Nanobodies in cytokine‑mediated immunotherapy and immunoimaging (Review)
- Authors:
- Xiaochen Zhang
- Jin Wang
- Ying Tan
- Chaoting Chen
- Shuang Tang
- Shimei Zhao
- Qiuhong Qin
- Hansheng Huang
- Siliang Duan
-
Affiliations: Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China, Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China - Published online on: December 6, 2023 https://doi.org/10.3892/ijmm.2023.5336
- Article Number: 12
This article is mentioned in:
Abstract
Santoni M, Rizzo A, Mollica V, Matrana MR, Rosellini M, Faloppi L, Marchetti A, Battelli N and Massari F: The impact of gender on The efficacy of immune checkpoint inhibitors in cancer patients: The MOUSEION-01 study. Crit Rev Oncol Hematol. 170:1035962022. View Article : Google Scholar : PubMed/NCBI | |
Santoni M, Rizzo A, Kucharz J, Mollica V, Rosellini M, Marchetti A, Tassinari E, Monteiro FSM, Soares A, Molina-Cerrillo J, et al: Complete remissions following immunotherapy or immuno-oncology combinations in cancer patients: The MOUSEION-03 meta-analysis. Cancer Immunol Immunother. 72:1365–1379. 2023. View Article : Google Scholar : PubMed/NCBI | |
Rizzo A, Cusmai A, Giovannelli F, Acquafredda S, Rinaldi L, Misino A, Montagna ES, Ungaro V, Lorusso M and Palmiotti G: Impact of Proton Pump Inhibitors and Histamine-2-Receptor Antagonists on Non-Small Cell Lung Cancer Immunotherapy: A Systematic Review and Meta-Analysis. Cancers (Basel). 14:14042022. View Article : Google Scholar : PubMed/NCBI | |
Gout DY, Groen LS and van Egmond M: The present and future of immunocytokines for cancer treatment. Cell Mol Life Sci. 79:5092022. View Article : Google Scholar : PubMed/NCBI | |
Mortara L, Balza E, Bruno A, Poggi A, Orecchia P and Carnemolla B: Anti-cancer Therapies Employing IL-2 cytokine tumor targeting: Contribution of innate, adaptive and immunosuppressive cells in the anti-tumor efficacy. Front Immunol. 9:29052018. View Article : Google Scholar : PubMed/NCBI | |
Kim JS, Jun SY and Kim YS: Critical issues in the development of immunotoxins for anticancer therapy. J Pharm Sci. 109:104–115. 2020. View Article : Google Scholar : PubMed/NCBI | |
Muyldermans S: Applications of Nanobodies. Annu Rev Anim Biosci. 9:401–421. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jovčevska I and Muyldermans S: The therapeutic potential of nanobodies. BioDrugs. 34:11–26. 2020. View Article : Google Scholar : PubMed/NCBI | |
Verhaar ER, Woodham AW and Ploegh HL: Nanobodies in cancer. Semin Immunol. 52:1014252021. View Article : Google Scholar : PubMed/NCBI | |
Muyldermans S: A guide to: Generation and design of nanobodies. FEBS J. 288:2084–2102. 2021. View Article : Google Scholar : PubMed/NCBI | |
Naidoo DB and Chuturgoon AA: Nanobodies enhancing cancer visualization, diagnosis and therapeutics. Int J Mol Sci. 22:97782021. View Article : Google Scholar : PubMed/NCBI | |
Conlon KC, Miljkovic MD and Waldmann TA: Cytokines in the treatment of cancer. J Interferon Cytokine Res. 39:6–21. 2019. View Article : Google Scholar : PubMed/NCBI | |
Waldmann TA: Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol. 10:a0284722018. View Article : Google Scholar : PubMed/NCBI | |
Dong C: Cytokine regulation and function in T cells. Annu Rev Immunol. 39:51–76. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ouyang W and O'Garra A: IL-10 Family Cytokines IL-10 and IL-22: From basic science to clinical translation. Immunity. 50:871–891. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A, Dinarello CA, Molgora M and Garlanda C: Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity. 50:b778–795. 2019. View Article : Google Scholar | |
Krayem I and Lipoldová M: Role of host genetics and cytokines in Leishmania infection. Cytokine. 147:1552442021. View Article : Google Scholar : PubMed/NCBI | |
Fajgenbaum DC and June CH: Cytokine Storm. N Engl J Med. 383:2255–2273. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ragab D, Salah Eldin H, Taeimah M, Khattab R and Salem R: The COVID-19 Cytokine Storm; What we know so far. Front Immunol. 11:14462020. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Huang Z, Huang M and Zeng J: Predicting severe enterovirus 71-infected hand, foot, and mouth disease: Cytokines and chemokines. Mediators Inflamm. 2020:92732412020. View Article : Google Scholar : PubMed/NCBI | |
Long DL, Song HL and Qu PP: Cytokines profiles in cervical mucosa in patients with cervical high-risk human papillomavirus infection. J Infect Dev Ctries. 15:719–725. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ji X, Yue H, Li G and Sang N: Maternal smoking-induced lung injuries in dams and offspring via inflammatory cytokines. Environ Int. 156:1066182021. View Article : Google Scholar : PubMed/NCBI | |
