1
|
Younossi ZM, Koenig AB, Abdelatif D, Fazel
Y, Henry L and Wymer M: Global epidemiology of nonalcoholic fatty
liver disease-meta-analytic assessment of prevalence, incidence,
and outcomes. Hepatology. 64:73–84. 2016.
|
2
|
Anderson EL, Howe LD, Jones HE, Higgins
JPT, Lawlor DA and Fraser A: The prevalence of non-alcoholic fatty
liver disease in children and adolescents: A systematic review and
meta-analysis. PLoS One. 10:e01409082015.
|
3
|
Maurice J and Manousou P: Non-alcoholic
fatty liver disease. Clin Med (Lond). 18:245–250. 2018.
|
4
|
Chitturi S, Abeygunasekera S, Farrell GC,
Holmes-Walker J, Hui JM, Fung C, Karim R, Lin R, Samarasinghe D,
Liddle C, et al: NASH and insulin resistance: Insulin
hypersecretion and specific association with the insulin resistance
syndrome. Hepatology. 35:373–379. 2002.
|
5
|
Simões ICM, Fontes A, Pinton P, Zischka H
and Wieckowski MR: Mitochondria in non-alcoholic fatty liver
disease. Int J Biochem Cell Biol. 95:93–99. 2018.
|
6
|
Nassir F and Ibdah JA: Role of
mitochondria in nonalcoholic fatty liver disease. Int J Mol Sci.
15:8713–8742. 2014.
|
7
|
Lu Q, Tian X, Wu H, Huang J, Li M, Mei Z,
Zhou L, Xie H and Zheng S: Metabolic changes of hepatocytes in
NAFLD. Front Physiol. 12:7104202021.
|
8
|
Sunny NE, Bril F and Cusi K: Mitochondrial
adaptation in nonalcoholic fatty liver disease: Novel mechanisms
and treatment strategies. Trends Endocrinol Metabolism. 28:250–260.
2017.
|
9
|
Koliaki C, Szendroedi J, Kaul K, Jelenik
T, Nowotny P, Jankowiak F, Herder C, Carstensen M, Krausch M,
Knoefel WT, et al: Adaptation of hepatic mitochondrial function in
humans with non-alcoholic fatty liver is lost in steatohepatitis.
Cell Metab. 21:739–746. 2015.
|
10
|
Satapati S, Sunny NE, Kucejova B, Fu X, He
TT, Méndez-Lucas A, Shelton JM, Perales JC, Browning JD and Burgess
SC: Elevated TCA cycle function in the pathology of diet-induced
hepatic insulin resistance and fatty liver. J Lipid Res.
53:1080–1092. 2012.
|
11
|
Begriche K, Massart J, Robin MA, Bonnet F
and Fromenty B: Mitochondrial adaptations and dysfunctions in
nonalcoholic fatty liver disease. Hepatology. 58:1497–1507.
2013.
|
12
|
Green CJ, Parry SA, Gunn PJ, Ceresa CDL,
Rosqvist F, Piche ME and Hodson L: Studying non-alcoholic fatty
liver disease: The ins and outs of in vivo, ex vivo and in vitro
human models. Horm Mol Biol Clin Investig. 41: View Article : Google Scholar : 2018.
|
13
|
Ramos MJ, Bandiera L, Menolascina F and
Fallowfield JA: In vitro models for non-alcoholic fatty liver
disease: Emerging platforms and their applications. iScience.
25:1035492022.
|
14
|
Green CJ, Johnson D, Amin HD, Sivathondan
P, Silva MA, Wang LM, Stevanato L, McNeil CA, Miljan EA, Sinden JD,
et al: Characterization of lipid metabolism in a novel immortalized
human hepatocyte cell line. Am J Physiol Endocrinol Metab.
309:E511–E522. 2015.
|
15
|
Amorim R, Simões ICM, Veloso C, Carvalho
A, Simões RF, Pereira FB, Thiel T, Normann A, Morais C, Jurado AS,
et al: Exploratory data analysis of cell and mitochondrial
high-fat, high-sugar toxicity on human HepG2 cells. Nutrients.
13:17232021.
|
16
|
Garcia-Ruiz I, Solis-Munoz P,
Fernandez-Moreira D, Munoz-Yague T and Solis-Herruzo JA: In vitro
treatment of HepG2 cells with saturated fatty acids reproduces
mitochondrial dysfunction found in nonalcoholic steatohepatitis.
Dis Model Mech. 8:183–191. 2015.
|
17
|
Pérez-Carreras M, Del Hoyo P, Martín MA,
Rubio JC, Martín A, Castellano G, Colina F, Arenas J and
Solis-Herruzo JA: Defective hepatic mitochondrial respiratory chain
in patients with nonalcoholic steatohepatitis. Hepatology.
