Potential of olfactory neuroepithelial cells as a model to study schizophrenia: A focus on GPCRs (Review)
- Authors:
- Zuly A. Sánchez‑Florentino
- Bianca S. Romero‑Martínez
- Edgar Flores‑Soto
- Héctor Serrano
- Luis M. Montaño
- Marcela Valdés‑Tovar
- Eduardo Calixto
- Arnoldo Aquino‑Gálvez
- Germán O. López‑Riquelme
- Ramón Alvarado
- Jesús Argueta
- Héctor Solís‑Chagoyán
- Bettina Sommer
-
Affiliations: Neuropharmacology Laboratory, Clinical Research Branch, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico, Department of Pharmacology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico, Department of Health Sciences, Metropolitan Autonomous University Iztapalapa Unit, Mexico City 09340, Mexico, Department of Pharmacogenetics, Clinical Research Branch, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico, Department of Neurobiology, Neuroscience Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico, Molecular Biology Laboratory, Department of Pulmonary Fibrosis, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico, Socioneurobiology Laboratory, Center for Research in Cognitive Sciences, Autonomous University of The State of Morelos, Cuernavaca 62209, Mexico, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico, Department of Cognitive and Evolutionary Neuroscience, Center for Research in Cognitive Sciences, Autonomous University of The State of Morelos, Cuernavaca 62209, Mexico, Department of Research in Bronchial Hyperreactivity, National Institute of Respiratory Diseases Ismael Cosio Villegas, Mexico City 14080, Mexico - Published online on: November 28, 2023 https://doi.org/10.3892/ijmm.2023.5331
- Article Number: 7
-
Copyright: © Sánchez‑Florentino et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Tandon R, Gaebel W, Barch DM, Bustillo J, Gur RE, Heckers S, Malaspina D, Owen MJ, Schultz S, Tsuang M, et al: Definition and description of schizophrenia in the DSM-5. Schizophr Res. 150:3–10. 2013. | |
Gaebel W and Zielasek J: Schizophrenia in 2020: Trends in diagnosis and therapy. Psychiatry Clin Neurosci. 69:661–673. 2015. | |
Chen J, Müller VI, Dukart J, Hoffstaedter F, Baker JT, Holmes AJ, Vatansever D, Nickl-Jockschat T, Liu X, Derntl B, et al: Intrinsic Connectivity Patterns of Task-defined brain networks allow individual prediction of cognitive symptom dimension of schizophrenia and are linked to molecular architecture. Biol Psychiatry. 89:308–319. 2021. | |
Marchetto MC, Brennand KJ, Boyer LF and Gage FH: Induced pluripotent stem cells (iPSCs) and neurological disease modeling: Progress and promises. Hum Mol Genet. 20:R109–R115. 2011. | |
Yang N, Ng YH, Pang ZP, Südhof TC and Wernig M: Induced neuronal cells: How to make and define a neuron. Cell Stem Cell. 9:517–525. 2011. | |
Borgmann-Winter K, Willard SL, Sinclair D, Mirza N, Turetsky B, Berretta S and Hahn CG: Translational potential of olfactory mucosa for the study of neuropsychiatric illness. Transl Psychiatry. 5:e5272015. | |
Benítez-King G, Valdés-Tovar M, Trueta C, Galván-Arrieta T, Argueta J, Alarcón S, Lora-Castellanos A and Solís-Chagoyán H: The microtubular cytoskeleton of olfactory neurons derived from patients with schizophrenia or with bipolar disorder: Implications for biomarker characterization, neuronal physiology and pharmacological screening. Mol Cell Neurosci. 73:84–95. 2016. | |
Moberg PJ, Kamath V, Marchetto DM, Calkins ME, Doty RL, Hahn CG, Borgmann-Winter KE, Kohler CG, Gur RE and Turetsky BI: Meta-analysis of olfactory function in schizophrenia, first-degree family members, and youths at-risk for psychosis. Schizophr Bull. 40:50–59. 2014. | |
Kamath V, Turetsky BI, Calkins ME, Bilker WB, Frishberg N, Borgmann-Winter K, Kohler CG, Conroy CG, Gur RE and Moberg PJ: The effect of odor valence on olfactory performance in schizophrenia patients, unaffected relatives and at-risk youth. J Psychiatr Res. 47:1636–1641. 2013. | |
Malaspina D, Goetz R, Keller A, Messinger JW, Bruder G, Goetz D, Opler M, Harlap S, Harkavy-Friedman J and Antonius D: Olfactory processing, sex effects and heterogeneity in schizophrenia. Schizophr Res. 135:144–151. 2012. | |
Turetsky BI, Hahn C-G, Arnold SE and Moberg PJ: Olfactory receptor neuron dysfunction in schizophrenia. Neuropsychopharmacology. 34:767–774. 2009. | |
Rupp CI, Fleischhacker WW, Kemmler G, Oberbauer H, Scholtz AW, Wanko C and Hinterhuber H: Various bilateral olfactory deficits in male patients with schizophrenia. Schizophr Bull. 31:155–165. 2005. | |
Alvarado-Martínez R, Salgado-Puga K and Peña-Ortega F: Amyloid beta inhibits olfactory bulb activity and the ability to smell. PLoS One. 8:e757452013. | |
Conti MZ, Vicini-Chilovi B, Riva M, Zanetti M, Liberini P, Padovani A and Rozzini L: Odor identification deficit predicts clinical conversion from mild cognitive impairment to dementia due to Alzheimer's disease. Arch Clin Neuropsychol. 28:391–399. 2013. | |
Burón E and Bulbena A: Olfaction in affective and anxiety disorders: A review of the literature. Psychopathology. 46:63–74. 2013. | |
Arnold SE, Lee EB, Moberg PJ, Stutzbach L, Kazi H, Han LY and Trojanowski JQ: Olfactory epithelium amyloid-β and paired helical filament-tau pathology in Alzheimer disease. Ann Neurol. 67:462–469. 2010. | |
Arnold SE, Smutzer GS, Trojanowski JQ and Moberg PJ: Cellular and molecular neuropathology of the olfactory epithelium and central olfactory pathways in Alzheimer's disease and schizophrenia. Ann N Y Acad Sci. 855:762–775. 1998. | |
Arnold SE, Han L-Y, Moberg PJ, Turetsky BI, Gur RE, Trojanowski JQ and Hahn CG: Dysregulation of olfactory receptor neuron lineage in schizophrenia. Arch Gen Psychiatry. 58:829–835. 2001. | |
McCurdy RD, Féron F, Perry C, Chant DC, McLean D, Matigian N, Hayward NK, McGrath JJ and Mackay-Sim A: Cell cycle alterations in biopsied olfactory neuroepithelium in schizophrenia and bipolar I disorder using cell culture and gene expression analyses. Schizophr Res. 82:163–173. 2006. | |
Féron F, Perry C, Hirning MH, McGrath J and Mackay-Sim A: Altered adhesion, proliferation and death in neural cultures from adults with schizophrenia. Schizophr Res. 40:211–218. 2006. | |
Matigian N, Abrahamsen G, Sutharsan R, Cook AL, Vitale AM, Nouwens A, Bellette B, An J, Anderson M, Beckhouse AG, et al: Disease-specific, neurosphere-derived cells as models for brain disorders. Dis Models Mech. 3:785–798. 2010. | |
Fan Y, Abrahamsen G, McGrath JJ and Mackay-Sim A: Altered cell cycle dynamics in schizophrenia. Biol Psychiatry. 71:129–135. 2012. | |
Fan Y, Abrahamsen G, Mills R, Calderón CC, Tee JY, Leyton L, Murrell W, Cooper-White J, McGrath JJ and Mackay-Sim A: Focal adhesion dynamics are altered in schizophrenia. Biol Psychiatry. 74:418–426. 2013. | |
Hahn CG, Gomez G, Restrepo D, Friedman E, Josiassen R, Pribitkin EA, Lowry LD, Gallop RJ and Rawson NE: Aberrant intracellular calcium signaling in olfactory neurons from patients with bipolar disorder. Am J Psychiatry. 162:616–618. 2005. | |
Pantazopoulos H, Boyer-Boiteau A, Holbrook EH, Jang W, Hahn CG, Arnold SE and Berretta S: Proteoglycan abnormalities in olfactory epithelium tissue from subjects diagnosed with schizophrenia. Schizophr Res. 150:366–372. 2013. | |
Yang A and Tsai SJ: New targets for schizophrenia treatment beyond the dopamine hypothesis. Int J Mol Sci. 18:16892017. | |
Galván-Arrieta T, Trueta C, Cercós MG, Valdés-Tovar M, Alarcón S, Oikawa J, Zamudio-Meza H and Benítez-King G: The role of melatonin in the neurodevelopmental etiology of schizophrenia: A study in human olfactory neuronal precursors. J Pineal Res. 63:2017. View Article : Google Scholar | |
Ferretjans R, de Souza RP, Panizzutti B, Ferrari P, Mantovani L, de Campos-Carli SM, Santos RR, Guimarães FC, Teixeira AL, Gama CS and Salgado JV: Cannabinoid receptor gene polymorphisms and cognitive performance in patients with schizophrenia and controls. Braz J Psychiatry. 44:26–34. 2022. | |
