1
|
Guibert C and Landoulsi J: Enzymatic
approach in calcium phosphate biomineralization: A contribution to
reconcile the physicochemical with the physiological view. Int J
Mol Sci. 22:129572021.
|
2
|
Arnold A, Dennison E, Kovacs CS, Mannstadt
M, Rizzoli R, Brandi ML, Clarke B and Thakker RV: Hormonal
regulation of biomineralization. Nat Rev Endocrinol. 17:261–275.
2021.
|
3
|
Tang S, Dong Z, Ke X, Luo J and Li J:
Advances in biomineralization-inspired materials for hard tissue
repair. Int J Oral Sci. 13:422021.
|
4
|
Villa-Bellosta R: Vascular calcification:
Key roles of phosphate and pyrophosphate. Int J Mol Sci.
22:135362021.
|
5
|
Ziemińska M, Sieklucka B and Pawlak K:
Vitamin K and D supplementation and bone health in chronic kidney
disease-apart or together? Nutrients. 13:8092021.
|
6
|
Bouillon R, Marcocci C, Carmeliet G, Bikle
D, White JH, Dawson-Hughes B, Lips P, Munns CF, Lazaretti-Castro M,
Giustina A and Bilezikian J: Skeletal and extraskeletal actions of
vitamin D: Current evidence and outstanding questions. Endocr Rev.
40:1109–1151. 2019.
|
7
|
Brzezińska O, Łukasik Z, Makowska J and
Walczak K: Role of vitamin C in osteoporosis development and
treatment-a literature review. Nutrients. 12:23942020.
|
8
|
Jin C, Tan K, Yao Z, Lin BH, Zhang DP,
Chen WK, Mao SM, Zhang W, Chen L, Lin Z, et al: A novel
anti-osteoporosis mechanism of VK2: Interfering with ferroptosis
via AMPK/SIRT1 pathway in type 2 diabetic osteoporosis. J Agric
Food Chem. 71:2745–2761. 2023.
|
9
|
Wang H, Li L, Zhang N and Ma Y: Vitamin K2
improves osteogenic differentiation by inhibiting STAT1 via the
Bcl-6 and IL-6/JAK in C3H10 T1/2 clone 8 cells. Nutrients.
14:29342022.
|
10
|
Akbulut AC, Wasilewski GB, Rapp N, Forin
F, Singer H, Czogalla-Nitsche KJ and Schurgers LJ: Menaquinone-7
supplementation improves osteogenesis in pluripotent stem cell
derived mesenchymal stem cells. Front Cell Dev Biol.
8:6187602021.
|
11
|
Stock M and Schett G: Vitamin K-dependent
proteins in skeletal development and disease. Int J Mol Sci.
22:93282021.
|
12
|
Mladěnka P, Macáková K, Kujovská Krčmová
L, Javorská L, Mrštná K, Carazo A, Protti M, Remião F and Nováková
L; OEMONOM researchers and collaborators: Vitamin K-sources,
physiological role, kinetics, deficiency, detection, therapeutic
use, and toxicity. Nutr Rev. 80:677–698. 2022.
|
13
|
National Research Council: Dietary
reference intakes for vitamin A, vitamin K, arsenic, boron,
chromium, copper, iodine, iron, manganese, molybdenum, nickel,
silicon, vanadium, and zinc. National Academy Press; Washington,
DC, USA: pp. 162–196. 2000
|
14
|
World Health Organization and Food and
Agriculture Organization of the United Nations: Vitamin K. Vitamin
and mineral requirements in human nutrition. 2nd. World Health
Organization; Geneva, Switzerland: pp. 108–129. 2004
|
15
|
Takada T, Yamanashi Y, Konishi K, Yamamoto
T, Toyoda Y, Masuo Y, Yamamoto H and Suzuki H: NPC1L1 is a key
regulator of intestinal vitamin K absorption and a modulator of
warfarin therapy. Sci Transl Med. 7:275ra232015.
|
16
|
Matsuo M, Ogata Y, Yamanashi Y and Takada
T: ABCG5 and ABCG8 Are involved in vitamin K transport. Nutrients.
15:9982023.
|
17
|
Lai Y, Masatoshi H, Ma Y, Guo Y and Zhang
B: Role of vitamin K in intestinal health. Front Immunol.