Kumari M, Mathur P, Aggarwal R, Madan K, Sagar S, Gupta A, Khurana S, Sreenivas V and Kumar S: Changes in extracellular cytokines in predicting disease severity and final clinical outcome of patients with blunt chest trauma. Immunobiology. 226:1520872021. View Article : Google Scholar : PubMed/NCBI | |
Miller ES, Loftus TJ, Kannan KB, Plazas JM, Efron PA and Mohr AM: Systemic Regulation of Bone Marrow Stromal Cytokines After Severe Trauma. J Surg Res. 243:220–228. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Ren Z, Yang K, Liu Z, Cao S, Deng S, Xu L, Liang Y, Guo J, Bian Y, et al: Author Correction: A next-generation tumor-targeting IL-2 preferentially promotes tumor-infiltrating CD8+ T-cell response and effective tumor control. Nat Commun. 11:17162020. View Article : Google Scholar : PubMed/NCBI | |
Chandran E, Meininger L, Karzai F and Madan RA: Signaling new therapeutic opportunities: Cytokines in prostate cancer. Expert Opin Biol Ther. 22:1233–1243. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cirella A, Luri-Rey C, Di Trani CA, Teijeira A, Olivera I, Bolaños E, Castañón E, Palencia B, Brocco D, Fernández-Sendin M, et al: Novel strategies exploiting interleukin-12 in cancer immunotherapy. Pharmacol Ther. 239:1081892022. View Article : Google Scholar : PubMed/NCBI | |
Shum T, Omer B, Tashiro H, Kruse RL, Wagner DL, Parikh K, Yi Z, Sauer T, Liu D, Parihar R, et al: Constitutive signaling from an engineered IL7 receptor promotes durable tumor elimination by tumor-redirected T cells. Cancer Discov. 7:1238–1247. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nguyen KG, Vrabel MR, Mantooth SM, Hopkins JJ, Wagner ES, Gabaldon TA and Zaharoff DA: Localized interleukin-12 for cancer immunotherapy. Front Immunol. 11:5755972020. View Article : Google Scholar : PubMed/NCBI | |
Hicks KC, Chariou PL, Ozawa Y, Minnar CM, Knudson KM, Meyer TJ, Bian J, Cam M, Schlom J and Gameiro SR: Tumour-targeted interleukin-12 and entinostat combination therapy improves cancer survival by reprogramming the tumour immune cell landscape. Nat Commun. 12:51512021. View Article : Google Scholar : PubMed/NCBI | |
Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, Soni S, McSkane M, Baba H and Lenz HJ: CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation-A target for novel cancer therapy. Cancer Treat Rev. 63:40–47. 2018. View Article : Google Scholar : PubMed/NCBI | |
Humblin E and Kamphorst AO: CXCR3-CXCL9: It's all in the tumor. Immunity. 50:1347–1349. 2019. View Article : Google Scholar : PubMed/NCBI | |
Karin N: Chemokines and cancer: New immune checkpoints for cancer therapy. Curr Opin Immunol. 51:140–145. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ivashkiv LB: IFNγ: Signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immunol. 8:545–558. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rizzo A: Use of granulocyte colony-stimulating factor for adult cancer patients: Current issues and future directions. Future Oncol. 17:3411–3413. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Liu Y, Yan X, Zhou C and Xiong X: The role of granulocyte colony stimulating factor in breast cancer development: A review. Mol Med Rep. 21:2019–2029. 2020.PubMed/NCBI | |
MaruYama T, Chen W and Shibata H: TGF-β and cancer immunotherapy. Biol Pharm Bull. 45:155–161. 2022. View Article : Google Scholar : PubMed/NCBI | |
Märkl F, Huynh D, Endres S and Kobold S: Utilizing chemokines in cancer immunotherapy. Trends Cancer. 8:670–682. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hsu EJ, Cao X, Moon B, Bae J, Sun Z, Liu Z and Fu YX: A cytokine receptor-masked IL2 prodrug selectively activates tumor-infiltrating lymphocytes for potent antitumor therapy. Nat Commun. 12:27682021. View Article : Google Scholar : PubMed/NCBI | |
Hernandez R, Põder J, LaPorte KM and Malek TR: Engineering IL-2 for immunotherapy of autoimmunity and cancer. Nat Rev Immunol. 22:614–628. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mirlekar B and Pylayeva-Gupta Y: IL-12 family cytokines in cancer and immunotherapy. Cancers (Basel). 13:1672021. View Article : Google Scholar : PubMed/NCBI | |
Qiu Y, Su M, Liu L, Tang Y, Pan Y and Sun J: Clinical application of cytokines in cancer immunotherapy. Drug Des Devel Ther. 15:2269–2287. 2021. View Article : Google Scholar : PubMed/NCBI | |
Runbeck E, Crescioli S, Karagiannis SN and Papa S: Utilizing immunocytokines for cancer therapy. Antibodies (Basel). 10:102021. View Article : Google Scholar : PubMed/NCBI | |
