Role of microglia/macrophage polarisation in intraocular diseases (Review)
- Authors:
- Haoran Li
- Biao Li
- Yanlin Zheng
-
Affiliations: School of Opthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China - Published online on: March 29, 2024 https://doi.org/10.3892/ijmm.2024.5369
- Article Number: 45
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Yan J and Horng T: Lipid metabolism in regulation of macrophage functions. Trends Cell Biol. 30:979–989. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wynn TA, Chawla A and Pollard JW: Macrophage biology in development, homeostasis and disease. Nature. 496:445–455. 2013. View Article : Google Scholar : PubMed/NCBI | |
Murray PJ and Wynn TA: Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 11:723–737. 2011. View Article : Google Scholar : PubMed/NCBI | |
Murray PJ: Macrophage polarization. Annu Rev Physiol. 79:541–566. 2017. View Article : Google Scholar | |
Chinnery HR, McMenamin PG and Dando SJ: Macrophage physiology in the eye. Pflugers Arch. 469:501–515. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chu F, Shi M, Zheng C, Shen D, Zhu J, Zheng X and Cui L: The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol. 318:1–7. 2018. View Article : Google Scholar : PubMed/NCBI | |
Norden DM, Muccigrosso MM and Godbout JP: Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease. Neuropharmacology. 96:29–41. 2015. View Article : Google Scholar : | |
Kabba JA, Xu Y, Christian H, Ruan W, Chenai K, Xiang Y, Zhang L, Saavedra JM and Pang T: Microglia: Housekeeper of the central nervous system. Cell Mol Neurobiol. 38:53–71. 2018. View Article : Google Scholar | |
Das A, Sinha M, Datta S, Abas M, Chaffee S, Sen CK and Roy S: Monocyte and macrophage plasticity in tissue repair and regeneration. Am J Pathol. 185:2596–2606. 2015. View Article : Google Scholar : PubMed/NCBI | |
Biswas SK, Chittezhath M, Shalova IN and Lim JY: Macrophage polarization and plasticity in health and disease. Immunol Res. 53:11–24. 2012. View Article : Google Scholar : PubMed/NCBI | |
Strauss O, Dunbar PR, Bartlett A and Phillips A: The immunophenotype of antigen presenting cells of the mononuclear phagocyte system in normal human liver-a systematic review. J Hepatol. 62:458–468. 2015. View Article : Google Scholar | |
McMurran CE, Jones CA, Fitzgerald DC and Franklin RJ: CNS remyelination and the innate immune system. Front Cell Dev Biol. 4:382016. View Article : Google Scholar : PubMed/NCBI | |
Tay TL, Hagemeyer N and Prinz M: The force awakens: Insights into the origin and formation of microglia. Curr Opin Neurobiol. 39:30–37. 2016. View Article : Google Scholar : PubMed/NCBI | |
Subramaniam SR and Federoff HJ: Targeting microglial activation states as a therapeutic avenue in Parkinson's disease. Front Aging Neurosci. 9:1762017. View Article : Google Scholar : PubMed/NCBI | |
Du L, Zhang Y, Chen Y, Zhu J, Yang Y and Zhang HL: Role of microglia in neurological disorders and their potentials as a therapeutic target. Mol Neurobiol. 54:7567–7584. 2017. View Article : Google Scholar | |
Jiang HR, Milovanović M, Allan D, Niedbala W, Besnard AG, Fukada SY, Alves-Filho JC, Togbe D, Goodyear CS, Linington C, et al: IL-33 attenuates EAE by suppressing IL-17 and IFN-gamma production and inducing alternatively activated macrophages. Eur J Immunol. 42:1804–1814. 2012. View Article : Google Scholar : PubMed/NCBI | |
Butovsky O, Landa G, Kunis G, Ziv Y, Avidan H, Greenberg N, Schwartz A, Smirnov I, Pollack A, Jung S and Schwartz M: Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis. J Clin Invest. 116:905–915. 2006. View Article : Google Scholar : PubMed/NCBI | |
Boche D, Perry VH and Nicoll JA: Review: Activation patterns of microglia and their identification in the human brain. Neuropath Appl Neuro. 39:3–18. 2013. View Article : Google Scholar | |
Mills CD: M1 and M2 macrophages: Oracles of health and disease. Crit Rev Immunol. 32:463–488. 2012. View Article : Google Scholar | |
Ransohoff RM and Brown MA: Innate immunity in the central nervous system. J Clin Invest. 122:1164–1171. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ransohoff RM and Perry VH: Microglial physiology: Unique stimuli, specialized responses. Annu Rev Immunol. 27:119–145. 2009. View Article : Google Scholar : PubMed/NCBI | |
Graeber MB: Changing face of microglia. Science. 330:783–788. 2010. View Article : Google Scholar : PubMed/NCBI | |
Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK and Suttles J: Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol. 175:342–349. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Liang H and Zen K: Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol. 5:6142014. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A and Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25:677–686. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gordon S: Alternative activation of macrophages. Nat Rev Immunol. 3:23–35. 2003. View Article : Google Scholar : PubMed/NCBI | |
Varnum MM and Ikezu T: The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer's disease brain. Arch Immunol Ther Exp (Warsz). 60:251–266. 2012. View Article : Google Scholar : PubMed/NCBI | |
Colton C and Wilcock DM: Assessing activation states in microglia. CNS Neurol Disord Drug Targets. 9:174–191. 2010. View Article : Google Scholar : PubMed/NCBI | |
Henkel JS, Beers DR, Zhao W and Appel SH: Microglia in ALS: The good, the bad, and the resting. J Neuroimmune Pharm. 4:389–398. 2009. View Article : Google Scholar | |
Hanisch UK and Kettenmann H: Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 10:1387–1394. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sica A and Mantovani A: Macrophage plasticity and polarization: In vivo veritas. J Clin Invest. 122:787–795. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang LX, Zhang SX, Wu HJ, Rong XL and Guo J: M2b macrophage polarization and its roles in diseases. J Leukoc Biol. 106:345–358. 2019. View Article : Google Scholar | |
Ferrante CJ, Pinhal-Enfield G, Elson G, Cronstein BN, Hasko G, Outram S and Leibovich SJ: The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Rα) signaling. Inflammation. 36:921–931. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zizzo G, Hilliard BA, Monestier M and Cohen PL: Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol. 189:3508–3520. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mosser DM and Edwards JP: Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 8:958–969. 2008. View Article : Google Scholar : PubMed/NCBI | |
Edwards JP, Zhang X, Frauwirth KA and Mosser DM: Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol. 80:1298–1307. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chhor V, Le Charpentier T, Lebon S, Oré MV, Celador IL, Josserand J, Degos V, Jacotot E, Hagberg H, Sävman K, et al: Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav Immun. 32:70–85. 2013. View Article : Google Scholar : PubMed/NCBI | |
Freilich RW, Woodbury ME and Ikezu T: Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia. PLoS One. 8:e794162013. View Article : Google Scholar : PubMed/NCBI | |
Fenn AM, Henry CJ, Huang Y, Dugan A and Godbout JP: Lipopolysaccharide-induced interleukin (IL)-4 receptor-α expression and corresponding sensitivity to the M2 promoting effects of IL-4 are impaired in microglia of aged mice. Brain Behav Immun. 26:766–777. 2012. View Article : Google Scholar | |
Liu HC, Zheng MH, Du YL, Wang L, Kuang F, Qin HY, Zhang BF and Han H: N9 microglial cells polarized by LPS and IL4 show differential responses to secondary environmental stimuli. Cell Immunol. 278:84–90. 2012. View Article : Google Scholar : PubMed/NCBI | |
Michelucci A, Heurtaux T, Grandbarbe L, Morga E and Heuschling P: Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: Effects of oligomeric and fibrillar amyloid-beta. J Neuroimmunol. 210:3–12. 2009. View Article : Google Scholar : PubMed/NCBI | |
Crane MJ, Daley JM, van Houtte O, Brancato SK, Henry WJ Jr and Albina JE: The monocyte to macrophage transition in the murine sterile wound. PLoS One. 9:e866602014. View Article : Google Scholar : PubMed/NCBI | |
Italiani P, Mazza EM, Lucchesi D, Cifola I, Gemelli C, Grande A, Battaglia C, Bicciato S and Boraschi D: Transcriptomic profiling of the development of the inflammatory response in human monocytes in vitro. PLoS One. 9:e876802014. View Article : Google Scholar : PubMed/NCBI | |
Orecchioni M, Ghosheh Y, Pramod AB and Ley K: Macrophage polarization: Different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front Immunol. 10:10842019. View Article : Google Scholar : PubMed/NCBI | |
Watanabe S, Alexander M, Misharin AV and Budinger GRS: The role of macrophages in the resolution of inflammation. J Clin Invest. 129:2619–2628. 2019. View Article : Google Scholar : PubMed/NCBI | |
Atri C, Guerfali FZ and Laouini D: Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci. 19:18012018. View Article : Google Scholar : PubMed/NCBI | |
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018. View Article : Google Scholar : PubMed/NCBI | |
He C and Carter AB: The metabolic prospective and redox regulation of macrophage polarization. J Clin Cell Immunol. 6:3712015. View Article : Google Scholar | |