12:7915652022.
|
18
|
Welsh J, Bak MJ and Narvaez CJ: New
insights into vitamin K biology with relevance to cancer. Trends
Mol Med. 28:864–881. 2022.
|
19
|
Sultana H, Komai M and Shirakawa H: The
role of vitamin K in cholestatic liver disease. Nutrients.
13:25152021.
|
20
|
Kaesler N, Schurgers LJ and Floege J:
Vitamin K and cardiovascular complications in chronic kidney
disease patients. Kidney Int. 100:1023–1036. 2021.
|
21
|
Regulska-Ilow B, Różańska D, Zatońska K
and Szuba A: Estimation of vitamin K content and its sources in the
diet of the polish participants of the PURE study. Nutrients.
14:19172022.
|
22
|
Mishima E, Ito J, Wu Z, Nakamura T, Wahida
A, Doll S, Tonnus W, Nepachalovich P, Eggenhofer E, Aldrovandi M,
et al: A non-canonical vitamin K cycle is a potent ferroptosis
suppressor. Nature. 608:778–783. 2022.
|
23
|
Shearer MJ and Okano T: Key pathways and
regulators of vitamin K function and intermediary metabolism. Annu
Rev Nutr. 38:127–151. 2018.
|
24
|
Dahms SO, Demir F, Huesgen PF, Thorn K and
Brandstetter H: Sirtilins-the new old members of the vitamin
K-dependent coagulation factor family. J Thromb Haemost.
17:470–481. 2019.
|
25
|
Fusaro M, Tripepi G, Plebani M, Politi C,
Aghi A, Taddei F, Schileo E, Zaninotto M, La Manna G, Cianciolo G,
et al: The vessels-bone axis: Iliac artery calcifications,
vertebral fractures and vitamin K from VIKI study. Nutrients.
13:35672021.
|
26
|
Nalevaiko JZ, Marques JVO, Oliveira MF,
Raetsch AWP, Marques GL, Petterle RR, Moreira CA and Borba VZC:
Bone density and quality in patients treated with direct-acting
oral anticoagulants versus warfarin. Bone. 150:1160002021.
|
27
|
Poterucha TJ and Goldhaber SZ: Warfarin
and vascular calcification. Am J Med. 129:635.e1–e4. 2016.
|
28
|
Tantisattamo E, Han KH and O'Neill WC:
Increased vascular calcification in patients receiving warfarin.
Arterioscler Thromb Vasc Biol. 35:237–242. 2015.
|
29
|
Verma D, Kumar R, Pereira RS, Karantanou
C, Zanetti C, Minciacchi VR, Fulzele K, Kunz K, Hoelper S,
Zia-Chahabi S, et al: Vitamin K antagonism impairs the bone marrow
microenvironment and hematopoiesis. Blood. 134:227–238. 2019.
|
30
|
Vimalraj S: Alkaline phosphatase:
Structure, expression and its function in bone mineralization.
Gene. 754:1448552020.
|
31
|
Murshed M: Mechanism of bone
mineralization. Cold Spring Harb Perspect Med. 8:a0312292018.
|
32
|
Ma ML, Ma ZJ, He YL, Sun H, Yang B, Ruan
BJ, Zhan WD, Li SX, Dong H and Wang YX: Efficacy of vitamin K2 in
the prevention and treatment of postmenopausal osteoporosis: A
systematic review and meta-analysis of randomized controlled
trials. Front Public Health. 10:9796492022.
|
33
|
Jadhav N, Ajgaonkar S, Saha P, Gurav P,
Pandey A, Basudkar V, Gada Y, Panda S, Jadhav S, Mehta D and Nair
S: Molecular pathways and roles for vitamin K2-7 as a
health-beneficial nutraceutical: Challenges and opportunities.
Front Pharmacol. 13:8969202022.
|
34
|
Salma, Ahmad SS, Karim S, Ibrahim IM,
Alkreathy HM, Alsieni M and Khan MA: Effect of vitamin K on bone
mineral density and fracture risk in adults: Systematic review and
meta-analysis. Biomedicines. 10:10482022.
|
35
|
Knapen MHJ, Drummen NE, Smit E, Vermeer C
and Theuwissen E: Three-year low-dose menaquinone-7 supplementation
helps decrease bone loss in healthy postmenopausal women.
Osteoporos Int. 24:2499–2507. 2013.
|
36
|
Li X, Yang HY and Giachelli CM: BMP-2
promotes phosphate uptake, phenotypic modulation, and calcification
of human vascular smooth muscle cells. Atherosclerosis.