Coppola C, Hopkins B, Huhn S, Du Z, Huang Z and Kelly WJ: Investigation of the Impact from IL-2, IL-7, and IL-15 on the growth and signaling of activated CD4+ T Cells. Int J Mol Sci. 21:78142020. View Article : Google Scholar : PubMed/NCBI | |
Kim JH, Lee KJ and Lee SW: Cancer immunotherapy with T-cell targeting cytokines: IL-2 and IL-7. BMB Rep. 54:21–30. 2021. View Article : Google Scholar : PubMed/NCBI | |
Park JH, Waickman AT, Reynolds J, Castro M and Molina-París C: IL7 receptor signaling in T cells: A mathematical modeling perspective. Wiley Interdiscip Rev Syst Biol Med. 11:e14472019. View Article : Google Scholar : PubMed/NCBI | |
Pol JG, Caudana P, Paillet J, Piaggio E and Kroemer G: Effects of interleukin-2 in immunostimulation and immunosuppression. J Exp Med. 217:e201912472020. View Article : Google Scholar : PubMed/NCBI | |
Yang T, Li J, Li R, Yang C, Zhang W, Qiu Y, Yang C and Rong R: Correlation between MDSC and immune tolerance in transplantation: Cytokines, pathways and cell-cell interaction. Curr Gene Ther. 19:81–92. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kucuksezer UC, Ozdemir C, Cevhertas L, Ogulur I, Akdis M and Akdis CA: Mechanisms of allergen-specific immunotherapy and allergen tolerance. Allergol Int. 69:549–560. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lambrecht BN, Hammad H and Fahy JV: The cytokines of asthma. Immunity. 50:975–991. 2019. View Article : Google Scholar : PubMed/NCBI | |
Propper DJ and Balkwill FR: Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol. 19:237–253. 2022. View Article : Google Scholar : PubMed/NCBI | |
Spangler JB, Moraga I, Mendoza JL and Garcia KC: Insights into cytokine-receptor interactions from cytokine engineering. Annu Rev Immunol. 33:139–167. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bentebibel SE and Diab A: Cytokines in the treatment of melanoma. Curr Oncol Rep. 23:832021. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Liang Y, Xue D, Shen J, Cai Y, Zhu J, Fu YX and Peng H: Tumor-conditional IL-15 pro-cytokine reactivates anti-tumor immunity with limited toxicity. Cell Res. 31:1190–1198. 2021. View Article : Google Scholar : PubMed/NCBI | |
Briukhovetska D, Dörr J, Endres S, Libby P, Dinarello CA and Kobold S: Interleukins in cancer: From biology to therapy. Nat Rev Cancer. 21:481–499. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Wu Y, Bi J, Huang Y, Cheng Y, Li Y, Wu Y, Cao G and Tian Z: The use of supercytokines, immunocytokines, engager cytokines, and other synthetic cytokines in immunotherapy. Cell Mol Immunol. 19:192–209. 2022. View Article : Google Scholar : PubMed/NCBI | |
Weiss T, Puca E, Silginer M, Hemmerle T, Pazahr S, Bink A, Weller M, Neri D and Roth P: Immunocytokines are a promising immunotherapeutic approach against glioblastoma. Sci Transl Med. 12:eabb23112020. View Article : Google Scholar : PubMed/NCBI | |
Qiao J, Liu Z, Dong C, Luan Y, Zhang A, Moore C, Fu K, Peng J, Wang Y, Ren Z, et al: Targeting Tumors with IL-10 Prevents Dendritic Cell-Mediated CD8+ T Cell Apoptosis. Cancer Cell. 35:901–915.e4. 2019. View Article : Google Scholar : PubMed/NCBI | |
Papadia F, Basso V, Patuzzo R, Maurichi A, Di Florio A, Zardi L, Ventura E, González-Iglesias R, Lovato V, Giovannoni L, et al: Isolated limb perfusion with the tumor-targeting human monoclonal antibody-cytokine fusion protein L19-TNF plus melphalan and mild hyperthermia in patients with locally advanced extremity melanoma. J Surg Oncol. 107:173–179. 2013. View Article : Google Scholar : PubMed/NCBI | |
Morillon YM II, Su Z, Schlom J and Greiner JW: Temporal changes within the (bladder) tumor microenvironment that accompany the therapeutic effects of the immunocytokine NHS-IL12. J Immunother Cancer. 7:1502019. View Article : Google Scholar : PubMed/NCBI | |
Halin C, Gafner V, Villani ME, Borsi L, Berndt A, Kosmehl H, Zardi L and Neri D: Synergistic therapeutic effects of a tumor targeting antibody fragment, fused to interleukin 12 and to tumor necrosis factor alpha. Cancer Res. 63:3202–3210. 2003.PubMed/NCBI | |
Knudson KM, Hicks KC, Ozawa Y, Schlom J and Gameiro SR: Functional and mechanistic advantage of the use of a bifunctional anti-PD-L1/IL-15 superagonist. J Immunother Cancer. 8:e0004932020. View Article : Google Scholar : PubMed/NCBI | |
Deng S, Sun Z, Qiao J, Liang Y, Liu L, Dong C, Shen A, Wang Y, Tang H, Fu YX and Peng H: Targeting tumors with IL-21 reshapes the tumor microenvironment by proliferating PD-1intTim-3-CD8+ T cells. JCI Insight. 5:e1320002020. View Article : Google Scholar : PubMed/NCBI | |
Hemmerle T, Doll F and Neri D: Antibody-based delivery of IL4 to the neovasculature cures mice with arthritis. Proc Natl Acad Sci USA. 111:12008–12012. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li T, Cai H, Yao H, Zhou B, Zhang N, van Vlissingen MF, Kuiken T, Han W, GeurtsvanKessel CH, Gong Y, et al: A synthetic nanobody targeting RBD protects hamsters from SARS-CoV-2 infection. Nat Commun. 12:46352021. View Article : Google Scholar : PubMed/NCBI | |