Borroto-Escuela DO, Cuesta-Marti C, Lopez-Salas A, Chruścicka-Smaga B, Crespo-Ramírez M, Tesoro-Cruz E, Palacios-Lagunas DA, Perez de la Mora M, Schellekens H and Fuxe K: The oxytocin receptor represents a key hub in the GPCR heteroreceptor network: Potential relevance for brain and behavior. Front Mol Neurosci. 15:10553442022. | |
Rahman MM, Islam MR, Mim SA, Sultana N, Chellappan DK, Dua K, Kamal MA, Sharma R and Emran TB: Insights into the promising prospect of G protein and GPCR-mediated signaling in neuropathophysiology and its therapeutic regulation. Oxid Med Cell Longev. 2022:84256402022. | |
Komatsu H, Fukuchi M and Habata Y: Potential utility of biased GPCR signaling for treatment of psychiatric disorders. Int J Mol Sci. 20:201906292019. | |
Udawela M, Scarr E, Hannan AJ, Thomas EA and Dean B: Phospholipase C beta 1 expression in the dorsolateral prefrontal cortex from patients with schizophrenia at different stages of illness. Aust N Z J Psychiatry. 45:140–147. 2011. | |
Udawela M, Scarr E, Boer S, Um JY, Hannan AJ, McOmish C, Felder CC, Thomas EA and Dean B: Isoform specific differences in phospholipase C beta 1 expression in the prefrontal cortex in schizophrenia and suicide. NPJ Schizophr. 3:192017. | |
Vasco VRL, Cardinale G and Polonia P: Deletion of PLCB1 gene in schizophrenia-affected patients. J Cell Mol Med. 16:844–851. 2012. | |
Deng C, Pan B, Engel M and Huang XF: Neuregulin-1 signalling and antipsychotic treatment: Potential therapeutic targets in a schizophrenia candidate signalling pathway. Psychopharmacology (Berl). 226:201–215. 2013. | |
Féron F, Perry C, Girard SD and Mackay-Sim A: Isolation of adult stem cells from the human olfactory mucosa. Methods Mol Biol. 1059:107–114. 2013. | |
Benitez-King G, Riquelme A, Ortiz-Lopez L, Berlanga C, Rodriguez-Verdugo MS, Romo F, Calixto E, Solís-Chagoyán H, Jímenez M, Montaño LM, et al: A non-invasive method to isolate the neuronal linage from the nasal epithelium from schizophrenic and bipolar diseases. J Neurosci Methods. 201:35–45. 2011. | |
Bellon A, Wegener A, Lescallette AR, Valente M, Yang SK, Gardette R, Matricon J, Mouaffak F, Watts P, Vimeux L, et al: Transdifferentiation of human circulating monocytes into neuronal-like cells in 20 days and without reprograming. Front Mol Neurosci. 11:3232018. | |
Stoddard-Bennett T and Reijo Pera R: Treatment of Parkinson's disease through personalized medicine and induced pluripotent stem cells. Cells. 8:262019. | |
Lavoie J, Sawa A and Ishizuka K: Application of olfactory tissue and its neural progenitors to schizophrenia and psychiatric research. Curr Opin Psychiatry. 30:176–183. 2017. | |
Ellis P, Fagan BM, Magness ST, Hutton S, Taranova O, Hayashi S, McMahon A, Rao M and Pevny L: SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci. 26:148–165. 2004. | |
Caprnda M, Kubatka P, Gazdikova K, Gasparova I, Valentova V, Stollarova N, La Rocca G, Kobyliak N, Dragasek J, Mozos I, et al: Immunomodulatory effects of stem cells: Therapeutic option for neurodegenerative disorders. Biomed Pharmacother. 91:60–69. 2017. | |
Zhang X, Klueber KM, Guo Z, Lu C and Roisen FJ: Adult human olfactory neural progenitors cultured in defined medium. Exp Neurol. 186:112–123. 2004. | |
Zhang X, Cai J, Klueber KM, Guo Z, Lu C, Qiu M and Roisen FJ: Induction of oligodendrocytes from adult human olfactory epithelial-derived progenitors by transcription factors. Stem Cells. 23:442–453. 2005. | |
Solís-Chagoyán H, Calixto E, Figueroa A, Montaño LM, Berlanga C, Rodríguez-Verdugo MS, Romo F, Jiménez M, Gurrola CZ, Riquelme A and Benítez-King G: Microtubule organization and L-type voltage-activated calcium current in olfactory neuronal cells obtained from patients with schizophrenia and bipolar disorder. Schizophr Res. 143:384–389. 2013. | |
Riquelme A, Valdés-Tovar M, Ugalde O, Maya-Ampudia V, Fernández M, Mendoza-Durán L, Rodríguez-Cárdenas L and Benítez-King G: Potential use of exfoliated and cultured olfactory neuronal precursors for in vivo Alzheimer's disease diagnosis: A pilot study. Cell Mol Neurobiol. 40:87–98. 2020. | |
Barrera-Conde M, Ausin K, Lachén-Montes M, Fernández-Irigoyen J, Galindo L, Cuenca-Royo A, Fernández-Avilés C, Pérez V, de la Torre R, Santamaría E and Robledo P: Cannabis use induces distinctive proteomic alterations in olfactory neuroepithelial cells of schizophrenia patients. J Pers Med. 11:1602021. | |
Delgado-Sequera A, Hidalgo-Figueroa M, Barrera-Conde M, Duran-Ruiz MC, Castro C, Fernández-Avilés C, de la Torre R, Sánchez-Gomar I, Pérez V, Geribaldi-Doldán N, et al: Olfactory neuroepithelium cells from cannabis users display alterations to the cytoskeleton and to markers of adhesion, proliferation and apoptosis. Mol Neurobiol. 58:1695–1710. 2021. | |
Muñoz-Estrada J, Benítez-King G, Berlanga C and Meza I: Altered subcellular distribution of the 75-kDa DISC1 isoform, cAMP accumulation, and decreased neuronal migration in schizophrenia and bipolar disorder: Implications for neurodevelopment. CNS Neurosci Ther. 21:446–453. 2015. | |
Kano S, Colantuoni C, Han F, Zhou Z, Yuan Q, Wilson A, Takayanagi Y, Lee Y, Rapoport J, Eaton W, et al: Genome-wide profiling of multiple histone methylations in olfactory cells: Further implications for cellular susceptibility to oxidative stress in schizophrenia. Mol Psychiatry. 18:740–742. 2013. | |
Borgmann-Winter KE, Rawson NE, Wang HY, Wang H, Macdonald ML, Ozdener MH, Yee KK, Gomez G, Xu J, Bryant B, et al: Human olfactory epithelial cells generated in vitro express diverse neuronal characteristics. Neuroscience. 158:642–653. 2009. | |
Mackay-Sim A: Concise review: Patient-derived olfactory stem cells: New models for brain diseases. Stem Cells. 30:2361–2365. 2012. | |
Rabadan MA, De La Cruz ED, Rao SB, Chen Y, Gong C, Crabtree G, Xu B, Markx S, Gogos JA, Yuste R and Tomer R: An in vitro model of neuronal ensembles. Nat Commun. 13:33402022. | |
Hoffmann A, Ziller M and Spengler D: Progress in iPSC-based modeling of psychiatric disorders. Int J Mol Sci. 20:48962019. | |
Kolagar TA, Farzaneh M, Nikkar N and Khoshnam SE: Human pluripotent stem cells in neurodegenerative diseases: Potentials, advances and limitations. Curr Stem Cell Res Ther. 15:102–110. 2020. | |
Nicholson MW, Ting CY, Chan DZH, Cheng YC, Lee YC, Hsu CC, Huang CY and Hsieh PCH: Utility of iPSC-derived cells for disease modeling, drug development, and cell therapy. Cells. 11:18532022. | |
Solis-Chagoyan H, Flores-Soto E, Valdes-Tovar M, Cercos MG, Calixto E, Montano LM, Barajas-López C, Sommer B, Aquino-Gálvez A, Trueta C and Benítez-King GA: Purinergic signaling pathway in human olfactory neuronal precursor cells. Stem Cells Int. 2019:27287862019. | |
Berridge MJ, Bootman MD and Roderick HL: Calcium signalling: Dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 4:517–529. 2003. | |
Berridge MJ: Calcium signalling and psychiatric disease: Bipolar disorder and schizophrenia. Cell and Tissue Res. 357:477–492. 2014. | |
Berridge MJ: Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion. 7:2–13. 2013. | |
Schwartz RD, Wagner JP, Yu X and Martin D: Bidirectional modulation of GABA-gated chloride channels by divalent cations: Inhibition by Ca2+ and enhancement by Mg2+. J Neurochemistry. 62:916–922. 1994. | |
Olney JW, Newcomer JW and Farber NB: NMDA receptor hypofunction model of schizophrenia. J Psychiatric Res. 33:523–533. 1999. | |
Olney JW and Farber NB: Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry. 52:998–1007. 1995. | |
Sharp FR, Butman M, Koistinaho J, Aardalen K, Nakki R, Massa SM, Swanson RA and Sagar SM: Phencyclidine induction of the hsp 70 stress gene in injured pyramidal neurons is mediated via multiple receptors and voltage gated calcium channels. Neuroscience. 62:1079–1092. 1994. | |
Novak G, Seeman P and Tallerico T: Schizophrenia: Elevated mRNA for calcium-calmodulin-dependent protein kinase IIbeta in frontal cortex. Brain Res Mol Brain Res. 82:95–100. 2000. | |
Benfenati F, Valtorta F, Rubenstein JL, Gorelick FS, Greengard P and Czernik AJ: Synaptic vesicle-associated Ca2+/calmodulindependent protein kinase II is a binding protein for synapsin I. Nature. 359:417–420. 1992. | |
