stem cells. Exp Biol Med (Maywood). 243:563–575. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bi S, Liu Z, Wu Z, Wang Z, Liu X, Wang S, Ren J, Yao Y, Zhang W, Song M, et al: SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein Cell. 11:483–504. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hong S, Cho YW, Yu LR, Yu H, Veenstra TD and Ge K: Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci USA. 104:18439–18444. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ukita M, Matsushita K, Tamura M and Yamaguchi T: Histone H3K9 methylation is involved in temporomandibular joint osteoarthritis. Int J Mol Med. 45:607–614. 2020.PubMed/NCBI | |
Zhang F, Xu L, Xu L, Xu Q, Li D, Yang Y, Karsenty G and Chen CD: JMJD3 promotes chondrocyte proliferation and hypertrophy during endochondral bone formation in mice. J Mol Cell Biol. 7:23–34. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Li Y, Meng T, Zhang J, Wei Y, Meng Z, Lin Y, Liu D and Sui L: KDM6A promotes chondrogenic differentiation of periodontal ligament stem cells by demethylation of SOX9. Cell Prolif. 51:e124132018. View Article : Google Scholar | |
Lee HL, Yu B, Deng P, Wang CY and Hong C: Transforming growth factor-β-induced KDM4B promotes chondrogenic differentiation of human mesenchymal stem cells. Stem Cells. 34:711–719. 2016. View Article : Google Scholar | |
Ye L, Fan Z, Yu B, Chang J, Al Hezaimi K, Zhou X, Park NH and Wang CY: Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs. Cell Stem Cell. 11:50–61. 2012. View Article : Google Scholar : PubMed/NCBI | |
He Q, Shi J, Liu W, Zhao W, Wang Z, Liu K, Zhao D, Wang S, Guo Y, Cheng L and Gao Y: TGF-β1-induced bone marrow mesenchymal stem cells (BMSCs) migration via histone demethylase KDM6B mediated inhibition of methylation marker H3K27me3. Cell Death Discov. 8:3392022. View Article : Google Scholar | |
Duan L, Liang Y, Xu X, Wang J, Li X, Sun D, Deng Z, Li W and Wang D: Noncoding RNAs in subchondral bone osteoclast function and their therapeutic potential for osteoarthritis. Arthritis Res Ther. 22:2792020. View Article : Google Scholar : PubMed/NCBI | |
van Meurs JB, Boer CG, Lopez-Delgado L and Riancho JA: Role of epigenomics in bone and cartilage disease. J Bone Miner Res. 34:215–230. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nakamura Y, Inloes JB, Katagiri T and Kobayashi T: Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Mol Cell Biol. 31:3019–3028. 2011. View Article : Google Scholar : PubMed/NCBI | |
Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama S, Kato Y, Takemoto F, Nakasa T, Yamashita S, et al: MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 24:1173–1185. 2010. View Article : Google Scholar : PubMed/NCBI | |
Iliopoulos D, Malizos KN, Oikonomou P and Tsezou A: Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One. 3:e37402008. View Article : Google Scholar : PubMed/NCBI | |
Miyaki S, Nakasa T, Otsuki S, Grogan SP, Higashiyama R, Inoue A, Kato Y, Sato T, Lotz MK and Asahara H: MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum. 60:2723–2730. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ji Q, Xu X, Zhang Q, Kang L, Xu Y, Zhang K, Li L, Liang Y, Hong T, Ye Q and Wang Y: The IL-1β/AP-1/miR-30a/ADAMTS-5 axis regulates cartilage matrix degradation in human osteoarthritis. J Mol Med (Berl). 94:771–785. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mao G, Zhang Z, Huang Z, Chen W, Huang G, Meng F, Zhang Z and Kang Y: MicroRNA-92a-3p regulates the expression of cartilage-specific genes by directly targeting histone deacetylase 2 in chondrogenesis and degradation. Osteoarthritis Cartilage. 25:521–532. 2017. View Article : Google Scholar | |