Mir MA, Mehraj U, Sheikh BA and Hamdani SS: Nanobodies: The ‘Magic Bullets’ in therapeutics, drug delivery and diagnostics. Hum Antibodies. 28:29–51. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wicke N, Bedford MR and Howarth M: Gastrobodies are engineered antibody mimetics resilient to pepsin and hydrochloric acid. Commun Biol. 4:9602021. View Article : Google Scholar : PubMed/NCBI | |
Kang W, Ding C, Zheng D, Ma X, Yi L, Tong X, Wu C, Xue C, Yu Y and Zhou Q: Nanobody conjugates for targeted cancer therapy and imaging. Technol Cancer Res Treat. 20:153303382110101172021. View Article : Google Scholar : PubMed/NCBI | |
Yu S, Li Z, Li J, Zhao S, Wu S, Liu H, Bi X, Li D, Dong J, Duan S and Hammock BD: Generation of dual functional nanobody-nanoluciferase fusion and its potential in bioluminescence enzyme immunoassay for trace glypican-3 in serum. Sens Actuators B Chem. 336:1297172021. View Article : Google Scholar : PubMed/NCBI | |
de Marco A: Recombinant expression of nanobodies and nanobody-derived immunoreagents. Protein Expr Purif. 172:1056452020. View Article : Google Scholar : PubMed/NCBI | |
Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N and Hamers R: Naturally occurring antibodies devoid of light chains. Nature. 363:446–448. 1993. View Article : Google Scholar : PubMed/NCBI | |
Eggers M, Rühl F, Haag F and Koch-Nolte F: Nanobodies as probes to investigate purinergic signaling. Biochem Pharmacol. 187:1143942021. View Article : Google Scholar : PubMed/NCBI | |
Salema V and Fernández LÁ: Escherichia coli surface display for the selection of nanobodies. Microb Biotechnol. 10:1468–1484. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu B and Yang D: Easily established and multifunctional synthetic nanobody libraries as research tools. Int J Mol Sci. 23:14822022. View Article : Google Scholar : PubMed/NCBI | |
Verkhivker G: Structural and computational studies of the SARS-CoV-2 spike protein binding mechanisms with nanobodies: From structure and dynamics to avidity-driven nanobody engineering. Int J Mol Sci. 23:29282022. View Article : Google Scholar : PubMed/NCBI | |
Manoutcharian K, Perez-Garmendia R and Gevorkian G: Recombinant antibody fragments for neurodegenerative diseases. Curr Neuropharmacol. 15:779–788. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Li L, Jin D and Liu Y: Nanobody-A versatile tool for cancer diagnosis and therapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 13:e16972021. View Article : Google Scholar : PubMed/NCBI | |
Mei Y, Chen Y, Sivaccumar JP, An Z, Xia N and Luo W: Research progress and applications of nanobody in human infectious diseases. Front Pharmacol. 13:9639782022. View Article : Google Scholar : PubMed/NCBI | |
Koenig PA, Das H, Liu H, Kümmerer BM, Gohr FN, Jenster LM, Schiffelers LDJ, Tesfamariam YM, Uchima M, Wuerth JD, et al: Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape. Science. 371:eabe62302021. View Article : Google Scholar : PubMed/NCBI | |
Yu S, Xiong G, Zhao S, Tang Y, Tang H, Wang K, Liu H, Lan K, Bi X and Duan S: Nanobodies targeting immune checkpoint molecules for tumor immunotherapy and immunoimaging (Review). Int J Mol Med. 47:444–454. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lecocq Q, De Vlaeminck Y, Hanssens H, D'Huyvetter M, Raes G, Goyvaerts C, Keyaerts M, Devoogdt N and Breckpot K: Theranostics in immuno-oncology using nanobody derivatives. Theranostics. 9:7772–7791. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sun S, Ding Z, Yang X, Zhao X, Zhao M, Gao L, Chen Q, Xie S, Liu A, Yin S, et al: Nanobody: A small antibody with big implications for tumor therapeutic strategy. Int J Nanomedicine. 16:2337–2356. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gurbatri CR, Lia I, Vincent R, Coker C, Castro S, Treuting PM, Hinchliffe TE, Arpaia N and Danino T: Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Sci Transl Med. 12:eaax08762020. View Article : Google Scholar : PubMed/NCBI | |
Di Nitto C, Neri D, Weiss T, Weller M and De Luca R: Design and characterization of novel antibody-cytokine fusion proteins based on interleukin-21. Antibodies (Basel). 11:192022. View Article : Google Scholar : PubMed/NCBI | |
Hutmacher C and Neri D: Antibody-cytokine fusion proteins: Biopharmaceuticals with immunomodulatory properties for cancer therapy. Adv Drug Deliv Rev. 141:67–91. 2019. View Article : Google Scholar : PubMed/NCBI | |