Greengard P, Benfenati F and Valtorta F: Synapsin I, an actin-binding protein regulating synaptic vesicle traffic in the nerve terminal. Adv Second Messenger Phosphoprotein Res. 29:31–45. 1994. | |
Kantor L, Hewlett GHK and Gnegy ME: Enhanced amphetamine- and K+-mediated dopamine release in rat striatum after repeated amphetamine: Differential requirements for Ca2+- and Calmodulin-dependent phosphorylation and synaptic vesicles. J Neurosci. 19:3801–3808. 1999. | |
Popov N and Matthies H: Influence of dopamine receptor agonists and antagonists on calmodulin translocation in different brain regions. Eur J Pharmacol. 172:205–210. 1989. | |
Selemon LD and Goldman-Rakic PS: The reduced neuropil hypothesis: A circuit based model of schizophrenia. Biol Psychiatry. 45:17–25. 1999. | |
Broadbelt K, Byne W and Jones LB: Evidence for a decrease in basilar dendrites of pyramidal cells in schizophrenic medial prefrontal cortex. Schizophr Res. 58:75–81. 2002. | |
Mattson MP: Calcium as sculptor and destroyer of neural circuitry. Exp Gerontol. 27:29–49. 1992. | |
Bird MM and Owen A: The effect of calcium ionophore A23187 on neurites from embryonic mouse spinal cord explants in culture. J Eectron Microscopy. 49:379–386. 2000. | |
Lidow MS: Calcium signaling dysfunction in schizophrenia: A unifying approach. Brain Res Brain Res Rev. 43:70–84. 2003. | |
Benes FM, McSparren J, Bird ED, SanGiovanni JP and Vincent SL: Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry. 48:996–1001. 1991. | |
Benes FM, Davidson J and Bird ED: Quantitative cytoarchitectural studies of the cerebral cortex of schizophrenics. Arch Gen Psychiatry. 43:31–35. 1986. | |
Benes FM, Kwok EW, Vincent SL and Todtenkopf MS: A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol Psychiatry. 44:88–97. 1998. | |
Falkai P and Bogerts B: Cell loss in the hippocampus of schizophrenics. Eur Arch Psychiatry Neurol Sci. 236:154–161. 1986. | |
Jeste DV and Lohr JB: Hippocampal pathologic findings in schizophrenia. A morphometric study. Arch Gen Psychiatry. 46:1019–1024. 1989. | |
Popken GJ, Bunney WE, Potkin SG and Jones EG: Subnucleus-specific loss of neurons in medial thalamus of schizophrenics. Proc Natl Acad Sci USA. 97:9276–9280. 2000. | |
Akbarian S, Kim JJ, Potkin SG, Hetrick WP, Bunney WE Jr and Jones EG: Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Arch Gen Psychiatry. 53:425–436. 1996. | |
Hirai K, Yoshioka H, Kihara M, Hasegawa K, Sakamoto T, Sawada T and Fushiki S: Inhibiting neuronal migration by blocking NMDA receptors in the embryonic rat cerebral cortex: A tissue culture study. Brain Res Dev Brain Res. 114:63–67. 1999. | |
Soria JM and Valdeolmillos M: Receptor-activated calcium signals in tangentially migrating cortical cells. Cerebral Cortex. 12:831–839. 2002. | |
Velligan DI and Rao S: The epidemiology and global burden of schizophrenia. J Clin Psychiatry. 84:MS21078COM52023. | |
Boczek T, Mackiewicz J, Sobolczyk M, Wawrzyniak J, Lisek M, Ferenc B, Guo F and Zylinska L: The role of G Protein-coupled receptors (GPCRs) and calcium signaling in schizophrenia. Focus on GPCRs activated by neurotransmitters and chemokines. Cells. 10:12282021. | |
Ermakov EA, Dmitrieva EM, Parshukova DA, Kazantseva DV, Vasilieva AR and Smirnova LP: Oxidative Stress-related mechanisms in schizophrenia pathogenesis and new treatment perspectives. Oxid Med Cell Longev. 2021:88817702021. | |
Özdemir H, Eker M, Zengin B, Yılmaz DA, İşman Haznedaroğlu D, Çınar C, Kitiş Ö, Akay A and Gönül AS: Gray matter changes in patients with deficit schizophrenia and non-deficit schizophrenia. Turk Psikiyatri Derg. 23:237–246. 2012. | |
Valdés-Tovar M, Rodríguez-Ramírez AM, Rodríguez-Cárdenas L, Sotelo-Ramírez CE, Camarena B, Sanabrais-Jiménez MA, Solís-Chagoyán H, Argueta J and López-Riquelme GO: Insights into myelin dysfunction in schizophrenia and bipolar disorder. World J Psychiatry. 12:264–285. 2022. | |
Jimerson DC, Post RM, Carman JS, van Kammen DP, Wood JH, Goodwin FK and Bunney WE Jr: CSF calcium: Clinical correlates in affective illness and schizophrenia. Biol Psychiatry. 14:37–51. 1979. | |
Lewis DA and Moghaddam B: Cognitive dysfunction in schizophrenia: Convergence of gamma-aminobutyric acid and glutamate alterations. Arch Neurol. 63:1372–1376. 2006. | |
Beaulieu JM, Espinoza S and Gainetdinov RR: Dopamine receptors-IUPHAR Review 13. Br J Pharmacol. 172:1–23. 2015. | |
Li YC, Kellendonk C, Simpson EH, Kandel ER and Gao WJ: D2 receptor overexpression in the striatum leads to a deficit in inhibitory transmission and dopamine sensitivity in mouse prefrontal cortex. Proc Natl Acad Sci USA. 108:12107–12112. 2011. | |
Takahashi H, Kato M, Takano H, Arakawa R, Okumura M, Otsuka T, Kodaka F, Hayashi M, Okubo Y, Ito H and Suhara T: Differential contributions of prefrontal and hippocampal dopamine D(1) and D(2) receptors in human cognitive functions. J Neurosci. 28:12032–12038. 2008. | |
Beaulieu JM and Gainetdinov RR: The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 63:182–217. 2011. | |
Speranza L, di Porzio U, Viggiano D, de Donato A and Volpicelli F: Dopamine: The Neuromodulator of Long-term synaptic plasticity, reward and movement control. Cells. 10:7352021. | |
Conio B, Martino M, Magioncalda P, Escelsior A, Inglese M, Amore M and Northoff G: Opposite effects of dopamine and serotonin on resting-state networks: Review and implications for psychiatric disorders. Mol Psychiatry. 25:82–93. 2020. | |
Seeman P: Targeting the dopamine D2 receptor in schizophrenia. Expert Opin Ther Targets. 10:515–531. 2006. | |
Simpson EH, Gallo EF, Balsam PD, Javitch JA and Kellendonk C: How changes in dopamine D2 receptor levels alter striatal circuit function and motivation. Mol Psychiatry. 27:436–444. 2022. | |
Schizophrenia Working Group of the Psychiatric Genomics Consortium: Biological insights from 108 schizophrenia-associated genetic loci. Nature. 511:421–427. 2014. | |
Howes O, Mccutcheon R and Stone J: Glutamate and dopamine in schizophrenia: An update for the 21st century. J Psychopharmacol. 29:97–115. 2015. | |
Goldman-Rakic P, Castner S, Svensson T, Siever L and Williams G: Targeting the dopamine D1 receptor in schizophrenia: Insights for cognitive dysfunction. Psychopharmacology (Berl). 174:3–16. 2004. | |
Jardemark K, Wadenberg ML, Grillner P and Svensson TH: Dopamine D3 and D4 receptor antagonists in the treatment of schizophrenia. Curr Opin Investig Drugs. 3:101–105. 2002. | |
Gross G, Wicke K and Drescher KU: Dopamine D3 receptor antagonism-still a therapeutic option for the treatment of schizophrenia. Naunyn Schmiedebergs Arch Pharmacol. 386:155–166. 2013. | |
Maramai S, Gemma S, Brogi S, Campiani G, Butini S, Stark H and Brindisi M: Dopamine D3 receptor antagonists as potential therapeutics for the treatment of neurological diseases. Front Neurosci. 10:4512016. | |
Motiejunaite J, Amar L and Vidal-Petiot E: Adrenergic receptors and cardiovascular effects of catecholamines. Ann Endocrinol (Paris). 82:193–197. 2021. | |
Perez DM and Doze VA: Cardiac and neuroprotection regulated by α(1)-adrenergic receptor subtypes. J Recept Signal Transduct Res. 31:98–110. 2011. | |
Jensen BC, Swigart PM, De Marco T, Hoopes C and Simpson PC: {alpha}1-Adrenergic receptor subtypes in nonfailing and failing human myocardium. Circ Heart Fail. 2:654–663. 2009. | |
Yamamoto K and Hornykiewicz O: Proposal for a noradrenaline hypothesis of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 28:913–922. 2004. | |
Arnsten AT: Adrenergic targets for the treatment of cognitive deficits in schizophrenia. Psychopharmacology (Berl). 174:25–31. 2004. | |
Atzori M, Cuevas-Olguin R, Esquivel-Rendon E, Garcia-Oscos F, Salgado-Delgado RC, Saderi N, Miranda-Morales M, Treviño M, Pineda JC and Salgado H: Locus ceruleus norepinephrine release: A central regulator of CNS Spatio-temporal activation? Front Synaptic Neurosci. 8:252016. | |
Birnbaum SG, Yuan PX, Wang M, Vijayraghavan S, Bloom AK, Davis DJ, Gobeske KT, Sweatt JD, Manji HK and Arnsten AF: Protein kinase C overactivity impairs prefrontal cortical regulation of working memory. Science. 306:882–884. 2004. | |