199:271–277. 2008.
|
37
|
Ciccarelli G, Conte S, Cimmino G, Maiorano
P, Morrione A and Giordano A: Mitochondrial dysfunction: The hidden
player in the pathogenesis of atherosclerosis? Int J Mol Sci.
24:10862023.
|
38
|
Rao Z, Zheng Y, Xu L, Wang Z, Zhou Y, Chen
M, Dong N, Cai Z and Li F: Endoplasmic reticulum stress and
pathogenesis of vascular calcification. Front Cardiovasc Med.
9:9180562022.
|
39
|
Siltari A and Vapaatalo H: Vascular
calcification, vitamin K and warfarin therapy-possible or plausible
connection? Basic Clin Pharmacol Toxicol. 122:19–24. 2018.
|
40
|
Kosciuszek ND, Kalta D, Singh M and
Savinova OV: Vitamin K antagonists and cardiovascular
calcification: A systematic review and meta-analysis. Front
Cardiovasc Med. 9:9385672022.
|
41
|
Levy DS, Grewal R and Le TH: Vitamin K
deficiency: an emerging player in the pathogenesis of vascular
calcification and an iatrogenic consequence of therapies in
advanced renal disease. Am J Physiol Renal Physiol. 319:F618–F623.
2020.
|
42
|
Shioi A, Morioka T, Shoji T and Emoto M:
The inhibitory roles of vitamin K in progression of vascular
calcification. Nutrients. 12:5832020.
|
43
|
Li Y, Lu X, Yang B, Mao J, Jiang S, Yu D,
Pan J, Cai T, Yasui T and Gao B: Vitamin K1 inhibition of renal
crystal formation through matrix Gla protein in the kidney. Kidney
Blood Press Res. 44:1392–1403. 2019.
|
44
|
Hu B, Wang T, Liu Z, Guo X, Yang J, Liu J,
Wang S and Ye Z: Decreased expression of vitamin K epoxide
reductase complex subunit 1 in kidney of patients with calcium
oxalate urolithiasis. J Huazhong Univ Sci Technolog Med Sci.
31:807–814. 2011.
|
45
|
Hewett-Emmett D: Amino acid sequence
homology and the vitamin K-dependent proteins. Bibl Haematol.
44:94–104. 1977.
|
46
|
Barille S, Pellat-Deceunynck C, Bataille R
and Amiot M: Ectopic secretion of osteocalcin, the major
non-collagenous bone protein, by the myeloma cell line NCI-H929. J
Bone Miner Res. 11:466–471. 1996.
|
47
|
Cancela ML, Laizé V and Conceição N:
Matrix Gla protein and osteocalcin: From gene duplication to
neofunctionalization. Arch Biochem Biophys. 561:56–63. 2014.
|
48
|
Hauschka PV, Lian JB, Cole DE and Gundberg
CM: Osteocalcin and matrix Gla protein: Vitamin K-dependent
proteins in bone. Physiol Rev. 69:990–1047. 1989.
|
49
|
Xu Y, Shen L, Liu L, Zhang Z and Hu W:
Undercarboxylated osteocalcin and its associations with bone
mineral density, bone turnover markers, and prevalence of
osteopenia and osteoporosis in chinese population: A
cross-sectional study. Front Endocrinol (Lausanne).
13:8439122022.
|
50
|
Li R, Zhu X, Zhang M, Zong G and Zhang K:
Association of serum periostin level with classical bone turnover
markers and bone mineral density in Shanghai Chinese postmenopausal
women with osteoporosis. Int J Gen Med. 14:7639–7646. 2021.
|
51
|
Lateef M, Baig M and Azhar A: Estimation
of serum osteocalcin and telopeptide-C in postmenopausal
osteoporotic females. Osteoporos Int. 21:751–755. 2010.
|
52
|
Bailey S, Poundarik AA, Sroga GE and
Vashishth D: Structural role of osteocalcin and its modification in
bone fracture. Appl Phys Rev. 10:0114102023.
|
53
|
Kavukcuoglu NB, Patterson-Buckendahl P and
Mann AB: Effect of osteocalcin deficiency on the nanomechanics and
chemistry of mouse bones. J Mech Behav Biomed Mater. 2:348–354.
2009.
|
54
|
Ducy P, Desbois C, Boyce B, Pinero G,
Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, et
al: Increased bone formation in osteocalcin-deficient mice. Nature.