Murer P and Neri D: Antibody-cytokine fusion proteins: A novel class of biopharmaceuticals for the therapy of cancer and of chronic inflammation. N Biotechnol. 52:42–53. 2019. View Article : Google Scholar : PubMed/NCBI | |
Valedkarimi Z, Nasiri H, Aghebati-Maleki L and Majidi J: Antibody-cytokine fusion proteins for improving efficacy and safety of cancer therapy. Biomed Pharmacother. 95:731–742. 2017. View Article : Google Scholar : PubMed/NCBI | |
Neri D: Antibody-Cytokine Fusions: Versatile products for the modulation of anticancer immunity. Cancer Immunol Res. 7:348–354. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ziffels B, Stringhini M, Probst P, Fugmann T, Sturm T and Neri D: Antibody-Based delivery of cytokine payloads to carbonic anhydrase IX leads to cancer cures in immunocompetent tumor-bearing mice. Mol Cancer Ther. 18:1544–1554. 2019. View Article : Google Scholar : PubMed/NCBI | |
Corbellari R, Nadal L, Villa A, Neri D and De Luca R: The immunocytokine L19-TNF eradicates sarcomas in combination with chemotherapy agents or with immune check-point inhibitors. Anticancer Drugs. 31:799–805. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lutz EA, Jailkhani N, Momin N, Huang Y, Sheen A, Kang BH, Wittrup KD and Hynes RO: Intratumoral nanobody-IL-2 fusions that bind the tumor extracellular matrix suppress solid tumor growth in mice. PNAS Nexus. 1:pgac2442022. View Article : Google Scholar : PubMed/NCBI | |
Rhode PR, Egan JO, Xu W, Hong H, Webb GM, Chen X, Liu B, Zhu X, Wen J, You L, et al: Comparison of the superagonist complex, ALT-803, to IL15 as cancer immunotherapeutics in animal models. Cancer Immunol Res. 4:49–60. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Buhtoiarov IN, Guo H and Cheung NV: A novel multimeric IL15/IL15Rα-Fc complex to enhance cancer immunotherapy. Oncoimmunology. 10:18935002021. View Article : Google Scholar : PubMed/NCBI | |
Corbellari R, Stringhini M, Mock J, Ongaro T, Villa A, Neri D and De Luca R: A novel Antibody-IL15 fusion protein selectively localizes to tumors, synergizes with TNF-based immunocytokine, and inhibits Metastasis. Mol Cancer Ther. 20:859–871. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wang Y, Xing J, Li Y, Liu J and Wang Z: A novel multifunctional anti-CEA-IL15 molecule displays potent antitumor activities. Drug Des Devel Ther. 12:2645–2654. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zelová H and Hošek J: TNF-α signalling and inflammation: Interactions between old acquaintances. Inflamm Res. 62:641–651. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vanamee ÉS and Faustman DL: Structural principles of tumor necrosis factor superfamily signaling. Sci Signal. 11:eaao49102018. View Article : Google Scholar : PubMed/NCBI | |
Mitoma H, Horiuchi T, Tsukamoto H and Ueda N: Molecular mechanisms of action of anti-TNF-α agents-Comparison among therapeutic TNF-α antagonists. Cytokine. 101:56–63. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Li X, Chihara T, Dong H and Kagami H: Effect of TNF-α and IL-6 on compact bone-derived cells. Tissue Eng Regen Med. 18:441–451. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tsimberidou AM and Giles FJ: TNF-alpha targeted therapeutic approaches in patients with hematologic malignancies. Expert Rev Anticancer Ther. 2:277–286. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kemanetzoglou E and Andreadou E: CNS Demyelination with TNF-α Blockers. Curr Neurol Neurosci Rep. 17:362017. View Article : Google Scholar : PubMed/NCBI | |
Jang DI, Lee AH, Shin HY, Song HR, Park JH, Kang TB, Lee SR and Yang SH: The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int J Mol Sci. 22:27192021. View Article : Google Scholar : PubMed/NCBI | |
Osaki T, Nakanishi T, Aoki M, Omizu T, Nishiura D and Kitamura M: Soluble expression in escherichia coli of a single-domain antibody-tumor necrosis factor α fusion protein specific for epidermal growth factor receptor. Monoclon Antib Immunodiagn Immunother. 37:20–25. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Sun J, Pan H, Yao F, Yuan Y, Zeng M, Ye G, Yang G, Zheng B, Fan J, et al: Aberrant cytokine expression in COVID-19 patients: Associations between cytokines and disease severity. Cytokine. 143:1555232021. View Article : Google Scholar : PubMed/NCBI | |
Saxton RA, Glassman CR and Garcia KC: Emerging principles of cytokine pharmacology and therapeutics. Nat Rev Drug Discov. 21:21–37. 2023. View Article : Google Scholar : PubMed/NCBI | |
Oppenheim JJ: The future of the cytokine discipline. Cold Spring Harb Perspect Biol. 10:a0284982018. View Article : Google Scholar : PubMed/NCBI | |
Kaur S, Bansal Y, Kumar R and Bansal G: A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors. Bioorg Med Chem. 28:1153272020. View Article : Google Scholar : PubMed/NCBI | |