Phillips WA, Larkum ME, Harley CW and Silverstein SM: The effects of arousal on apical amplification and conscious state. Neurosci Conscious. 2016:niw0152016. | |
Millar JK, Pickard BS, Mackie S, James R, Christie S, Buchanan SR, Malloy MP, Chubb JE, Huston E, Baillie GS, et al: DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science. 310:1187–1191. 2005. | |
Millar JK, Mackie S, Clapcote SJ, Murdoch H, Pickard BS, Christie S, Muir WJ, Blackwood DH, Roder JC, Houslay MD and Porteous DJ: Disrupted in schizophrenia 1 and phosphodiesterase 4B: towards an understanding of psychiatric illness. J Physiol. 584:401–405. 2007. | |
Wang M, Ramos BP, Paspalas CD, Shu Y, Simen A, Duque A, Vijayraghavan S, Brennan A, Dudley A, Nou E, et al: α2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell. 129:397–410. 2007. | |
Wang M, Gamo NJ, Yang Y, Jin LE, Wang XJ, Laubach M, Mazer JA, Lee D and Arnsten AF: Neuronal basis of age-related working memory decline. Nature. 476:210–213. 2011. | |
Valero-Aracama MJ, Reboreda A, Arboit A, Sauvage M and Yoshida M: Noradrenergic suppression of persistent firing in hippocampal CA1 pyramidal cells through cAMP-PKA pathway. eNeuro. 8:ENEURO.0440–20.2020. 2021. | |
Ramos BP, Colgan L, Nou E, Ovadia S, Wilson SR and Arnsten AF: The beta-1 adrenergic antagonist, betaxolol, improves working memory performance in rats and monkeys. Biol Psychiatry. 58:894–900. 2005. | |
Ramos BP, Colgan LA, Nou E and Arnsten AFT: β2 adrenergic agonist, clenbuterol, enhances working memory performance in aging animals. Neurobiol Aging. 29:1060–1069. 2008. | |
Clark DA, Arranz MJ, Mata I, Lopéz-Ilundain J, Pérez-Nievas F and Kerwin RW: Polymorphisms in the promoter region of the alpha1A-adrenoceptor gene are associated with schizophrenia/schizoaffective disorder in a Spanish isolate population. Biol Psychiatry. 58:435–439. 2005. | |
Lochman J, Plesník J, Janout V, Povová J, Míšek I, Dvořáková D and Šerý O: Interactive effect of MTHFR and ADRA2A gene polymorphisms on pathogenesis of schizophrenia. Neuro Endocrinol Lett. 34:792–797. 2013. | |
Vares M, Saetre P, Deng H, Cai G, Liu X, Hansen T, Rasmussen HB, Werge T, Melle I, Djurovic S, et al: Association between methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and age of onset in schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 153B:610–618. 2010. | |
Lu ML, Ku WC, Syifa N, Hu SC, Chou CT, Wu YH, Kuo PH, Chen CH, Chen WJ and Wu TH: Developing a sensitive platform to measure 5-methyltetrahydrofolate in subjects with MTHFR and PON1 gene polymorphisms. Nutrients. 14:33202022. | |
Dean B and Scarr E: Muscarinic M1 and M4 receptors: Hypothesis driven drug development for schizophrenia. Psychiatry Res. 288:1129892020. | |
Dean B, Bakker G, Ueda HR, Tobin AB, Brown A and Kanaan RAA: A growing understanding of the role of muscarinic receptors in the molecular pathology and treatment of schizophrenia. Front Cell Neurosci. 17:11243332023. | |
Teal LB, Gould RW, Felts AS and Jones CK: Selective allosteric modulation of muscarinic acetylcholine receptors for the treatment of schizophrenia and substance use disorders. Adv Pharmacol. 86:153–196. 2019. | |
Crook JM, Tomaskovic-Crook E, Copolov DL and Dean B: Low muscarinic receptor binding in prefrontal cortex from subjects with schizophrenia: A study of Brodmann's Areas 8, 9, 10, and 46 and the effects of neuroleptic drug treatment. Am J Psychiatry. 158:918–925. 2001. | |
Zavitsanou K, Katsifis A, Mattner F and Huang XF: Investigation of M1/M4 muscarinic receptors in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression disorder. Neuropsychopharmacology. 29:619–625. 2004. | |
Crook JM, Tomaskovic-Crook E, Copolov DL and Dean B: Decreased muscarinic receptor binding in subjects with schizophrenia: A study of the human hippocampal formation. Biol Psychiatry. 48:381–388. 2000. | |
Dean B, Crook JM, Opeskin K, Hill C, Keks N and Copolov DL: The density of muscarinic M1 receptors is decreased in the caudate-putamen of subjects with schizophrenia. Mol Psychiatry. 1:54–58. 1996. | |
Liao DL, Hong CJ, Chen HM, Chen YE, Lee SM, Chang CY, Chen H and Tsai SJ: Association of muscarinic m1 receptor genetic polymorphisms with psychiatric symptoms and cognitive function in schizophrenic patients. Neuropsychobiology. 48:72–76. 2003. | |
Scarr E, Craig JM, Cairns MJ, Seo MS, Galati JC, Beveridge NJ, Gibbons A, Juzva S, Weinrich B, Parkinson-Bates M, et al: Decreased cortical muscarinic M1 receptors in schizophrenia are associated with changes in gene promoter methylation, mRNA and gene targeting microRNA. Transl Psychiatry. 3:e2302013. | |
Scarr E, Um JY, Cowie TF and Dean B: Cholinergic muscarinic M4 receptor gene polymorphisms: A potential risk factor and pharmacogenomic marker for schizophrenia. Schizophr Res. 146:279–284. 2013. | |
De Luca V, Wang H, Squassina A, Wong GW, Yeomans J and Kennedy JL: Linkage of M5 muscarinic and alpha7-nicotinic receptor genes on 15q13 to schizophrenia. Neuropsychobiology. 50:124–127. 2004. | |
Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM and Silva AJ: Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci. 6:51–58. 2003. | |
Thomsen M, Wess J, Fulton BS, Fink-Jensen A and Caine SB: Modulation of prepulse inhibition through both M1 and M4 muscarinic receptors in mice. Psychopharmacology. 208:401–416. 2010. | |
Felder CC, Porter AC, Skillman TL, Zhang L, Bymaster FP, Nathanson NM, Hamilton SE, Gomeza J, Wess J and McKinzie DL: Elucidating the role of muscarinic receptors in psychosis. Life Sci. 68:2605–2613. 2001. | |
Koshimizu H, Leiter LM and Miyakawa T: M4 muscarinic receptor knockout mice display abnormal social behavior and decreased prepulse inhibition. Mol Brain. 5:102012. | |
Dencker D, Wörtwein G, Weikop P, Jeon J, Thomsen M, Sager TN, Mørk A, Woldbye DP, Wess J and Fink-Jensen A: Involvement of a subpopulation of neuronal M4 muscarinic acetylcholine receptors in the antipsychotic-like effects of the M1/M4 preferring muscarinic receptor agonist xanomeline. J Neurosci. 31:5905–5908. 2011. | |
Woolley ML, Carter HJ, Gartlon JE, Watson JM and Dawson LA: Attenuation of amphetamine-induced activity by the non-selective muscarinic receptor agonist, xanomeline, is absent in muscarinic M4 receptor knockout mice and attenuated in muscarinic M1 receptor knockout mice. Eur J Pharmacol. 603:147–149. 2009. | |
Tzavara ET, Bymaster FP, Davis RJ, Wade MR, Perry KW, Wess J, McKinzie DL, Felder C and Nomikos GG: M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: Relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J. 18:1410–1412. 2004. | |
Zhang W, Yamada M, Gomeza J, Basile AS and Wess J: Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1-M5 muscarinic receptor knock-out mice. J Neurosci. 22:6347–6352. 2002. | |
Thomsen M, Wörtwein G, Fink-Jensen A, Woldbye DP, Wess J and Caine SB: Decreased prepulse inhibition and increased sensitivity to muscarinic, but not dopaminergic drugs in M5 muscarinic acetylcholine receptor knockout mice. Psychopharmacology. 192:97–110. 2007. | |
Wang H, Ng K, Hayes D, Gao X, Forster G, Blaha C and Yeomans J: Decreased Amphetamine-induced locomotion and improved latent inhibition in mice mutant for the M5 muscarinic receptor gene found in the human 15q schizophrenia region. Neuropsychopharmacology. 29:2126–2139. 2004. | |
Abad NH, Doulatabad NS, Mohammadi A and Srazi HR: Treatment of visual hallucinations in schizophrenia by acetylcholinesterase inhibitors: A case report. Iran J Osychiatry. 6:161–163. 2011. | |
Patel SS, Attard A, Jacobsen P and Shergill S: Acetylcholinesterase Inhibitors (AChEI's) for the treatment of visual hallucinations in schizophrenia: A case report. BMC Psychiatry. 10:682010. | |
Mancama D, Mata I, Kerwin RW and Arranz MJ: Choline acetyltransferase variants and their influence in schizophrenia and olanzapine response. Am J Med Genet B Neuropsychiatr Genet. 144B:849–853. 2007. | |
Niswender CM and Conn PJ: Metabotropic glutamate receptors: Physiology, pharmacology, and disease. Ann Rev Pharmacol Toxicol. 50:295–322. 2010. | |