Mao G, Wu P, Zhang Z, Zhang Z, Liao W, Li Y and Kang Y: MicroRNA-92a-3p regulates aggrecanase-1 and aggrecanase-2 expression in chondrogenesis and IL-1β-induced catabolism in human articular chondrocytes. Cell Physiol Biochem. 44:38–52. 2017. View Article : Google Scholar | |
Akhtar N, Rasheed Z, Ramamurthy S, Anbazhagan AN, Voss FR and Haqqi TM: MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum. 62:1361–1371. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang B, Guo H, Zhang Y, Chen L, Ying D and Dong S: MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9. PLoS One. 6:e216792011. View Article : Google Scholar : PubMed/NCBI | |
Li X, Gibson G, Kim JS, Kroin J, Xu S, van Wijnen AJ and Im HJ: MicroRNA-146a is linked to pain-related pathophysiology of osteoarthritis. Gene. 480:34–41. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vonk LA, Kragten AH, Dhert WJ, Saris DB and Creemers LB: Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes. Osteoarthritis Cartilage. 22:145–153. 2014. View Article : Google Scholar | |
Joung S, Yoon DS, Cho S, Ko EA, Lee KM, Park KH, Lee JW and Kim SH: Downregulation of MicroRNA-495 alleviates IL-1β responses among chondrocytes by preventing SOX9 reduction. Yonsei Med J. 62:650–659. 2021. View Article : Google Scholar : PubMed/NCBI | |
Qiu M, Liu D and Fu Q: MiR-129-5p shuttled by human synovial mesenchymal stem cell-derived exosomes relieves IL-1β induced osteoarthritis via targeting HMGB1. Life Sci. 269:1189872021. View Article : Google Scholar | |
Zhou JX, Tian ZG, Zhu LF, Wu WD, Zhou SL, Zhao YT and Huang S: MicroRNA-615-3p promotes the osteoarthritis progression by inhibiting chondrogenic differentiation of bone marrow mesenchymal stem cells. Eur Rev Med Pharmacol Sci. 22:6212–6220. 2018.PubMed/NCBI | |
Lv S, Xu J, Chen L, Wu H, Feng W, Zheng Y, Li P, Zhang H, Zhang L, Chi G and Li Y: MicroRNA-27b targets CBFB to inhibit differentiation of human bone marrow mesenchymal stem cells into hypertrophic chondrocytes. Stem Cell Res Ther. 11:3922020. View Article : Google Scholar : PubMed/NCBI | |
Huang T, Zhou Y, Wang J, Cao Y and Hang DH: MiR-26b regulates cartilage differentiation of bone marrow mesenchymal stem cells in rats through the Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci. 23:5084–5092. 2019.PubMed/NCBI | |
Chen HO, Zhang L, Tang ZY and Gong ZM: MiR-485-5p promotes the development of osteoarthritis by inhibiting cartilage differentiation in BMSCs. Eur Rev Med Pharmacol Sci. 22:3294–3302. 2018.PubMed/NCBI | |
Qin F, Wang F, Wang XP, Chen J, Zeng FH, Sun CL, Mao JP and Li CL: MiR-539-3p inhibited chondrogenic differentiation in human adipose stem cells by targeting Sox9. J Orthop Surg Res. 17:1682022. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Yan X, Yuan FZ, Ye J, Du MZ, Mao ZM, Xu BB, Chen YR, Song YF, Fan BS and Yu JK: MicroRNA-210-3p promotes chondrogenic differentiation and inhibits adipogenic differentiation correlated with HIF-3α signalling in bone marrow mesenchymal stem cells. Biomed Res Int. 2021:66999102021. | |
Zhang P, Gao G, Zhou Z and He X: microRNA-130b downregulation potentiates chondrogenic differentiation of bone marrow mesenchymal stem cells by targeting SOX9. Braz J Med Biol Res. 54:e103452021. View Article : Google Scholar : PubMed/NCBI | |