Yen M, Ren J, Liu Q, Glassman CR, Sheahan TP, Picton LK, Moreira FR, Rustagi A, Jude KM, Zhao X, et al: Facile discovery of surrogate cytokine agonists. Cell. 185:1414–1430.e19. 2022. View Article : Google Scholar : PubMed/NCBI | |
Schinocca C, Rizzo C, Fasano S, Grasso G, La Barbera L, Ciccia F and Guggino G: Role of the IL-23/IL-17 pathway in rheumatic diseases: An overview. Front Immunol. 12:6378292021. View Article : Google Scholar : PubMed/NCBI | |
Neurath MF: IL-23 in inflammatory bowel diseases and colon cancer. Cytokine Growth Factor Rev. 45:1–8. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Wang L, Yu C, Fu Z, Liu C, Zhang H, Wang K, Guo X and Wang J: Characterization of a reliable cell-based reporter gene assay for measuring bioactivities of therapeutic anti-interleukin-23 monoclonal antibodies. Int Immunopharmacol. 85:1066472020. View Article : Google Scholar : PubMed/NCBI | |
Desmyter A, Spinelli S, Boutton C, Saunders M, Blachetot C, de Haard H, Denecker G, Van Roy M, Cambillau C and Rommelaere H: Neutralization of human interleukin 23 by multivalent nanobodies explained by the structure of cytokine-nanobody complex. Front Immunol. 8:8842017. View Article : Google Scholar : PubMed/NCBI | |
Gevenois PJY, De Pauw P, Schoonooghe S, Delporte C, Sebti T, Amighi K, Muyldermans S and Wauthoz N: Development of neutralizing multimeric nanobody constructs directed against IL-13: From immunization to lead optimization. J Immunol. 207:2608–2620. 2021. View Article : Google Scholar : PubMed/NCBI | |
von Stebut E, Boehncke WH, Ghoreschi K, Gori T, Kaya Z, Thaci D and Schäffler A: IL-17A in psoriasis and beyond: Cardiovascular and metabolic implications. Front Immunol. 10:30962020. View Article : Google Scholar : PubMed/NCBI | |
Brevi A, Cogrossi LL, Grazia G, Masciovecchio D, Impellizzieri D, Lacanfora L, Grioni M and Bellone M: Much more than IL-17A: Cytokines of the IL-17 family between microbiota and cancer. Front Immunol. 11:5654702020. View Article : Google Scholar : PubMed/NCBI | |
Yao G, Huang C, Ji F, Ren J, Zang B and Jia L: Nanobody-loaded immunosorbent for highly-specific removal of interleukin-17A from blood. J Chromatogr A. 1654:4624782021. View Article : Google Scholar : PubMed/NCBI | |
Papp KA, Weinberg MA, Morris A and Reich K: IL17A/F nanobody sonelokimab in patients with plaque psoriasis: A multicentre, randomised, placebo-controlled, phase 2b study. Lancet. 397:1564–1575. 2021. View Article : Google Scholar : PubMed/NCBI | |
Svecova D, Lubell MW, Casset-Semanaz F, Mackenzie H, Grenningloh R and Krueger JG: A randomized, double-blind, placebo-controlled phase 1 study of multiple ascending doses of subcutaneous M1095, an anti-interleukin 17A/F nanobody, in moderate-to-severe psoriasis. J Am Acad Dermatol. 81:196–203. 2019. View Article : Google Scholar : PubMed/NCBI | |
Low S, Wu H, Jerath K, Tibolla A, Fogal B, Conrad R, MacDougall M, Kerr S, Berger V, Dave R, et al: VHH antibody targeting the chemokine receptor CX3CR1 inhibits progression of atherosclerosis. MAbs. 12:17093222020. View Article : Google Scholar : PubMed/NCBI | |
Ji X, Han T, Kang N, Huang S and Liu Y: Preparation of RGD4C fused anti-TNFα nanobody and inhibitory activity on triple-negative breast cancer in vivo. Life Sci. 260:1182742020. View Article : Google Scholar : PubMed/NCBI | |
Nie J, Ma X, Hu F, Miao H, Feng X, Zhang P, Han MH, You F, Yang Y, Zhang W and Zheng W: Designing and constructing a phage display synthesized single domain antibodies library based on camel VHHs frame for screening and identifying humanized TNF-α-specific nanobody. Biomed Pharmacother. 137:1113282021. View Article : Google Scholar : PubMed/NCBI | |
Morais M, Cantante C, Gano L, Santos I, Lourenço S, Santos C, Fontes C, Aires da Silva F, Gonçalves J and Correia JD: Biodistribution of a (67)Ga-labeled anti-TNF VHH single-domain antibody containing a bacterial albumin-binding domain (Zag). Nucl Med Biol. 41 (Suppl):e44–e48. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ishiwatari-Ogata C, Kyuuma M, Ogata H, Yamakawa M, Iwata K, Ochi M, Hori M, Miyata N and Fujii Y: Ozoralizumab, a Humanized Anti-TNFα NANOBODY® compound, exhibits efficacy not only at the onset of arthritis in a human TNF transgenic mouse but also during secondary failure of administration of an Anti-TNFα IgG. Front Immunol. 13:8530082022. View Article : Google Scholar : PubMed/NCBI | |
Vandenbroucke K, de Haard H, Beirnaert E, Dreier T, Lauwereys M, Huyck L, Van Huysse J, Demetter P, Steidler L, Remaut E, et al: Orally administered L: Lactis secreting an anti-TNF Nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol. 3:49–56. 2010. View Article : Google Scholar : PubMed/NCBI | |