Kim JH, Marton J, Ametamey SM and Cumming P: A review of molecular imaging of glutamate receptors. Molecules. 25:47492020. | |
Crupi R, Impellizzeri D and Cuzzocrea S: Role of metabotropic glutamate receptors in neurological disorders. Front Mol Neurosci. 12:202019. | |
Ayoub MA, Angelicheva D, Vile D, Chandler D, Morar B, Cavanaugh JA, Visscher PM, Jablensky A, Pfleger KD and Kalaydjieva L: Deleterious GRM1 mutations in schizophrenia. PLoS One. 7:e328492012. | |
Volk DW, Eggan SM and Lewis DA: Alterations in metabotropic glutamate receptor 1α and regulator of G protein signaling 4 in the prefrontal cortex in schizophrenia. Am J Psychiatry. 167:1489–1498. 2010. | |
Aiba A, Chen C, Herrup K, Rosenmund C, Stevens CF and Tonegawa S: Reduced hippocampal long-term potentiation and context-specific deficit in associative learning in mGluR1 mutant mice. Cell. 79:365–375. 1994. | |
Gil-Sanz C, Delgado-García JM, Fairén A and Gruart A: Involvement of the mGluR1 receptor in hippocampal synaptic plasticity and associative learning in behaving mice. Cerebral Cortex. 18:1653–1663. 2008. | |
Aiba A, Kano M, Chen C, Stanton ME, Fox GD, Herrup K, Zwingman TA and Tonegawa S: Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell. 79:377–388. 1994. | |
Brody SA, Conquet F and Geyer MA: Disruption of prepulse inhibition in mice lacking mGluR1. Eur J Neurosci. 18:3361–3366. 2003. | |
Maksymetz J, Moran SP and Conn PJ: Targeting metabotropic glutamate receptors for novel treatments of schizophrenia. Mol Brain. 10:152017. | |
Matosin N and Newell KA: Metabotropic glutamate receptor 5 in the pathology and treatment of schizophrenia. Neurosci Biobehav Rev. 37:256–268. 2013. | |
Brody SA, Dulawa SC, Conquet F and Geyer MA: Assessment of a prepulse inhibition deficit in a mutant mouse lacking mGlu5 receptors. Mol Psychiatry. 9:35–41. 2004. | |
Liang W, Hou Y, Huang W, Wang Y, Jiang T, Huang X, Wang Z, Wu F, Zheng J, Zhang J, et al: Loss of schizophrenia-related miR-501-3p in mice impairs sociability and memory by enhancing mGluR5-mediated glutamatergic transmission. Sci Adv. 8:eabn73572022. | |
Campbell UC, Lalwani K, Hernandez L, Kinney GG, Conn PJ and Bristow LJ: The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) potentiates PCP-induced cognitive deficits in rats. Psychopharmacology. 175:310–318. 2004. | |
Henry SA, Lehmann-Masten V, Gasparini F, Geyer MA and Markou A: The mGluR5 antagonist MPEP, but not the mGluR2/3 agonist LY314582, augments PCP effects on prepulse inhibition and locomotor activity. Neuropharmacology. 43:1199–1209. 2002. | |
Homayoun H, Stefani MR, Adams BW, Tamagan GD and Moghaddam B: Functional interaction between NMDA and mGlu5 receptors: Effects on working memory, instrumental learning, motor behaviors, and dopamine release. Neuropsychopharmacology. 29:1259–1269. 2004. | |
Zou D, Huang J, Wu X and Li L: Metabotropic glutamate subtype 5 receptors modulate fear-conditioning induced enhancement of prepulse inhibition in rats. Neuropharmacology. 52:476–486. 2007. | |
Semenova S and Markou A: The effects of the mGluR5 antagonist MPEP and the mGluR2/3 antagonist LY341495 on rats' performance in the 5-choice serial reaction time task. Neuropharmacology. 52:863–872. 2007. | |
Trepanier C, Lei G, Xie YF and Macdonald JF: Group II metabotropic glutamate receptors modify N-methyl-D-aspartate receptors via Src kinase. Sci Rep. 3:9262013. | |
Tyszkiewicz JP, Gu Z, Wang X, Cai X and Yan Z: Group II metabotropic glutamate receptors enhance NMDA receptor currents via a protein kinase C-dependent mechanism in pyramidal neurones of rat prefrontal cortex. J Physiol. 554:765–777. 2004. | |
Cheng J, Liu W, Duffney LJ and Yan Z: SNARE proteins are essential in the potentiation of NMDA receptors by group II metabotropic glutamate receptors. J Physiol. 591:3935–3947. 2013. | |
Uslaner JM, Smith SM, Huszar SL, Pachmerhiwala R, Hinchliffe RM, Vardigan JD and Hutson PH: Combined administration of an mGlu2/3 receptor agonist and a 5-HT 2A receptor antagonist markedly attenuate the psychomotoractivating and neurochemical effects of psychostimulants. Psychopharmacology. 206:641–651. 2009. | |
Campusano JM, Abarca J, Forray MI, Gysling K and Bustos G: Modulation of dendritic release of dopamine by metabotropic glutamate receptors in rat substantia nigra. Biochem Pharmacol. 63:1343–1352. 2002. | |
Chaki S, Yoshikawa R and Okuyama S: Group II metabotropic glutamate receptor-mediated regulation of dopamine release from slices of rat nucleus accumbens. Neurosci Lett. 404:182–186. 2006. | |
Hu G, Duffy P, Swanson C, Ghasemzadeh MB and Kalivas PW: The regulation of dopamine transmission by metabotropic glutamate receptors. J Pharmacol Exp Ther. 289:412–416. 1999. | |
Johnson KA, Mateo Y and Lovinger DM: Metabotropic glutamate receptor 2 inhibits thalamically-driven glutamate and dopamine release in the dorsal striatum. Neuropharmacology. 117:114–123. 2017. | |
Schoepp DD, Jane DE and Monn JA: Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology. 38:1431–1476. 1999. | |
Moghaddam B and Adams BW: Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science. 281:1349–1352. 1998. | |
Cartmell J, Monn JA and Schoepp DD: The metabotropic glutamate 2/3 receptor agonists LY354740 and LY379268 selectively attenuate phencyclidine versus d-amphetamine motor behaviors in rats. J Pharmacol Exp Ther. 291:161–170. 1999. | |
Galici R, Echemendia NG, Rodriguez AL and Conn PJ: A selective allosteric potentiator of metabotropic glutamate (mGlu) 2 receptors has effects similar to an orthosteric mGlu2/3 receptor agonist in mouse models predictive of antipsychotic activity. J Pharmacol Exp Ther. 315:1181–1187. 2005. | |
Kawaura K, Karasawa J and Hikichi H: Stimulation of the metabotropic glutamate (mGlu) 2 receptor attenuates the MK-801-induced increase in the immobility time in the forced swimming test in rats. Pharmacol Rep. 68:80–84. 2016. | |
Homayoun H, Jackson ME and Moghaddam B: Activation of metabotropic glutamate 2/3 receptors reverses the effects of NMDA receptor hypofunction on prefrontal cortex unit activity in awake rats. J Neurophysiol. 93:1989–2001. 2005. | |
Kłodzinska A, Bijak M, Tokarski K and Pilc A: Group II mGlu receptor agonists inhibit behavioural and electrophysiological effects of DOI in mice. Pharmacol Biochem Behav. 73:327–332. 2002. | |
Matrisciano F, Tueting P, Maccari S, Nicoletti F and Guidotti A: Pharmacological activation of group-II metabotropic glutamate receptors corrects a schizophrenia-like phenotype induced by prenatal stress in mice. Neuropsychopharmacology. 37:929–938. 2012. | |
Jones CA, Brown AM, Auer DP and Fone KCF: The mGluR2/3 agonist LY379268 reverses post-weaning social isolation-induced recognition memory deficits in the rat. Psychopharmacology. 214:269–283. 2011. | |
Harich S, Gross G and Bespalov A: Stimulation of the metabotropic glutamate 2/3 receptor attenuates social novelty discrimination deficits induced by neonatal phencyclidine treatment. Psychopharmacology. 192:511–519. 2007. | |
Hikichi H, Kaku A, Karasawa JI and Chaki S: Stimulation of metabotropic glutamate (mGlu) 2 receptor and blockade of mGlu1 receptor improve social memory impairment elicited by MK-801 in rats. J Pharmacol Sci. 122:10–16. 2013. | |
Wierońska JM, Acher FC, Sławińska A, Gruca P, Łasoń-Tyburkiewicz M, Papp M and Pilc A: The antipsychotic-like effects of the mGlu group III orthosteric agonist, LSP1-2111, involves 5-HT1A signalling. Psychopharmacology. 227:711–725. 2013. | |
Greco B, Invernizzi RW and Carli M: Phencyclidine-induced impairment in attention and response control depends on the background genotype of mice: Reversal by the mGLU2/3 receptor agonist LY379268. Psychopharmacology. 179:68–76. 2005. | |
Higgins GA, Ballard TM, Kew JN, Richards JG, Kemp JA, Adam G, Woltering T, Nakanishi S and Mutel V: Pharmacological manipulation of mGlu2 receptors influences cognitive performance in the rodent. Neuropharmacology. 46:907–917. 2004. | |