38:999–1007. 2003.
|
18
|
Donato MT, Tolosa L and Gómez-Lechón MJ:
Culture and functional characterization of human hepatoma HepG2
cells. Methods Mol Biol. 1250:77–93. 2015.
|
19
|
Gibbons GF, Khurana R, Odwell A and
Seelaender MC: Lipid balance in HepG2 cells: Active synthesis and
impaired mobilization. J Lipid Res. 35:1801–1808. 1994.
|
20
|
Tascher G, Burban A, Camus S, Plumel M,
Chanon S, Le Guevel R, Shevchenko V, Van Dorsselaer A, Lefai E,
Guguen-Guillouzo C and Bertile F: In-depth proteome analysis
highlights HepaRG cells as a versatile cell system surrogate for
primary human hepatocytes. Cells. 8:1922019.
|
21
|
Berlanga A, Guiu-Jurado E, Porras JA and
Auguet T: Molecular pathways in non-alcoholic fatty liver disease.
Clin Exp Gastroenterol. 7:221–239. 2014.
|
22
|
Zhou Y, Orešič M, Leivonen M,
Gopalacharyulu P, Hyysalo J, Arola J, Verrijken A, Francque S, Van
Gaal L, Hyötyläinen T and Yki-Järvinen H: Noninvasive detection of
nonalcoholic steatohepatitis using clinical markers and circulating
levels of lipids and metabolites. Clin Gastroenterol Hepatol.
14:1463–1472.e6. 2016.
|
23
|
Donnelly KL, Smith CI, Schwarzenberg SJ,
Jessurun J, Boldt MD and Parks EJ: Sources of fatty acids stored in
liver and secreted via lipoproteins in patients with nonalcoholic
fatty liver disease. J Clin Invest. 115:1343–1351. 2005.
|
24
|
Ipsen DH, Lykkesfeldt J and Tveden-Nyborg
P: Molecular mechanisms of hepatic lipid accumulation in
non-alcoholic fatty liver disease. Cell Mol Life Sci. 75:3313–3327.
2018.
|
25
|
Geng Y, Faber KN, de Meijer VE, Blokzijl H
and Moshage H: How does hepatic lipid accumulation lead to
lipotoxicity in non-alcoholic fatty liver disease? Hepatol Int.
15:21–35. 2021.
|
26
|
Tsilingiris D, Tzeravini E, Koliaki C,
Dalamaga M and Kokkinos A: The role of mitochondrial adaptation and
metabolic flexibility in the pathophysiology of obesity and insulin
resistance: An updated overview. Curr Obes Rep. 10:191–213.
2021.
|
27
|
Stefela A, Kaspar M, Drastik M, Holas O,
Hroch M, Smutny T, Skoda J, Hutníková M, Pandey AV, Micuda S, et
al: 3β-Isoobeticholic acid efficiently activates the farnesoid X
receptor (FXR) due to its epimerization to 3α-epimer by hepatic
metabolism. J Steroid Biochem Mol Biol. 202:1057022020.
|
28
|
Geng Y, Villanueva AH, Oun A, Buist-Homan
M, Blokzijl H, Faber KN, Dolga A and Moshage H: Protective effect
of metformin against palmitate-induced hepatic cell death. Biochim
Biophys Acta. 1866:1656212020.
|
29
|
Elkalaf M, Vaněčková K, Staňková P,
Červinková Z, Polák J and Kučera O: Measuring mitochondrial
substrate flux in recombinant Perfringolysin O-Permeabilized cells.
J Vis Exp. 13: View
Article : Google Scholar : 2021.
|
30
|
Iuso A, Repp B, Biagosch C, Terrile C and
Prokisch H: Assessing mitochondrial bioenergetics in isolated
mitochondria from various mouse tissues using seahorse XF96
analyzer. Methods Mol Biol. 1567:217–230. 2017.
|
31
|
Spinazzi M, Casarin A, Pertegato V,
Salviati L and Angelini C: Assessment of mitochondrial respiratory
chain enzymatic activities on tissues and cultured cells. Nat
Protoc. 7:1235–1246. 2012.
|
32
|
Elkalaf M, Tůma P, Weiszenstein M, Polák J
and Trnka J: Mitochondrial probe methyltriphenylphosphonium (TPMP)
inhibits the krebs cycle Enzyme 2-Oxoglutarate Dehydrogenase. PLoS
One. 11:e01614132016.
|
33
|
Cechakova L, Ondrej M, Pavlik V, Jost P,
Cizkova D, Bezrouk A, Pejchal J, Amaravadi RK, Winkler JD and Tichy
A: A potent autophagy inhibitor (Lys05) enhances the impact of
ionizing radiation on human lung cancer cells H1299. Int J Mol Sci.