382:448–452. 1996.
|
55
|
Bucay N, Sarosi I, Dunstan CR, Morony S,
Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, et al:
Osteoprotegerin-deficient mice develop early onset osteoporosis and
arterial calcification. Genes Dev. 12:1260–1268. 1988.
|
56
|
Berezovska O, Yildirim G, Budell WC,
Yagerman S, Pidhaynyy B, Bastien C, van der Meulen MCH and Dowd TL:
Osteocalcin affects bone mineral and mechanical properties in
female mice. Bone. 128:1150312019.
|
57
|
Hosseini S, Naderi-Manesh H, Vali H,
Baghaban Eslaminejad M, Azam Sayahpour F, Sheibani S and Faghihi S:
Contribution of osteocalcin-mimetic peptide enhances osteogenic
activity and extracellular matrix mineralization of human
osteoblast-like cells. Colloids Surf B Biointerfaces. 173:662–671.
2019.
|
58
|
Tsao YT, Huang YJ, Wu HH, Liu YA, Liu YS
and Lee OK: Osteocalcin Mediates biomineralization during
osteogenic maturation in human mesenchymal stromal cells. Int J Mol
Sci. 18:1592017.
|
59
|
Gössl M, Mödder UI, Atkinson EJ, Lerman A
and Khosla S: Osteocalcin expression by circulating endothelial
progenitor cells in patients with coronary atherosclerosis. J Am
Coll Cardiol. 52:1314–1325. 2008.
|
60
|
Flammer AJ, Gössl M, Widmer RJ, Reriani M,
Lennon R, Loeffler D, Shonyo S, Simari RD, Lerman LO, Khosla S and
Lerman A: Osteocalcin positive CD133+/CD34-/KDR+ progenitor cells
as an independent marker for unstable atherosclerosis. Eur Heart J.
33:2963–2939. 2012.
|
61
|
Pal SN, Rush C, Parr A, Van Campenhout A
and Golledge J: Osteocalcin positive mononuclear cells are
associated with the severity of aortic calcification.
Atherosclerosis. 210:88–93. 2010.
|
62
|
Shen Y, Chen L, Zhou J, Wang C, Gao F, Zhu
W, Hu G, Ma X, Xia H and Bao Y: Low total osteocalcin levels are
associated with all-cause and cardiovascular mortality among
patients with type 2 diabetes: A real-world study. Cardiovasc
Diabetol. 21:982022.
|
63
|
Shahrour HE, Al Fahom S, Al-Massarani G,
AlSaadi AR and Magni P: Osteocalcin-expressing endothelial
progenitor cells and serum osteocalcin forms are independent
biomarkers of coronary atherosclerotic disease severit in male and
female patients. J Endocrinol Invest. 45:1173–1180. 2022.
|
64
|
Guo X, Li Y, Zhou Y, Zhang C, Liang S,
Zheng Y, Chen X and Cai G: Osteocalcin association with vascular
function in chronic kidney disease. J Clin Hypertens (Greenwich).
24:928–936. 2022.
|
65
|
Chai S, Chen Y, Xin S, Yuan N, Liu Y, Sun
J, Meng X and Qi Y: Positive association of leptin and artery
calcification of lower extremity in patients with type 2 diabetes
mellitus: A pilot study. Front Endocrinol (Lausanne).
12:5835752021.
|
66
|
Millar SA, John SG, McIntyre CW, Ralevic
V, Anderson SI and O'Sullivan SE: An investigation into the role of
osteocalcin in human arterial smooth muscle cell calcification.
Front Endocrinol (Lausanne). 11:3692020.
|
67
|
Keryakos HKH, Okaily NI, Boulis MAY and
Salama AMS: Osteocalcin and vascular calcification in hemodialysis
patients: An observational cohort study. Int Urol Nephrol.
53:1015–1023. 2021.
|
68
|
Hwang YC, Kang M, Cho IJ, Jeong IK, Ahn
KJ, Chung HY and Lee MK: Association between the circulating total
osteocalcin level and the development of cardiovascular disease in
middle-aged men: A mean 8.7-year longitudinal follow-up study. J
Atheroscler Thromb. 22:136–143. 2015.
|
69
|
Millar SA, Anderson SI and O'sullivan SE:
Human vascular cell responses to the circulating bone hormone
osteocalcin. J Cell Physiol. 234:21039–21048. 2019.