Amitai N and Markou A: Effects of metabotropic glutamate receptor 2/3 agonism and antagonism on schizophrenia-like cognitive deficits induced by phencyclidine in rats. Eur J Pharmacol. 639:67–80. 2010. | |
González-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, López-Giménez JF, Zhou M, Okawa Y, Callado LF, Milligan G, et al: Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature. 452:93–97. 2008. | |
Fribourg M, Moreno JL, Holloway T, Provasi D, Baki L, Mahajan R, Park G, Adney SK, Hatcher C, Eltit JM, et al: Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell. 147:1011–1023. 2011. | |
Moreno JL, Miranda-Azpiazu P, García-Bea A, Younkin J, Cui M, Kozlenkov A, Ben-Ezra A, Voloudakis G, Fakira AK, Baki L, et al: Allosteric signaling through an mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophrenia. Sci Signal. 9:ra52016. | |
Kurita M, Holloway T, García-Bea A, Kozlenkov A, Friedman AK, Moreno JL, Heshmati M, Golden SA, Kennedy PJ, Takahashi N, et al: HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity. Nat Neurosci. 15:1245–1254. 2012. | |
Pałucha-Poniewiera A, Kłodzińska A, Stachowicz K, Tokarski K, Hess G, Schann S, Frauli M, Neuville P and Pilc A: Peripheral administration of group III mGlu receptor agonist ACPT-I exerts potential antipsychotic effects in rodents. Neuropharmacology. 55:517–524. 2008. | |
Pekhletski R, Gerlai R, Overstreet LS, Huang X-P, Agopyan N, Slater NT, Abramow-Newerly W, Roder JC and Hampson DR: Impaired cerebellar synaptic plasticity and motor performance in mice lacking the mGluR4 subtype of metabotropic glutamate receptor. J Neurosci. 16:6364–6373. 1996. | |
Gerlai R, Roder JC and Hampson DR: Altered spatial learning and memory in mice lacking the mGluR4 subtype of metabotropic glutamate receptor. Behav Neurosci. 112:525–532. 1998. | |
Snead OC, Banerjee PK, Burnham M and Hampson D: Modulation of absence seizures by the GABA(A) receptor: A critical role for metabotropic glutamate receptor 4 (mGluR4). J Neurosci. 20:6218–6224. 2000. | |
Wierońska JM, Stachowicz K, Acher F, Lech T and Pilc A: Opposing efficacy of group III mGlu receptor activators, LSP1-2111 and AMN082, in animal models of positive symptoms of schizophrenia. Psychopharmacology. 220:481–494. 2012. | |
Woźniak M, Acher F, Marciniak M, Lasoń-Tyburkiewicz M, Gruca P, Papp M, Pilc A and Wierońska JM: Involvement of GABAB receptor signaling in Antipsychotic-like action of the novel orthosteric agonist of the mGlu4 receptor, LSP4-2022. Curr Neuropharmacol. 14:413–426. 2016. | |
Masu M, Iwakabe H, Tagawa Y, Miyoshi T, Yamashita M, Fukuda Y, Sasaki H, Hiroi K, Nakamura Y, Shigemoto R, et al: Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell. 80:757–765. 1995. | |
Sugihara H, Inoue T, Nakanishi S and Fukuda Y: A late ON response remains in visual response of the mGluR6-deficient mouse. Neuroscience Lett. 233:137–140. 1997. | |
Hosak L, Sery O, Sadykov E and Studnicka J: Retinal abnormatilites as a diagnostic or prognostic marker of schizophrenia. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 162:159–164. 2018. | |
Bernardin F, Schwitzer T, Angioi-Duprez K, Giersch A, Jansen C, Schwan R and Laprevote V: Retinal ganglion cells dysfunctions in schizophrenia patients with or without visual hallucinations. Schizophr Res. 219:47–55. 2020. | |
Sansig G, Bushell TJ, Clarke VRJ, Rozov A, Burnashev N, Portet C, Gasparini F, Schmutz M, Klebs K, Shigemoto R, et al: Increased seizure susceptibility in mice lacking metabotropic glutamate receptor 7. J Neurosci. 21:8734–8745. 2001. | |
O'Connor RM, Finger BC, Flor PJ and Cryan JF: Metabotropic glutamate receptor 7: At the interface of cognition and emotion. Eur J Pharmacol. 639:123–131. 2010. | |
Bushell TJ, Sansig G, Collett VJ, Van Der Putten H and Collingridge GL: Altered Short-term synaptic plasticity in mice lacking the metabotropic glutamate receptor mGlu7. ScientificWorldJournal. 2:730–737. 2002. | |
Hölscher C, Schmid S, Pilz PK, Sansig G, van der Putten H and Plappert CF: Lack of the metabotropic glutamate receptor subtype 7 selectively impairs short-term working memory but not long-term memory. Behav Brain Res. 154:473–481. 2004. | |
Hölscher C, Schmid S, Pilz PKD, Sansig G, Van Der Putten H and Plappert CF: Lack of the metabotropic glutamate receptor subtype 7 selectively modulates Theta rhythm and working memory. Learning Memory. 12:450–455. 2005. | |
Goddyn H, Callaerts-Vegh Z, Stroobants S, Dirikx T, Vansteenwegen D, Hermans D, van der Putten H and D'Hooge R: Deficits in acquisition and extinction of conditioned responses in mGluR7 knockout mice. Neurobiol Learn Mem. 90:103–111. 2008. | |
Callaerts-Vegh Z, Beckers T, Ball SM, Baeyens F, Callaerts PF, Cryan FJ, Molnar E and D'Hooge R: Concomitant deficits in working memory and fear extinction are functionally dissociated from reduced anxiety in metabotropic glutamate receptor 7-deficient mice. J Neurosci. 26:6573–6582. 2006. | |
Masugi M, Yokoi M, Shigemoto R, Muguruma K, Watanabe Y, Sansig G, van der Putten H and Nakanishi S: Metabotropic glutamate receptor subtype 7 ablation causes deficit in fear response and conditioned taste aversion. J Neurosci. 19:955–963. 1999. | |
Kalinichev M, Rouillier M, Girard F, Royer-Urios I, Bournique B, Finn T, Charvin D, Campo B, Le Poul E, Mutel V, et al: ADX71743, a potent and selective negative allosteric modulator of metabotropic glutamate receptor 7: In vitro and In vivo characterization. J Pharmacol Exp Ther. 344:624–636. 2013. | |
Suzuki G, Tsukamoto N, Fushiki H, Kawagishi A, Nakamura M, Kurihara H, Mitsuya M, Ohkubo M and Ohta H: In vitro pharmacological characterization of novel isoxazolopyridone derivatives as allosteric metabotropic glutamate receptor 7 antagonists. J Pharmacol Exp Ther. 323:147–156. 2007. | |
Cieślik P, Woźniak M, Kaczorowska K, Brański P, Burnat G, Chocyk A, Bobula B, Gruca P, Litwa E, Pałucha-Poniewiera A, et al: Negative allosteric modulators of mGlu7 receptor as putative antipsychotic drugs. Front Mol Neurosci. 11:3162018. | |
Zhai J, Tian MT, Wang Y, Yu JL, Köster A, Baez M and Nisenbaum ES: Modulation of lateral perforant path excitatory responses by metabotropic glutamate 8 (mGlu8) receptors. Neuropharmacology. 43:223–230. 2002. | |
Gerlai R, Adams B, Fitch T, Chaney S and Baez M: Performance deficits of mGluR8 knockout mice in learning tasks: The effects of null mutation and the background genotype. Neuropharmacology. 43:235–249. 2002. | |
Robbins MJ, Starr KR, Honey A, Soffin EM, Rourke C, Jones GA, Kelly FM, Strum J, Melarange RA, Harris AJ, et al: Evaluation of the mGlu8 receptor as a putative therapeutic target in schizophrenia. Brain Res. 1152:215–227. 2007. | |
Gicquel T, Le Daré B, Boichot E and Lagente V: Purinergic receptors: New targets for the treatment of gout and fibrosis. Fundam Clin Pharmacol. 31:136–146. 2017. | |
Magni G and Ceruti S: P2Y purinergic receptors: New targets for analgesic and antimigraine drugs. Biochem Pharmacol. 85:466–477. 2013. | |
Weissman TA, Riquelme PA, Ivic L, Flint AC and Kriegstein AR: Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron. 43:647–661. 2004. | |
Ribeiro DE, Glaser T, Oliveira-Giacomelli Á and Ulrich H: Purinergic receptors in neurogenic processes. Brain Res Bull. 151:3–11. 2019. | |
Koch H, Bespalov A, Drescher K, Franke H and Krügel U: Impaired cognition after stimulation of P2Y1 receptors in the rat medial prefrontal cortex. Neuropsychopharmacology. 40:305–314. 2015. | |
Huang L, Otrokocsi L and Sperlágh B: Role of P2 receptors in normal brain development and in neurodevelopmental psychiatric disorders. Brain Res Bull. 151:55–64. 2019. | |
Leung LS and Ma J: Medial septum modulates hippocampal gamma activity and prepulse inhibition in an N-methyl-d-aspartate receptor antagonist model of schizophrenia. Schizophr Res. 198:36–44. 2018. | |
Schroeder A, Hudson M, Du X, Wu YWC, Nakamura J, van den Buuse M, Jones NC and Hill RA: Estradiol and raloxifene modulate hippocampal gamma oscillations during a spatial memory task. Psychoneuroendocrinology. 78:85–92. 2017. | |