20:58812019.
|
34
|
Kucera O, Endlicher R, Rousar T, Lotkova
H, Garnol T, Drahota Z and Cervinková Z: The effect of tert-butyl
hydroperoxide-induced oxidative stress on lean and steatotic rat
hepatocytes in vitro. Oxid Med Cell Longev. 2014:7525062014.
|
35
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
|
36
|
Nagarajan SR, Paul-Heng M, Krycer JR,
Fazakerley DJ, Sharland AF and Hoy AJ: Lipid and glucose metabolism
in hepatocyte cell lines and primary mouse hepatocytes: A
comprehensive resource for in vitro studies of hepatic metabolism.
Am J Physiol Endocrinol Metab. 316:E578–E589. 2019.
|
37
|
Judge A and Dodd MS: Metabolism. Essays
Biochem. 64:607–647. 2020.
|
38
|
Staňková P, Kučera O, Peterová E, Lotková
H, Maseko TE, Nožičková K and Červinková Z: Adaptation of
mitochondrial substrate flux in a mouse model of nonalcoholic fatty
liver disease. Int J Mol Sci. 21:11012020.
|
39
|
Staňková P, Kučera O, Peterová E, Elkalaf
M, Rychtrmoc D, Melek J, Podhola M, Zubáňová V and Červinková Z:
Western diet decreases the liver mitochondrial oxidative flux of
succinate: Insight from a Murine NAFLD model. Int J Mol Sci.
22:69082021.
|
40
|
Pfleger J: Measurements of mitochondrial
respiration in intact cells, permeabilized cells, and isolated
tissue mitochondria using the seahorse XF analyzer. Methods Mol
Biol. 2497:185–206. 2022.
|
41
|
Larsen S, Nielsen J, Hansen CN, Nielsen
LB, Wibrand F, Stride N, Schroder HD, Boushel R, Helge JW, Dela F
and Hey-Mogensen M: Biomarkers of mitochondrial content in skeletal
muscle of healthy young human subjects. J Physiol. 590:3349–3360.
2012.
|
42
|
Urra FA, Muñoz F, Lovy A and Cárdenas C:
The mitochondrial complex(I)ty of cancer. Front Oncol.
7:1182017.
|
43
|
Peyta L, Jarnouen K, Pinault M, Guimaraes
C, Pais de Barros JP, Chevalier S, Dumas JF, Maillot F, Hatch GM,
Loyer P and Servais S: Reduced cardiolipin content decreases
respiratory chain capacities and increases ATP synthesis yield in
the human HepaRG cells. Biochim Biophys Acta. 1857:443–453.
2016.
|
44
|
de Sousa IF, Migliaccio V, Lepretti M,
Paolella G, Di Gregorio I, Caputo I, Ribeiro EB and Lionetti L:
Dose- and time-dependent effects of oleate on mitochondrial
Fusion/Fission proteins and cell viability in HepG2 cells:
Comparison with palmitate effects. Int J Mol Sci. 22:98122021.
|
45
|
Sasi US, Sindhu G and Raghu KG:
Fructose-palmitate based high calorie induce steatosis in HepG2
cells via mitochondrial dysfunction: An in vitro approach. Toxicol
In Vitro. 68:1049522020.
|
46
|
Grasselli E, Baldini F, Vecchione G,
Oliveira PJ, Sardão VA, Voci A, Portincasa P and Vergani L: Excess
fructose and fatty acids trigger a model of non-alcoholic fatty
liver disease progression in vitro: Protective effect of the
flavonoid silybin. Int J Mol Med. 44:705–712. 2019.
|
47
|
Feaver RE, Cole BK, Lawson MJ, Hoang SA,
Marukian S, Blackman BR, Figler RA, Sanyal AJ, Wamhoff BR and Dash
A: Development of an in vitro human liver system for interrogating
nonalcoholic steatohepatitis. JCI Insight. 1:e909542016.
|
48
|
Longhitano L, Distefano A, Amorini AM,
Orlando L, Giallongo S, Tibullo D, Lazzarino G, Nicolosi A, Alanazi
AM, Saoca C, et al: (+)-lipoic acid reduces lipotoxicity and
regulates mitochondrial homeostasis and energy balance in an in
vitro model of liver steatosis. Int J Mol Sci. 24:144912023.
|
49
|
Perry RJ, Kim T, Zhang XM, Lee HY, Pesta
D, Popov VB, Zhang D, Rahimi Y, Jurczak MJ, Cline GW, et al:
Reversal of hypertriglyceridemia, fatty liver disease, and insulin
resistance by a liver-targeted mitochondrial uncoupler. Cell Metab.