Feng L, Yang ZM, Li YC, Wang HX, Lo JHT, Zhang XT and Li G: Linc-ROR promotes mesenchymal stem cells chondrogenesis and cartilage formation via regulating SOX9 expression. Osteoarthritis Cartilage. 29:568–578. 2021. View Article : Google Scholar : PubMed/NCBI | |
Alahdal M, Huang R, Duan L, Zhiqin D, Hongwei O, Li W and Wang D: Indoleamine 2, 3 dioxygenase 1 impairs chondrogenic differentiation of mesenchymal stem cells in the joint of osteoarthritis mice model. Front Immunol. 12:7811852021. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Bajic VB and Zhang Z: On the classification of long non-coding RNAs. RNA Biol. 10:925–933. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ou F, Su K, Sun J, Liao W, Yao Y, Zheng Y and Zhang Z: The LncRNA ZBED3-AS1 induces chondrogenesis of human synovial fluid mesenchymal stem cells. Biochem Biophys Res Commun. 487:457–463. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huynh NP, Gloss CC, Lorentz J, Tang R, Brunger JM, McAlinden A, Zhang B and Guilak F: Long non-coding RNA GRASLND enhances chondrogenesis via suppression of the interferon type II signaling pathway. Elife. 9:e495582020. View Article : Google Scholar : PubMed/NCBI | |
Fang P, Zhang LX, Hu Y, Zhang L and Zhou LW: Long non-coding RNA DANCR induces chondrogenesis by regulating the miR-1275/MMP-13 axis in synovial fluid-derived mesenchymal stem cells. Eur Rev Med Pharmacol Sci. 23:10459–10469. 2019.PubMed/NCBI | |
Ji Y, Fang QY, Wang SN, Zhang ZW, Hou ZJ, Li JN and Fu SQ: Lnc-RNA BLACAT1 regulates differentiation of bone marrow stromal stem cells by targeting miR-142-5p in osteoarthritis. Eur Rev Med Pharmacol Sci. 24:2893–2901. 2020.PubMed/NCBI | |
Zhu Y, Li R and Wen LM: Long non-coding RNA XIST regulates chondrogenic differentiation of synovium-derived mesenchymal stem cells from temporomandibular joint via miR-27b-3p/ADAMTS-5 axis. Cytokine. 137:1553522021. View Article : Google Scholar | |
Chen H, Yang S and Shao R: Long non-coding XIST raises methylation of TIMP-3 promoter to regulate collagen degradation in osteoarthritic chondrocytes after tibial plateau fracture. Arthritis Res Ther. 21:2712019. View Article : Google Scholar : PubMed/NCBI | |
Wen C, Lin L, Zou R, Lin F and Liu Y: Mesenchymal stem cell-derived exosome mediated long non-coding RNA KLF3-AS1 represses autophagy and apoptosis of chondrocytes in osteoarthritis. Cell Cycle. 21:289–303. 2022. View Article : Google Scholar : | |
Liu Y, Zou R, Wang Z, Wen C, Zhang F and Lin F: Exosomal KLF3-AS1 from hMSCs promoted cartilage repair and chondrocyte proliferation in osteoarthritis. Biochem J. 475:3629–3638. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Li J, Shao W and Shen N: LncRNA CTBP1-AS2 is upregulated in osteoarthritis and increases the methylation of miR-130a gene to inhibit chondrocyte proliferation. Clin Rheumatol. 39:3473–3478. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Fu Q, Shao J, Peng J, Qian Q, Zhou Y and Chen Y: Regulating effect of Circ_ATRNL1 on the promotion of SOX9 expression to promote chondrogenic differentiation of hAMSCs mediated by MiR-145-5p. J Tissue Eng Regen Med. 15:487–502. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li S, Liu J, Liu S, Jiao W and Wang X: Mesenchymal stem cell-derived extracellular vesicles prevent the development of osteoarthritis via the circHIPK3/miR-124-3p/MYH9 axis. J Nanobiotechnology. 19:1942021. View Article : Google Scholar : PubMed/NCBI | |