Moazzami R, Mirzahosein H, Nematollahi L, Barkhordari F, Raigani M, Hajari Taheri F, Mahboudi F and Davami F: Woodchuck hepatitis virus post-transcriptional regulation element (WPRE) Promotes Anti-CD19 BiTE Expression in Expi293 Cells. Iran Biomed J. 25:275–283. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sarhan D, Brandt L, Felices M, Guldevall K, Lenvik T, Hinderlie P, Curtsinger J, Warlick E, Spellman SR, Blazar BR, et al: 161533 TriKE stimulates NK-cell function to overcome myeloid-derived suppressor cells in MDS. Blood Adv. 2:1459–1469. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yun HD, Felices M, Vallera DA, Hinderlie P, Cooley S, Arock M, Gotlib J, Ustun C and Miller JS: Trispecific killer engager CD16×IL15×CD33 potently induces NK cell activation and cytotoxicity against neoplastic mast cells. Blood Adv. 2:1580–1584. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vallera DA, Felices M, McElmurry R, McCullar V, Zhou X, Schmohl JU, Zhang B, Lenvik AJ, Panoskaltsis-Mortari A, Verneris MR, et al: IL15 trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin Cancer Res. 22:3440–3450. 2016. View Article : Google Scholar : PubMed/NCBI | |
Toffoli EC, Sheikhi A, Lameris R, King LA, van Vliet A, Walcheck B, Verheul HMW, Spanholtz J, Tuynman J, de Gruijl TD and van der Vliet HJ: Enhancement of NK Cell antitumor effector functions using a bispecific single domain antibody targeting CD16 and the epidermal growth factor receptor. Cancers (Basel). 13:54462021. View Article : Google Scholar : PubMed/NCBI | |
Vallera DA, Oh F, Kodal B, Hinderlie P, Geller MA, Miller JS and Felices M: A HER2 Tri-Specific NK cell engager mediates efficient targeting of human ovarian cancer. Cancers (Basel). 13:39942021. View Article : Google Scholar : PubMed/NCBI | |
Narazaki M, Tanaka T and Kishimoto T: The role and therapeutic targeting of IL-6 in rheumatoid arthritis. Expert Rev Clin Immunol. 13:535–551. 2017. View Article : Google Scholar : PubMed/NCBI | |
Baran P, Hansen S, Waetzig GH, Akbarzadeh M, Lamertz L, Huber HJ, Ahmadian MR, Moll JM and Scheller J: The balance of interleukin (IL)-6, IL-6·soluble IL-6 receptor (sIL-6R), and IL-6·sIL-6R·sgp130 complexes allows simultaneous classic and trans-signaling. J Biol Chem. 293:6762–6775. 2018. View Article : Google Scholar : PubMed/NCBI | |
Van Roy M, Ververken C, Beirnaert E, Hoefman S, Kolkman J, Vierboom M, Breedveld E, 't Hart B, Poelmans S, Bontinck L, et al: The preclinical pharmacology of the high affinity anti-IL-6R Nanobody® ALX-0061 supports its clinical development in rheumatoid arthritis. Arthritis Res Ther. 17:1352015. View Article : Google Scholar : PubMed/NCBI | |
Chang YJ, Zhao XY and Huang XJ: Granulocyte colony-stimulating factor-primed unmanipulated haploidentical blood and marrow transplantation. Front Immunol. 10:25162019. View Article : Google Scholar : PubMed/NCBI | |
Karagiannidis I, Salataj E, Said Abu Egal E and Beswick EJ: G-CSF in tumors: Aggressiveness, tumor microenvironment and immune cell regulation. Cytokine. 142:1554792021. View Article : Google Scholar : PubMed/NCBI | |
Christensen AD, Haase C, Cook AD and Hamilton JA: Granulocyte colony-stimulating factor (G-CSF) plays an important role in immune complex-mediated arthritis. Eur J Immunol. 46:1235–1245. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tsai ST, Chu SC, Liu SH, Pang CY, Hou TW, Lin SZ and Chen SY: Neuroprotection of granulocyte colony-stimulating factor for early stage Parkinson's disease. Cell Transplant. 26:409–416. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bakherad H, Farahmand M, Setayesh N and Ebrahim-Habibi A: Engineering an anti-granulocyte colony stimulating factor receptor nanobody for improved affinity. Life Sci. 257:1180522020. View Article : Google Scholar : PubMed/NCBI | |
Bakherad H, Gargari SLM, Sepehrizadeh Z, Aghamollaei H, Taheri RA, Torshabi M, Yazdi MT, Ebrahimizadeh W and Setayesh N: Identification and in vitro characterization of novel nanobodies against human granulocyte colony-stimulating factor receptor to provide inhibition of G-CSF function. Biomed Pharmacother. 93:245–254. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cheng K, Liu CF and Rao GW: Anti-angiogenic Agents: A review on vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors. Curr Med Chem. 28:2540–2564. 2021. View Article : Google Scholar : PubMed/NCBI | |