18:740–748. 2013.
|
50
|
Serviddio G, Bellanti F, Tamborra R, Rollo
T, Romano AD, Giudetti AM, Capitanio N, Petrella A, Vendemiale G
and Altomare E: Alterations of hepatic ATP homeostasis and
respiratory chain during development of non-alcoholic
steatohepatitis in a rodent model. Eur J Clin Invest. 38:245–252.
2008.
|
51
|
Jastroch M, Divakaruni AS, Mookerjee S,
Treberg JR and Brand MD: Mitochondrial proton and electron leaks.
Essays Biochem. 47:53–67. 2010.
|
52
|
Zorov DB, Juhaszova M and Sollott SJ:
Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS
release. Physiol Rev. 94:909–950. 2014.
|
53
|
Zhao RZ, Jiang S, Zhang L and Yu ZB:
Mitochondrial electron transport chain, ROS generation and
uncoupling (Review). Int J Mol Med. 44:3–15. 2019.
|
54
|
Nassir F, Arndt JJ, Johnson SA and Ibdah
JA: Regulation of mitochondrial trifunctional protein modulates
nonalcoholic fatty liver disease in mice. J Lipid Res. 59:967–973.
2018.
|
55
|
Kamalian L, Douglas O, Jolly CE, Snoeys J,
Simic D, Monshouwer M, Williams DP, Park BK and Chadwick AE: The
utility of HepaRG cells for bioenergetic investigation and
detection of drug-induced mitochondrial toxicity. Toxicol In Vitro.
53:136–147. 2018.
|
56
|
Porceddu M, Buron N, Rustin P, Fromenty B
and Borgne-Sanchez A: In vitro assessment of mitochondrial toxicity
to predict drug-induced liver injury. Methods Pharmacol Toxicol.
21:283–300. 2018.
|
57
|
Calabrese C, Iommarini L, Kurelac I,
Calvaruso MA, Capristo M, Lollini PL, Nanni P, Bergamini C,
Nicoletti G, Giovanni CD, et al: Respiratory complex I is essential
to induce a Warburg profile in mitochondria-defective tumor cells.
Cancer Metab. 1:112013.
|
58
|
Ye JH, Chao J, Chang ML, Peng WH, Cheng
HY, Liao JW and Pao LH: Pentoxifylline ameliorates non-alcoholic
fatty liver disease in hyperglycaemic and dyslipidaemic mice by
upregulating fatty acid β-oxidation. Sci Rep. 6:331022016.
|
59
|
Liemburg-Apers DC, Willems PH, Koopman WJ
and Grefte S: Interactions between mitochondrial reactive oxygen
species and cellular glucose metabolism. Arch Toxicol.
89:1209–1226. 2015.
|
60
|
Zheng Y, Wang S, Wu J and Wang Y:
Mitochondrial metabolic dysfunction and non-alcoholic fatty liver
disease: New insights from pathogenic mechanisms to clinically
targeted therapy. J Transl Med. 21:5102023.
|
61
|
Amorim R, Simões ICM, Teixeira J, Cagide
F, Potes Y, Soares P, Carvalho A, Tavares LC, Benfeito S, Pereira
SP, et al: Mitochondria-targeted anti-oxidant AntiOxCIN(4) improved
liver steatosis in Western diet-fed mice by preventing lipid
accumulation due to upregulation of fatty acid oxidation, quality
control mechanism and antioxidant defense systems. Redox Biol.
55:1024002022.
|
62
|
Chen W, Zhao H and Li Y: Mitochondrial
dynamics in health and disease: Mechanisms and potential targets.
Signal Transduct Target Ther. 8:3332023.
|
63
|
Doczi J, Karnok N, Bui D, Azarov V, Pallag
G, Nazarian S, Czumbel B, Seyfried TN and Chinopoulos C: Viability
of HepG2 and MCF-7 cells is not correlated with mitochondrial
bioenergetics. Sci Rep. 13:108222023.
|
64
|
Engin AB: What is lipotoxicity? Adv Exp
Med Biol. 960:197–220. 2017.
|
65
|
Zhang D, Liu ZX, Choi CS, Tian L, Kibbey
R, Dong J, Cline GW, Wood PA and Shulman GI: Mitochondrial
dysfunction due to long-chain Acyl-CoA dehydrogenase deficiency
causes hepatic steatosis and hepatic insulin resistance. Proc Natl
Acad Sci USA. 104:17075–17080. 2007.
|