|
70
|
Huang L, Yang L, Luo L, Wu P and Yan S:
Osteocalcin improves metabolic profiles, body composition and
arterial stiffening in an induced diabetic rat model. Exp Clin
Endocrinol Diabetes. 125:234–240. 2017.
|
71
|
Dou J, Li H, Ma X, Zhang M, Fang Q, Nie M,
Bao Y and Jia W: Osteocalcin attenuates high fat diet-induced
impairment of endothelium-dependent relaxation through
Akt/eNOS-dependent pathway. Cardiovasc Diabetol. 13:742014.
|
72
|
Price PA and Williamson MK: Primary
structure of bovine matrix Gla protein, a new vitamin K-dependent
bone protein. J Biol Chem. 260:14971–14975. 1985.
|
73
|
Cancela L, Hsieh CL, Francke U and Price
PA: Molecular structure, chromosome assignment, and promoter
organization of the human matrix Gla protein gene. J Biol Chem.
265:15040–15048. 1990.
|
74
|
Price PA, Rice JS and Williamson MK:
Conserved phosphorylation of serines in the Ser-X-Glu/Ser(P)
sequences of the vitamin K-dependent matrix Gla protein from shark,
lamb, rat, cow, and human. Protein Sci. 3:822–830. 1994.
|
75
|
Boer CG, Szilagyi I, Nguyen NL, Neogi T,
Meulenbelt I, Ikram MA, Uitterlinden AG, Bierma-Zeinstra S,
Stricker BH and van Meurs JB: Vitamin K antagonist anticoagulant
usage is associated with increased incidence and progression of
osteoarthritis. Ann Rheum Dis. 80:598–604. 2021.
|
76
|
Houtman E, Coutinho de Almeida R,
Tuerlings M, Suchiman HED, Broekhuis D, Nelissen RGHH, Ramos YFM,
van Meurs JBJ and Meulenbelt I: Characterization of dynamic changes
in matrix Gla protein (MGP) gene expression as function of genetic
risk alleles, osteoarthritis relevant stimuli, and the vitamin K
inhibitor warfarin. Osteoarthritis Cartilage. 29:1193–1202.
2021.
|
77
|
Laurent C, Marano A, Baldit A, Ferrari M,
Perrin JC, Perroud O, Bianchi A and Kempf H: A preliminary study
exploring the mechanical properties of normal and Mgp-deficient
mouse femurs during early growth. Proc Inst Mech Eng H.
236:1106–1117. 2022.
|
78
|
Zhang J, Ma Z, Yan K, Wang Y, Yang Y and
Wu X: Matrix Gla protein promotes the bone formation by
up-regulating Wnt/β-catenin signaling pathway. Front Endocrinol
(Lausanne). 10:8912019.
|
79
|
Lanham SS, Cagampang FR and Oreffo ROC:
Maternal high-fat diet and offspring expression levels of vitamin
K-dependent proteins. Endocrinology. 155:4749–4761. 2014.
|
80
|
Lanham SA, Cagampang FR and Oreffo ROC:
The influence of a high fat diet on bone and soft tissue formation
in Matrix Gla Protein knockout mice. Sci Rep. 8:36352018.
|
81
|
Julien M, Khoshniat S, Lacreusette A,
Gatius M, Bozec A, Wagner EF, Wittrant Y, Masson M, Weiss P, Beck
L, et al: Phosphate-dependent regulation of MGP in osteoblasts:
Role of ERK1/2 and Fra-1. J Bone Miner Res. 24:1856–1868. 2009.
|
82
|
Zhang Y, Zhao L, Wang N, Li J, He F, Li X
and Wu S: Unexpected role of matrix Gla protein in osteoclasts:
Inhibiting osteoclast differentiation and bone resorption. Mol Cell
Biol. 39:e00012–19. 2019.
|
83
|
Luo G, Ducy P, McKee MD, Pinero GJ, Loyer
E, Behringer RR and Karsenty G: Spontaneous calcification of
arteries and cartilage in mice lacking matrix GLA protein. Nature.
386:78–81. 1997.
|
84
|
Julien M, Magne D, Masson M,
Rolli-Derkinderen M, Chassande O, Cario-Toumaniantz C, Cherel Y,
Weiss P and Guicheux J: Phosphate stimulates matrix Gla protein
expression in chondrocytes through the extracellular signal
regulated kinase signaling pathway. Endocrinology. 148:530–537.