Behdani M, Zeinali S, Khanahmad H, Karimipour M, Asadzadeh N, Azadmanesh K, Khabiri A, Schoonooghe S, Habibi Anbouhi M, Hassanzadeh-Ghassabeh G and Muyldermans S: Generation and characterization of a functional Nanobody against the vascular endothelial growth factor receptor-2; angiogenesis cell receptor. Mol Immunol. 50:35–41. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tian B, Wong WY, Uger MD, Wisniewski P and Chao H: Development and characterization of a camelid single domain antibody-urease conjugate that targets vascular endothelial growth factor receptor 2. Front Immunol. 8:9562017. View Article : Google Scholar : PubMed/NCBI | |
Hajari Taheri F, Hassani M, Sharifzadeh Z, Behdani M, Arashkia A and Abolhassani M: T cell engineered with a novel nanobody-based chimeric antigen receptor against VEGFR2 as a candidate for tumor immunotherapy. IUBMB Life. 71:1259–1267. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rajaram P, Chandra P, Ticku S, Pallavi BK, Rudresh KB and Mansabdar P: Epidermal growth factor receptor: Role in human cancer. Indian J Dent Res. 28:687–694. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liang R, Yang L and Zhu X: Nimotuzumab, an Anti-EGFR monoclonal antibody, in the treatment of nasopharyngeal carcinoma. Cancer Control. 28:10732748219893012021. View Article : Google Scholar : PubMed/NCBI | |
Gottlin EB, Xiangrong Guan, Pegram C, Cannedy A, Campa MJ and Patz EF Jr: Isolation of novel EGFR-specific VHH domains. J Biomol Screen. 14:77–85. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schmitz KR, Bagchi A, Roovers RC, van Bergen en Henegouwen PM and Ferguson KM: Structural evaluation of EGFR inhibition mechanisms for nanobodies/VHH domains. Structure. 21:1214–1224. 2013. View Article : Google Scholar : PubMed/NCBI | |
Oliveira S, van Dongen GA, Stigter-van Walsum M, Roovers RC, Stam JC, Mali W, van Diest PJ and van Bergen en Henegouwen PM: Rapid visualization of human tumor xenografts through optical imaging with a near-infrared fluorescent anti-epidermal growth factor receptor nanobody. Mol Imaging. 11:33–46. 2012. View Article : Google Scholar : PubMed/NCBI | |
van Driel PB, van der Vorst JR, Verbeek FP, Oliveira S, Snoeks TJ, Keereweer S, Chan B, Boonstra MC, Frangioni JV, van Bergen en Henegouwen PM, et al: Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody. Int J Cancer. 134:2663–2673. 2014. View Article : Google Scholar : PubMed/NCBI | |
van Lith SAM, van den Brand D, Wallbrecher R, van Duijnhoven SMJ, Brock R and Leenders WPJ: A conjugate of an anti-epidermal growth factor receptor (EGFR) VHH and a cell-penetrating peptide drives receptor internalization and blocks EGFR activation. Chembiochem. 18:2390–2394. 2017. View Article : Google Scholar : PubMed/NCBI | |
van Lith SAM, van den Brand D, Wallbrecher R, Wübbeke L, van Duijnhoven SMJ, Mäkinen PI, Hoogstad-van Evert JS, Massuger L, Ylä-Herttuala S, Brock R and Leenders WPJ: The effect of subcellular localization on the efficiency of EGFR-targeted VHH photosensitizer conjugates. Eur J Pharm Biopharm. 124:63–72. 2018. View Article : Google Scholar : PubMed/NCBI | |
Krüwel T, Nevoltris D, Bode J, Dullin C, Baty D, Chames P and Alves F: In vivo detection of small tumour lesions by multi-pinhole SPECT applying a (99m)Tc-labelled nanobody targeting the Epidermal Growth Factor Receptor. Sci Rep. 6:218342016. View Article : Google Scholar : PubMed/NCBI | |
Piramoon M, Hosseinimehr SJ, Omidfar K, Noaparast Z and Abedi SM: 99m Tc-anti-epidermal growth factor receptor nanobody for tumor imaging. Chem Biol Drug Des. 89:498–504. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li C, Wen B, Wang L, Feng H, Xia X, Ding Z, Gao B, Zhang Y and Lan X: 99mTc-labeled single-domain antibody EG2 in targeting epidermal growth factor receptor: An in vitro and mouse model in-vivo study. Nucl Med Commun. 36:452–460. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vosjan MJ, Perk LR, Roovers RC, Visser GW, Stigter-van Walsum M, van Bergen En Henegouwen PM and van Dongen GA: Facile labelling of an anti-epidermal growth factor receptor Nanobody with 68Ga via a novel bifunctional desferal chelate for immuno-PET. Eur J Nucl Med Mol Imaging. 38:753–763. 2011. View Article : Google Scholar : PubMed/NCBI | |
Renard E, Collado Camps E, Canovas C, Kip A, Gotthardt M, Rijpkema M, Denat F, Goncalves V and van Lith SAM: Site-Specific Dual-Labeling of a VHH with a chelator and a photosensitizer for nuclear imaging and targeted photodynamic therapy of EGFR-Positive tumors. Cancers (Basel). 13:4282021. View Article : Google Scholar : PubMed/NCBI | |
Li C, Feng H, Xia X, Wang L, Gao B, Zhang Y and Lan X: (99m) Tc-labeled tetramer and pentamer of single-domain antibody for targeting epidermal growth factor receptor in xenografted tumors. J Labelled Comp Radiopharm. 59:305–312. 2016. View Article : Google Scholar : PubMed/NCBI |