Bao C and He C: The role and therapeutic potential of MSC-derived exosomes in osteoarthritis. Arch Biochem Biophys. 710:1090022021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Lin L, Zou R, Wen C, Wang Z and Lin F: MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis. Cell Cycle. 17:2411–2422. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mao G, Zhang Z, Hu S, Zhang Z, Chang Z, Huang Z, Liao W and Kang Y: Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Res Ther. 9:2472018. View Article : Google Scholar : PubMed/NCBI | |
Tao Y, Zhou J, Wang Z, Tao H, Bai J, Ge G, Li W, Zhang W, Hao Y, Yang X and Geng D: Human bone mesenchymal stem cells-derived exosomal miRNA-361-5p alleviates osteoarthritis by downregulating DDX20 and inactivating the NF-κB signaling pathway. Bioorg Chem. 113:1049782021. View Article : Google Scholar | |
Cosenza S, Ruiz M, Toupet K, Jorgensen C and Noël D: Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep. 7:162142017. View Article : Google Scholar : PubMed/NCBI | |
Xia Q, Wang Q, Lin F and Wang J: miR-125a-5p-abundant exosomes derived from mesenchymal stem cells suppress chondrocyte degeneration via targeting E2F2 in traumatic osteoarthritis. Bioengineered. 12:11225–11238. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Shi Y, Xue P, Ma X, Li J and Zhang J: Mesenchymal stem cell-derived exosomal microRNA-136-5p inhibits chondrocyte degeneration in traumatic osteoarthritis by targeting ELF3. Arthritis Res Ther. 22:2562020. View Article : Google Scholar : PubMed/NCBI | |
Woo CH, Kim HK, Jung GY, Jung YJ, Lee KS, Yun YE, Han J, Lee J, Kim WS, Choi JS, et al: Small extracellular vesicles from human adipose-derived stem cells attenuate cartilage degeneration. J Extracell Vesicles. 9:17352492020. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Yan K, Ge G, Zhang D, Bai J, Guo X, Zhou J, Xu T, Xu M, Long X, et al: Exosomes derived from miR-155-5p-overexpressing synovial mesenchymal stem cells prevent osteoarthritis via enhancing proliferation and migration, attenuating apoptosis, and modulating extracellular matrix secretion in chondrocytes. Cell Biol Toxicol. 37:85–96. 2021. View Article : Google Scholar | |
Lu L, Wang J, Fan A, Wang P, Chen R, Lu L and Yin F: Synovial mesenchymal stem cell-derived extracellular vesicles containing microRN555A-26a-5p ameliorate cartilage damage of osteoarthritis. J Gene Med. 23:e33792021. View Article : Google Scholar : PubMed/NCBI | |
Zeng Z, Dai Y, Deng S, Zou S, Dou T and Wei F: Synovial mesenchymal stem cell-derived extracellular vesicles alleviate chondrocyte damage during osteoarthritis through microRNA-130b-3p-mediated inhibition of the LRP12/AKT/β-catenin axis. Immunopharmacol Immunotoxicol. 44:247–260. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kong R, Gao J, Zhang J, Ji L, Yu Y, Zhang L and Zhao D: Synovial mesenchymal stem cell-derived exosomal miR-320c enhances chondrogenesis by targeting ADAM19. Future Med Chem. 14:81–96. 2022. View Article : Google Scholar | |
Liu X, Liu Y, He H, Xiang W and He C: Human adipose and synovial mesenchymal stem cells improve osteoarthritis in rats by reducing chondrocyte reactive oxygen species and inhibiting inflammatory response. J Clin Lab Anal. 36:e243532022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yu D, Liu Z, Zhou F, Dai J, Wu B, Zhou J, Heng BC, Zou XH, Ouyang H and Liu H: Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res Ther. 8:1892017. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zeng Y, Si HB, Tang L, Xie HQ and Shen B: Exosomes derived from human urine-derived stem cells overexpressing miR-140-5p alleviate knee osteoarthritis through downregulation of VEGFA in a rat model. Am J Sports Med. 50:1088–1105. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mao G, Hu S, Zhang Z, Wu P, Zhao X, Lin R, Liao W and Kang Y: Exosomal miR-95-5p regulates chondrogenesis and cartilage degradation via histone deacetylase 2/8. J Cell Mol Med. 22:5354–5366. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shema E, Bernstein BE and Buenrostro JD: Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution. Nat Genet. 51:19–25. 2019. View Article : Google Scholar | |
Chan CKF, Gulati GS, Sinha R, Tompkins JV, Lopez M, Carter AC, Ransom RC, Reinisch A, Wearda T, Murphy M, et al: Identification of the human skeletal stem cell. Cell. 175:43–56.e21. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vega RB, Matsuda K, Oh J, Barbosa AC, Yang X, Meadows E, McAnally J, Pomajzl C, Shelton JM, Richardson JA, et al: Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell. 119:555–566. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ji Q, Zheng Y, Zhang G, Hu Y, Fan X, Hou Y, Wen L, Li L, Xu Y, Wang Y and Tang F: Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. Ann Rheum Dis. 78:100–110. 2019. View Article : Google Scholar | |
Hu X, Li Z, Ji M, Lin Y, Chen Y and Lu J: Identification of cellular heterogeneity and immunogenicity of chondrocytes via single-cell RNA sequencing technique in human osteoarthritis. Front Pharmacol. 13:10047662022. View Article : Google Scholar : PubMed/NCBI | |
Chou CH, Jain V, Gibson J, Attarian DE, Haraden CA, Yohn CB, Laberge RM, Gregory S and Kraus VB: Synovial cell cross-talk with cartilage plays a major role in the pathogenesis of osteoarthritis. Sci Rep. 10:108682020. View Article : Google Scholar : PubMed/NCBI | |
Sebastian A, McCool JL, Hum NR, Murugesh DK, Wilson SP, Christiansen BA and Loots GG: Single-cell RNA-Seq reveals transcriptomic heterogeneity and post-traumatic osteoarthritis-associated early molecular changes in mouse articular chondrocytes. Cells. 10:14622021. View Article : Google Scholar : PubMed/NCBI | |
Pengas I, Eldridge S, Assiotis A, McNicholas M, Mendes JE and Laver L: MMP-3 in the peripheral serum as a biomarker of knee osteoarthritis, 40 years after open total knee meniscectomy. J Exp Ortho. 5:212018. View Article : Google Scholar | |
Chou CH, Lee MT, Song IW, Lu LS, Shen HC, Lee CH, Wu JY, Chen YT, Kraus VB and Wu CC: Insights into osteoarthritis progression revealed by analyses of both knee tibiofemoral compartments. Osteoarthritis Cartilage. 23:571–580. 2015. View Article : Google Scholar : PubMed/NCBI | |
Qu Y, Wang Y, Wang S, Yu X, He Y, Lu R, Chen S, Meng C, Xu H, Pei W, et al: A comprehensive analysis of single-cell RNA transcriptome reveals unique SPP1+ chondrocytes in human osteoarthritis. Comput Biol Med. 160:1069262023. View Article : Google Scholar : PubMed/NCBI | |
Gao C, Pu H, Zhou Q, Tao T, Liu H, Sun X, He X and Xiao J: Two reactive behaviors of chondrocytes in an IL-1β-induced inflammatory environment revealed by the single-cell RNA sequencing. Aging (Albany NY). 13:11646–11664. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yoshimoto M, Sadamori K, Tokumura K, Tanaka Y, Fukasawa K and Hinoi E: Bioinformatic analysis reveals potential relationship between chondrocyte senescence and protein glycosylation in osteoarthritis pathogenesis. Front Endocrinol (Lausanne). 14:11536892023. View Article : Google Scholar : PubMed/NCBI |