2007.
|
85
|
Zandueta C, Ormazábal C, Perurena N,
Martínez-Canarias S, Zalacaín M, Julián MS, Grigoriadis AE,
Valencia K, Campos-Laborie FJ, Rivas Jde L, et al: Matrix-Gla
protein promotes osteosarcoma lung metastasis and associates with
poor prognosis. J Pathol. 239:438–449. 2016.
|
86
|
Willeit K, Santer P, Tschiderer L,
Pechlaner R, Vermeer C, Willeit J and Kiechl S: Association of
desphospho-uncarboxylated matrix gla protein with incident
cardiovascular disease and all-cause mortality: Results from the
prospective Bruneck study. Atherosclerosis. 353:20–27. 2022.
|
87
|
Malhotra R, Nicholson CJ, Wang D,
Bhambhani V, Paniagua S, Slocum C, Sigurslid HH, Lino Cardenas CL,
Li R, Boerboom SL, et al: Matrix Gla protein levels are associated
with arterial stiffness and incident heart failure with preserved
ejection fraction. Arterioscler Thromb Vasc Biol. 42:e61–e73.
2022.
|
88
|
Parashar A, Bak K and Murshed M:
Prevention of arterial elastocalcinosis: Differential roles of the
conserved glutamic acid and serine residues of matrix Gla protein.
Arterioscler Thromb Vasc Biol. 42:e155–e167. 2022.
|
89
|
Gheorghe SR, Vermeer C, Olteanu G, Silaghi
CN and Crăciun AM: The active isoforms of MGP are expressed in
healthy and varicose veins without calcification. J Clin Med.
10:58962021.
|
90
|
Chiyoya M, Seya K, Yu Z, Daitoku K,
Motomura S, Imaizumi T, Fukuda I and Furukawa KI: Matrix Gla
protein negatively regulates calcification of human aortic valve
interstitial cells isolated from calcified aortic valves. J
Pharmacol Sci. 136:257–265. 2018.
|
91
|
Lu X, Gao B, Liu Z, Tian X, Mao X,
Emmanuel N, Zhu Q and Xiao C: A polymorphism of matrix Gla protein
gene is associated with kidney stone in the Chinese Han population.
Gene. 511:127–130. 2012.
|
92
|
Gao B, Yasui T, Itoh Y, Tozawa K, Hayashi
Y and Kohri K: A polymorphism of matrix Gla protein gene is
associated with kidney stones. J Urol. 177:2361–2365. 2007.
|
93
|
Lu X, Gao B, Yasui T, Li Y, Liu T, Mao X,
Hirose M, Wu Y, Yu D, Zhu Q, et al: Matrix Gla protein is involved
in crystal formation in kidney of hyperoxaluric rats. Kidney Blood
Press Res. 37:15–23. 2013.
|
94
|
Goiko M, Dierolf J, Gleberzon JS, Liao Y,
Grohe B, Goldberg HA, de Bruyn JR and Hunter GK: Peptides of matrix
Gla protein inhibit nucleation and growth of hydroxyapatite and
calcium oxalate monohydrate crystals. PLoS One. 8:e803442013.
|
95
|
Castiglione V, Pottel H, Lieske JC, Lukas
P, Cavalier E, Delanaye P and Rule AD: Evaluation of inactive
matrix-Gla-Protein (MGP) as a biomarker for incident and recurrent
kidney stones. J Nephrol. 33:101–107. 2020.
|
96
|
Viegas CS, Simes DC, Laizé V, Williamson
MK, Price PA and Cancela ML: Gla-rich protein (GRP), a new vitamin
K-dependent protein identified from sturgeon cartilage and highly
conserved in vertebrates. J Biol Chem. 283:36655–3664. 2008.
|
97
|
Le Jeune M, Tomavo N, Tian TV, Flourens A,
Marchand N, Camuzeaux B, Mallein-Gerin F and Duterque-Coquillaud M:
Identification of four alternatively spliced transcripts of the
Ucma/GRP gene, encoding a new Gla-containing protein. Exp Cell Res.
316:203–215. 2010.
|
98
|
Tagariello A, Luther J, Streiter M,
Didt-Koziel L, Wuelling M, Surmann-Schmitt C, Stock M, Adam N,
Vortkamp A and Winterpacht A: Ucma-A novel secreted factor
represents a highly specific marker for distal chondrocytes. Matrix
Biol. 27:3–11. 2008.
|
99
|
Cancela ML, Conceição N and Laizé V:
Gla-rich protein, a new player in tissue calcification? Adv Nutr.