Lindberg D, Shan D, Ayers-Ringler J, Oliveros A, Benitez J, Prieto M, McCullumsmith R and Choi DS: Purinergic signaling and energy homeostasis in psychiatric disorders. Curr Mol Med. 15:275–295. 2015. | |
Cheffer A, Castillo ARG, Corrêa-Velloso J, Gonçalves MCB, Naaldijk Y, Nascimento IC, Burnstock G and Ulrich H: Purinergic system in psychiatric diseases. Mol Psychiatry. 23:94–106. 2018. | |
Lara DR, Dall'Igna OP, Ghisolfi ES and Brunstein MG: Involvement of adenosine in the neurobiology of schizophrenia and its therapeutic implications. Prog Neuropsychopharmacol Biol Psychiatry. 30:617–629. 2006. | |
Matos M, Shen HY, Augusto E, Wang Y, Wei CJ, Wang YT, Agostinho P, Boison D, Cunha RA and Chen JF: Deletion of adenosine A2A receptors from astrocytes disrupts glutamate homeostasis leading to psychomotor and cognitive impairment: Relevance to schizophrenia. Biol Psychiatry. 78:763–774. 2015. | |
Marques TR, Natesan S, Rabiner EA, Searle GE, Gunn R, Howes OD and Kapur S: Adenosine A2A receptor in schizophrenia: An In vivo brain PET imaging study. Psychopharmacology. 239:3439–3445. 2022. | |
Wexler EM, Paucer A, Kornblum HI, Palmer TD and Geschwind DH: Endogenous Wnt signaling maintains neural progenitor cell potency. Stem Cells. 27:1130–1141. 2009. | |
Niehrs C and Acebron SP: Mitotic and mitogenic Wnt signalling. EMBO J. 31:2705–2713. 2012. | |
Huang YL and Niehrs C: Polarized wnt signaling regulates ectodermal cell fate in xenopus. Dev Cell. 29:250–257. 2014. | |
Loh Kyle M, van Amerongen R and Nusse R: Generating cellular diversity and spatial form: Wnt signaling and the evolution of multicellular animals. Dev Cell. 38:643–655. 2016. | |
Vallée A: Neuroinflammation in schizophrenia: The key role of the WNT/β-catenin pathway. Int J Mol Sci. 23:28102022. | |
Anand AA, Khan M, V M and Kar D: The molecular basis of Wnt/β-catenin signaling pathways in neurodegenerative diseases. Int J Cell Biol. 2023:92960922023. | |
Al-Harthi L: Wnt/β-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders. J Neuroimmune Pharmacol. 7:725–730. 2012. | |
Schmitt A, Simons M, Cantuti-Castelvetri L and Falkai P: A new role for oligodendrocytes and myelination in schizophrenia and affective disorders? Eur Arch Psychiatry Clin Neurosci. 269:371–372. 2019. | |
Cotter D, Kerwin R, al-Sarraji S, Brion JP, Chadwich A, Lovestone S, Anderton B and Everall I: Abnormalities of Wnt signalling in schizophrenia-evidence for neurodevelopmental abnormality. Neuroreport. 9:1379–1383. 1998. | |
Liu X, Low SK, Atkins JR, Wu JQ, Reay WR, Cairns HM, Green MJ, Schall U, Jablensky A, Mowry B, et al: Wnt receptor gene FZD1 was associated with schizophrenia in genome-wide SNP analysis of the Australian Schizophrenia Research Bank cohort. Aust N Z J Psychiatry. 54:902–908. 2020. | |
Katsu T, Ujike H, Nakano T, Tanaka Y, Nomura A, Nakata K, Takaki M, Sakai A, Uchida N, Imamura T and Kuroda S: The human frizzled-3 (FZD3) gene on chromosome 8p21, a receptor gene for Wnt ligands, is associated with the susceptibility to schizophrenia. Neurosci Lett. 353:53–56. 2003. | |
Zhang Y, Yu X, Yuan Y, Ling Y, Ruan Y, Si T, Lu T, Wu S, Gong X, Zhu Z, et al: Positive association of the human frizzled 3 (FZD3) gene haplotype with schizophrenia in Chinese Han population. Am J Med Genet B Neuropsychiatr Genet. 129B:16–19. 2004. | |
Yang J, Si T, Ling Y, Ruan Y, Han Y, Wang X, Zhang H, Kong Q, Li X, Liu C, et al: Association study of the human FZD3 locus with schizophrenia. Biol Psychiatry. 54:1298–1301. 2003. | |
Kishimoto M, Ujike H, Okahisa Y, Kotaka T, Takaki M, Kodama M, Inada T, Yamada M, Uchimura N, Iwata N, et al: The Frizzled 3 gene is associated with methamphetamine psychosis in the Japanese population. Behav Brain Funct. 4:372008. | |
Hoseth EZ, Krull F, Dieset I, Mørch RH, Hope S, Gardsjord ES, Steen NE, Melle I, Brattbakk HR, Steen VM, et al: Exploring the Wnt signaling pathway in schizophrenia and bipolar disorder. Transl Psychiatry. 8:552018. | |
Castillo PE, Younts TJ, Chávez AE and Hashimotodani Y: Endocannabinoid signaling and synaptic function. Neuron. 76:70–81. 2012. | |
Pertwee RG, Howlett AC, Abood ME, Alexander SP, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, et al: International union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands: Beyond CB1 and CB2. Pharmacol Rev. 62:588–631. 2010. | |
Downer EJ: Cannabinoids and innate immunity: Taking a toll on neuroinflammation. ScientificWorldJournal. 11:855–865. 2011. | |
Galindo L, Moreno E, López-Armenta F, Guinart D, Cuenca-Royo A, Izquierdo-Serra M, Xicota L, Fernandez C, Menoyo E, Fernández-Fernández JM, et al: Cannabis users show enhanced expression of CB1-5HT2A receptor heteromers in olfactory neuroepithelium cells. Mol Neurobiol. 55:6347–6361. 2018. | |
Compagnucci C, Di Siena S, Bustamante MB, Di Giacomo D, Di Tommaso M, Maccarrone M, Grimaldi P and Sette C: Type-1 (CB1) cannabinoid receptor promotes neuronal differentiation and maturation of neural stem cells. PLoS One. 8:e542712013. | |
Goncalves MB, Suetterlin P, Yip P, Molina-Holgado F, Walker DJ, Oudin MJ, Zentar MP, Pollard S, Yáñez-Muñoz RJ, Williams G, et al: A diacylglycerol lipase-CB2 cannabinoid pathway regulates adult subventricular zone neurogenesis in an age-dependent manner. Mol Cell Neurosci. 38:526–536. 2008. | |
Molina-Holgado F, Rubio-Araiz A, García-Ovejero D, Williams RJ, Moore JD, Arévalo-Martín A, Gómez-Torres O and Molina-Holgado E: CB2 cannabinoid receptors promote mouse neural stem cell proliferation. Eur J Neurosci. 25:629–634. 2007. | |
Palazuelos J, Aguado T, Egia A, Mechoulam R, Guzmán M and Galve-Roperh I: Non-psychoactive CB2 cannabinoid agonists stimulate neural progenitor proliferation. FASEB J. 20:2405–2407. 2006. | |
Palazuelos J, Ortega Z, Díaz-Alonso J, Guzmán M and Galve-Roperh I: CB2 cannabinoid receptors promote neural progenitor cell proliferation via mTORC1 signaling. J Biol Chem. 287:1198–1209. 2012. | |
Müller-Vahl KR and Emrich HM: Cannabis and schizophrenia: Towards a cannabinoid hypothesis of schizophrenia. Expert Rev Neurother. 8:1037–1048. 2008. | |
Navarro D, Gasparyan A, Navarrete F, Torregrosa AB, Rubio G, Marín-Mayor M, Acosta GB, Garcia-Gutiérrez MS and Manzanares J: Molecular alterations of the endocannabinoid system in psychiatric disorders. Int J Mol Sci. 23:47642022. | |
Tao R, Li C, Jaffe AE, Shin JH, Deep-Soboslay A, Yamin R, Weinberger DR, Hyde TM and Kleinman JE: Cannabinoid receptor CNR1 expression and DNA methylation in human prefrontal cortex, hippocampus and caudate in brain development and schizophrenia. Transl Psychiatry. 10:1582020. | |
Volk DW, Eggan SM, Horti AG, Wong DF and Lewis DA: Reciprocal alterations in cortical cannabinoid receptor 1 binding relative to protein immunoreactivity and transcript levels in schizophrenia. Schizophr Res. 159:124–129. 2014. | |
Wong DF, Kuwabara H, Horti AG, Raymont V, Brasic J, Guevara M, Ye W, Dannals RF, Ravert HT, Nandi A, et al: Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radioligand [11C]OMAR. Neuroimage. 52:1505–1513. 2010. | |
García-Gutiérrez MS, García-Bueno B, Zoppi S, Leza JC and Manzanares J: Chronic blockade of cannabinoid CB2 receptors induces anxiolytic-like actions associated with alterations in GABA(A) receptors. Br J Pharmacol. 165:951–964. 2012. | |
Hu B, Doods H, Treede RD and Ceci A: Depression-like behaviour in rats with mononeuropathy is reduced by the CB2-selective agonist GW405833. Pain. 143:206–212. 2009. | |
Suárez J, Llorente R, Romero-Zerbo SY, Mateos B, Bermúdez-Silva FJ, de Fonseca FR and Viveros MP: Early maternal deprivation induces gender-dependent changes on the expression of hippocampal CB(1) and CB(2) cannabinoid receptors of neonatal rats. Hippocampus. 19:623–632. 2009. | |
Hamdani N, Tabeze JP, Ramoz N, Ades J, Hamon M, Sarfati Y, Boni C and Gorwood P: The CNR1 gene as a pharmacogenetic factor for antipsychotics rather than a susceptibility gene for schizophrenia. Eur Neuropsychopharmacol. 18:34–40. 2008. | |
Pan Y, Gao F, Zhao S, Han J and Chen F: Role of the SphK-S1P-S1PRs pathway in invasion of the nervous system by SARS-CoV-2 infection. Clin Exp Pharmacol Physiol. 48:637–650. 2021. | |