3:174–181. 2012.
|
100
|
Conceição N, Fazenda C and Cancela ML:
Comparative gene promoter analysis: An in silico strategy to
identify candidate regulatory factors for Gla rich protein. J Appl
Ichthyol. 28:372–376. 2012.
|
101
|
Viegas CS, Cavaco S, Neves PL, Ferreira A,
João A, Williamson MK, Price PA, Cancela ML and Simes DC: Gla-rich
protein is a novel vitamin K-dependent protein present in serum
that accumulates at sites of pathological calcifications. Am J
Pathol. 175:2288–2298. 2009.
|
102
|
Viegas CS, Herfs M, Rafael MS, Enriquez
JL, Teixeira A, Luís IM, van 't Hoofd CM, João A, Maria VL, Cavaco
S, et al: Gla-rich protein is a potential new vitamin K target in
cancer: Evidences for a direct GRP-mineral interaction. Biomed Res
Int. 2014:3402162014.
|
103
|
Neacsu CD, Grosch M, Tejada M, Winterpacht
A, Paulsson M, Wagener R and Tagariello A: Ucmaa (Grp-2) is
required for zebrafish skeletal development. Evidence for a
functional role of its glutamate γ-carboxylation. Matrix Biol.
30:369–378. 2011.
|
104
|
Lee YJ, Park SY, Lee SJ, Boo YC, Choi JY
and Kim JE: Ucma, a direct transcriptional target of Runx2 and
Osterix, promotes osteoblast differentiation and nodule formation.
Osteoarthritis Cartilage. 23:1421–1431. 2015.
|
105
|
Lee YJ, Ju HY, Park SY, Ihn HJ, Park EK
and Kim JE: Recombinant unique cartilage matrix-associated protein
potentiates osteogenic differentiation and mineralization of
MC3T3-E1 cells. Curr Mol Med. 22:747–754. 2022.
|
106
|
Cavaco S, Viegas CS, Rafael MS, Ramos A,
Magalhães J, Blanco FJ, Vermeer C and Simes DC: Gla-rich protein is
involved in the cross-talk between calcification and inflammation
in osteoarthritis. Cell Mol Life Sci. 73:1051–1065. 2016.
|
107
|
Bordoloi J, Dihingia A, Kalita J and Manna
P: Implication of a novel vitamin K dependent protein, GRP/Ucma in
the pathophysiological conditions associated with vascular and soft
tissue calcification, osteoarthritis, inflammation, and carcinoma.
Int J Biol Macromol. 113:309–316. 2018.
|
108
|
Viegas CSB, Rafael MS, Enriquez JL,
Teixeira A, Vitorino R, Luís IM, Costa RM, Santos S, Cavaco S,
Neves J, et al: Gla-rich protein acts as a calcification inhibitor
in the human cardiovascular system. Arterioscler Thromb Vasc Biol.
35:399–408. 2015.
|
109
|
Willems BA, Furmanik M, Caron MMJ, Chatrou
MLL, Kusters DHM, Welting TJM, Stock M, Rafael MS, Viegas CSB,
Simes DC, et al: Ucma/GRP inhibits phosphate-induced vascular
smooth muscle cell calcification via SMAD-dependent BMP signalling.
Sci Rep. 8:49612018.
|
110
|
Viegas CSB, Santos L, Macedo AL, Matos AA,
Silva AP, Neves PL, Staes A, Gevaert K, Morais R, Vermeer C, et al:
Chronic kidney disease circulating calciprotein particles and
extracellular vesicles promote vascular calcification: A role for
GRP (Gla-rich protein). Arterioscler Thromb Vasc Biol. 38:575–587.
2018.
|
111
|
Viegas CSB, Araújo N, Carreira J, Pontes
JF, Macedo AL, Vinhas M, Moreira AS, Faria TQ, Grenha A, de Matos
AA, et al: Nanoencapsulation of Gla-rich protein (GRP) as a novel
approach to target inflammation. Int J Mol Sci. 23:48132022.
|
112
|
Nagata K, Ohashi K, Nakano T, Arita H,
Zong C, Hanafusa H and Mizuno K: Identification of the product of
growth arrest-specific gene 6 as a common ligand for Axl, Sky, and
Mer receptor tyrosine kinases. J Biol Chem. 271:30022–30027.