Calise S, Blescia S, Cencetti F, Bernacchioni C, Donati C and Bruni P: Sphingosine 1-phosphate stimulates proliferation and migration of satellite cells: Role of S1P receptors. Biochim Biophys Acta. 1823:439–450. 2012. | |
Shen H, Zhou E, Wei X, Fu Z, Niu C, Li Y, Pan B, Mathew AV, Wang X, Pennathur S, et al: High density lipoprotein promotes proliferation of adipose-derived stem cells via S1P1 receptor and Akt, ERK1/2 signal pathways. Stem Cell Res Ther. 6:952015. | |
Kimura T, Boehmler AM, Seitz G, Kuçi S, Wiesner T, Brinkmann V, Kanz L and Möhle R: The sphingosine 1-phosphate receptor agonist FTY720 supports CXCR4-dependent migration and bone marrow homing of human CD34+ progenitor cells. Blood. 103:4478–4486. 2004. | |
Anderson G and Maes M: Reconceptualizing adult neurogenesis: Role for sphingosine-1-phosphate and fibroblast growth factor-1 in co-ordinating astrocyte-neuronal precursor interactions. CNS Neurol Disord Drug Targets. 13:126–136. 2014. | |
Esaki K, Balan S, Iwayama Y, Shimamoto-Mitsuyama C, Hirabayashi Y, Dean B and Yoshikawa T: Evidence for altered metabolism of sphingosine-1-phosphate in the corpus callosum of patients with schizophrenia. Schizophr Bull. 46:1172–1181. 2020. | |
Chand GB, Jiang H, Miller JP, Rhodes CH, Tu Z and Wong DF: Differential Sphingosine-1-phosphate Receptor-1 protein expression in the dorsolateral prefrontal cortex between schizophrenia type 1 and type 2. Front Psychiatry. 13:8279812022. | |
Brothers SP and Wahlestedt C: Therapeutic potential of neuropeptide Y (NPY) receptor ligands. EMBO Mol Med. 2:429–439. 2010. | |
Lindner D, Stichel J and Beck-Sickinger AG: Molecular recognition of the NPY hormone family by their receptors. Nutrition. 24:907–917. 2008. | |
Howell OW, Doyle K, Goodman JH, Scharfman HE, Herzog H, Pringle A, Beck-Sickinger AG and Gray WP: Neuropeptide Y stimulates neuronal precursor proliferation in the post-natal and adult dentate gyrus. J Neurochem. 93:560–570. 2005. | |
Hansel DE, Eipper BA and Ronnett GV: Neuropeptide Y functions as a neuroproliferative factor. Nature. 410:940–944. 2001. | |
Montani G, Tonelli S, Elsaesser R, Paysan J and Tirindelli R: Neuropeptide Y in the olfactory microvillar cells. Eur J Neurosci. 24:20–24. 2006. | |
Santos-Carvalho A, Elvas F, Alvaro AR, Ambrósio AF and Cavadas C: Neuropeptide Y receptors activation protects rat retinal neural cells against necrotic and apoptotic cell death induced by glutamate. Cell Death Dis. 4:e6362013. | |
Thiriet N, Agasse F, Nicoleau C, Guégan C, Vallette F, Cadet JL, Jaber M, Malva JO and Coronas V: NPY promotes chemokinesis and neurogenesis in the rat subventricular zone. J Neurochem. 116:1018–1027. 2011. | |
Spencer B, Potkar R, Metcalf J, Thrin I, Adame A, Rockenstein E and Masliah E: Systemic central nervous system (CNS)-targeted delivery of neuropeptide Y (NPY) reduces neurodegeneration and increases neural precursor cell proliferation in a mouse model of alzheimer disease. J Biol Chem. 291:1905–1920. 2016. | |
Decressac M, Prestoz L, Veran J, Cantereau A, Jaber M and Gaillard A: Neuropeptide Y stimulates proliferation, migration and differentiation of neural precursors from the subventricular zone in adult mice. Neurobiol Dis. 34:441–449. 2009. | |
Mellios N, Huang HS, Baker SP, Galdzicka M, Ginns E and Akbarian S: Molecular determinants of dysregulated GABAergic gene expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry. 65:1006–1014. 2009. | |
Morris HM, Stopczynski RE and Lewis DA: NPY mRNA expression in the prefrontal cortex: Selective reduction in the superficial white matter of subjects with schizoaffective disorder. Schizophr Res. 115:261–269. 2009. | |
Stadlbauer U, Langhans W and Meyer U: Administration of the Y2 receptor agonist PYY3-36 in mice induces multiple behavioral changes relevant to schizophrenia. Neuropsychopharmacology. 38:2446–2455. 2013. | |
Stahl SM: Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: Dopamine, serotonin, and glutamate. CNS Spectrums. 23:187–191. 2018. | |
Miller MC and Mayo KH: Chemokines from a structural perspective. Int J Mol Sci. 18:20882017. | |
Ermakov EA, Mednova IA, Boiko AS, Buneva VN and Ivanova SA: Chemokine dysregulation and neuroinflammation in schizophrenia: A systematic review. Int J Mol Sci. 24:22152023. | |
Sugiyama T, Kohara H, Noda M and Nagasawa T: Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 25:977–988. 2006. | |
Ishida Y, Kimura A, Kuninaka Y, Inui M, Matsushima K, Mukaida N and Kondo T: Pivotal role of the CCL5/CCR5 interaction for recruitment of endothelial progenitor cells in mouse wound healing. J Clin Invest. 122:711–721. 2012. | |
Jiang Z, Li Y, Ji X, Tang Y, Yu H, Ding L, Yu M, Cui Q, Zhang M, Ma Y and Li M: Protein profiling identified key chemokines that regulate the maintenance of human pluripotent stem cells. Sci Rep. 7:145102017. | |
Bajetto A, Bonavia R, Barbero S, Florio T and Schettini G: Chemokines and their receptors in the central nervous system. Front Neuroendocrinol. 22:147–184. 2001. | |
Tiihonen J, Koskuvi M, Lähteenvuo M, Trontti K, Ojansuu I, Vaurio O, Cannon TD, Lönnqvist J, Therman S, Suvisaari J, et al: Molecular signaling pathways underlying schizophrenia. Schizophr Res. 232:33–41. 2021. | |
Simon IA, Bjørn-Yoshimoto WE, Harpsøe K, Iliadis S, Svensson B, Jensen AA and Gloriam DE: Ligand selectivity hotspots in serotonin GPCRs. Trends Pharmacol Sci. 44:978–990. 2023. | |
Littlepage-Saunders M, Hochstein MJ, Chang DS and Johnson KA: G protein-coupled receptor modulation of striatal dopamine transmission: Implications for psychoactive drug effects. Br J Pharmacol. May 31–2023. View Article : Google Scholar : Epub ahead of print. | |
Valencia M, Medina R, Calixto E and Rodríguez N: Cerebral, psychosocial, family functioning and disability of persons with schizophrenia. Neuropsychiat Dis Treat. 18:2069–2082. 2022. | |
Krogmann A, Peters L, Von Hardenberg L, Bödeker K, Nöhles VB and Correll CU: Keeping up with the therapeutic advances in schizophrenia: A review of novel and emerging pharmacological entities. CNS Spectrums. 24:38–69. 2019. | |
Borroto-Escuela DO, Carlsson J, Ambrogini P, Narváez M, Wydra K, Tarakanov AO, Li X, Millón C, Ferraro L, Cuppini R, et al: Understanding the role of GPCR heteroreceptor complexes in modulating the brain networks in health and disease. Front Cell Neurosci. 11:372017. | |
Yamamoto K and Hornykiewicz O: Proposal for a noradrenaline hypothesis of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 28:913–922. 2004. | |
Newell KA, Zavitsanou K, Jew SK and Huang XF: Alterations of muscarinic and GABA receptor binding in the posterior cingulate cortex in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 31:225–233. 2007. | |
Erskine D, Taylor JP, Bakker G, Brown AJH, Tasker T and Nathan PJ: Cholinergic muscarinic M(1) and M(4) receptors as therapeutic targets for cognitive, behavioural, and psychological symptoms in psychiatric and neurological disorders. Drug Discov Today. 24:2307–2314. 2019. | |
Krystal JH, Abi-Saab W, Perry E, D'Souza DC, Liu N, Gueorguieva R, McDougall L, Hunsberger T, Belger A, Levine L and Breier A: Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects. Psychopharmacology (Berl). 179:303–309. 2005. | |
Yasuno F, Suhara T, Ichimiya T, Takano A, Ando T and Okubo Y: Decreased 5-HT1A receptor binding in amygdala of schizophrenia. Biol Psychiatry. 55:439–444. 2004. | |
Rasmussen H, Frokjaer VG, Hilker RW, Madsen J, Anhøj S, Oranje B, Pinborg LH, Glenthøj B and Knudsen GM: Low frontal serotonin 2A receptor binding is a state marker for schizophrenia? Eur Neuropsychopharmacol. 26:1248–1250. 2016. | |
Nikiforuk A: Serotonergic and cholinergic strategies as potential targets for the treatment of schizophrenia. Curr Pharm Des. 22:2093–2116. 2016. | |
Fatemi SH, Folsom TD and Thuras PD: Deficits in GABA(B) receptor system in schizophrenia and mood disorders: A postmortem study. Schizophr Res. 128:37–43. 2011. | |
Correll CU: Current treatment options and emerging agents for schizophrenia. J Clin Psychiatry. 81:MS19053BR3C2020. |