1996.
|
113
|
Muñoz X, Sumoy L, Ramírez-Lorca R, Villar
J, de Frutos PG and Sala N: Human vitamin K-dependent GAS6: Gene
structure, allelic variation, and association with stroke. Hum
Mutat. 23:506–512. 2004.
|
114
|
Zhu C, Wei Y and Wei X: AXL receptor
tyrosine kinase as a promising anti-cancer approach: Functions,
molecular mechanisms and clinical applications. Mol Cancer.
18:1532019.
|
115
|
Nakamura YS, Hakeda Y, Takakura N, Kameda
T, Hamaguchi I, Miyamoto T, Kakudo S, Nakano T, Kumegawa M and Suda
T: Tyro 3 receptor tyrosine kinase and its ligand, Gas6, stimulate
the function of osteoclasts. Stem Cells. 16:229–238. 1998.
|
116
|
Hutchison MR, Bassett MH and White PC:
SCF, BDNF, and Gas6 are regulators of growth plate chondrocyte
proliferation and differentiation. Mol Endocrinol. 24:193–203.
2010.
|
117
|
Sweeney MD, Ayyadurai S and Zlokovic BV:
Pericytes of the neurovascular unit: Key functions and signaling
pathways. Nat Neurosci. 19:771–783. 2016.
|
118
|
Collett G, Wood A, Alexander MY, Varnum
BC, Boot-Handford RP, Ohanian V, Ohanian J, Fridell YW and Canfield
AE: Receptor tyrosine kinase Axl modulates the osteogenic
differentiation of pericytes. Circ Res. 92:1123–1129. 2003.
|
119
|
Son BK and Akishita M: Vascular
calcification and anti-aging. Clin Calcium. 18:912–917. 2008.In
Japanese.
|
120
|
Nanao-Hamai M, Son BK, Hashizume T, Ogawa
S and Akishita M: Protective effects of estrogen against vascular
calcification via estrogen receptor α-dependent growth
arrest-specific gene 6 transactivation. Biochem Biophys Res Commun.
480:429–435. 2016.
|
121
|
Srinath R, Gottesman RF, Hill Golden S,
Carson KA and Dobs A: Association between endogenous testosterone
and cerebrovascular disease in the ARIC study (atherosclerosis risk
in communities). Stroke. 47:2682–2688. 2016.
|
122
|
Son BK, Akishita M, Iijima K, Ogawa S,
Maemura K, Yu J, Takeyama K, Kato S, Eto M and Ouchi Y: Androgen
receptor-dependent transactivation of growth arrest-specific gene 6
mediates inhibitory effects of testosterone on vascular
calcification. J Biol Chem. 285:7537–7544. 2010.
|
123
|
Qiu C, Zheng H, Tao H, Yu W, Jiang X, Li
A, Jin H, Lv A and Li H: Vitamin K2 inhibits rat vascular smooth
muscle cell calcification by restoring the Gas6/Axl/Akt
anti-apoptotic pathway. Mol Cell Biochem. 433:149–159. 2017.
|
124
|
Kraler S, Blaser MC, Aikawa E, Camici GG
and Lüscher TF: Calcific aortic valve disease: From molecular and
cellular mechanisms to medical therapy. Eur Heart J. 43:683–697.
2022.
|
125
|
Kim H, Kim HJ, Lee K, Kim JM, Kim HS, Kim
JR, Ha CM, Choi YK, Lee SJ, Kim JY, et al: α-Lipoic acid attenuates
vascular calcification via reversal of mitochondrial function and
restoration of Gas6/Axl/Akt survival pathway. J Cell Mol Med.
16:273–286. 2012.
|
126
|
Hu L, Ji J, Li D, Meng J and Yu B: The
combined effect of vitamin K and calcium on bone mineral density in
humans: A meta-analysis of randomized controlled trials. J Orthop
Surg Res. 16:5922021.
|
127
|
Huang SW, Xiang DK, Wu HL, Chen BL, An BQ
and Li GF: Impact of five genetic polymorphisms on inter-individual
variation in warfarin maintenance dose. Zhonghua Yi Xue Yi Chuan
Xue Za Zhi. 28:661–665. 2011.In Chinese.
|
128
|
Yuan HY, Chen JJ, Lee MT, Wung JC, Chen
YF, Charng MJ, Lu MJ, Hung CR, Wei CY, Chen CH, et al: A novel
functional VKORC1 promoter polymorphism is associated with
inter-individual and inter-ethnic differences in warfarin
sensitivity. Hum Mol Genet. 14:1745–1751. 2005.
|