Bansal S, Barathi V, Iwata D and Agrawal R: Experimental autoimmune uveitis and other animal models of uveitis: An update. Indian J Ophthalmol. 63:211–218. 2015. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Fang S, Zhang Z, Wang Y, You C, Zhang J and Yan H: Preventive effect of chrysin on experimental autoimmune uveitis triggered by injection of human IRBP peptide 1-20 in mice. Cell Mol Immunol. 14:702–711. 2017. View Article : Google Scholar | |
Bousquet E, Camelo S, Leroux Les Jardins G, Goldenberg B, Naud MC, Besson-Lescure B, Lebreton L, Annat J, Behar-Cohen F and de Kozak Y: Protective effect of intravitreal administration of tresperimus, an immunosuppressive drug, on experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci. 52:5414–5423. 2011. View Article : Google Scholar : PubMed/NCBI | |
Haruta H, Ohguro N, Fujimoto M, Hohki S, Terabe F, Serada S, Nomura S, Nishida K, Kishimoto T and Naka T: Blockade of interleukin-6 signaling suppresses not only th17 but also interphotoreceptor retinoid binding protein-specific Th1 by promoting regulatory T cells in experimental autoimmune uveoretinitis. Investigative Invest Ophthalmol Vis Sci. 52:3264–3271. 2011. View Article : Google Scholar : PubMed/NCBI | |
Luger D, Silver PB, Tang J, Cua D, Chen Z, Iwakura Y, Bowman EP, Sgambellone NM, Chan CC and Caspi RR: Either a Th17 or a Th1 effector response can drive autoimmunity: Conditions of disease induction affect dominant effector category. J Exp Med. 205:799–810. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Chen M and Xu H: Experimental autoimmune uveoretinitis (EAU)-related tissue damage and angiogenesis is reduced in CCL2-/-CX3CR1gfp/gfp mice. Invest Ophthalmol Vis Sci. 55:7572–7582. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Copland DA, Zhao J, Liu J, Forrester JV, Dick AD and Xu H: Persistent inflammation subverts thrombospondin-1-induced regulation of retinal angiogenesis and is driven by CCR2 ligation. Am J Pathol. 180:235–245. 2012. View Article : Google Scholar | |
Lipski DA, Dewispelaere R, Foucart V, Caspers LE, Defrance M, Bruyns C and Willermain F: MHC class II expression and potential antigen-presenting cells in the retina during experimental autoimmune uveitis. J Neuroinflamm. 14:1362017. View Article : Google Scholar | |
Miura-Takeda S, Tashiro-Yamaji J, Oku H, Takahashi T, Shimizu T, Sugiyama T, Ikeda T, Kubota T and Yoshida R: Experimental autoimmune uveoretinitis initiated by non-phagocytic destruction of inner segments of photoreceptor cells by Mac-1(+) mononuclear cells. Microbiol Immunol. 52:601–610. 2008. View Article : Google Scholar | |
Niven J, Hoare J, McGowan D, Devarajan G, Itohara S, Gannagé M, Teismann P and Crane I: S100B up-regulates macrophage production of IL1β and CCL22 and influences severity of retinal inflammation. PLoS One. 10:e1326882015. View Article : Google Scholar | |
Nguyen AM and Rao NA: Oxidative photoreceptor cell damage in autoimmune uveitis. J Ophthalmic Inflamm Infect. 1:7–13. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu GS, Lee TD, Moore RE and Rao NA: Photoreceptor mitochondrial tyrosine nitration in experimental uveitis. Invest Ophthalmol Vis Sci. 46:2271–2281. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kimura A, Naka T, Nakahama T, Chinen I, Masuda K, Nohara K, Fujii-Kuriyama Y and Kishimoto T: Aryl hydrocarbon receptor in combination with Stat1 regulates LPS-induced inflammatory responses. J Exp Med. 206:2027–2035. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, He J, Liang H, Hu K, Jiang S, Yang L, Mei S, Zhu X, Yu J, Kijlstra A, et al: Aryl hydrocarbon receptor regulates apoptosis and inflammation in a murine model of experimental autoimmune uveitis. Front Immunol. 9:17132018. View Article : Google Scholar : PubMed/NCBI | |
Chackerian AA, Oldham ER, Murphy EE, Schmitz J, Pflanz S and Kastelein RA: IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex. J Immunol. 179:2551–2555. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kurowska-Stolarska M, Stolarski B, Kewin P, Murphy G, Corrigan CJ, Ying S, Pitman N, Mirchandani A, Rana B, van Rooijen N, et al: IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol. 183:6469–6477. 2009. View Article : Google Scholar : PubMed/NCBI | |
Barbour M, Allan D, Xu H, Pei C, Chen M, Niedbala W, Fukada SY, Besnard AG, Alves-Filho JC, Tong X, et al: IL-33 attenuates the development of experimental autoimmune uveitis. Eur J Immunol. 44:3320–3329. 2014. View Article : Google Scholar : PubMed/NCBI | |
Qu R, Zhou M, Qiu Y, Peng Y, Yin X, Liu B, Bi H, Gao Y and Guo D: Glucocorticoids improve the balance of M1/M2 macrophage polarization in experimental autoimmune uveitis through the P38MAPK-MEF2C axis. Int Immunopharmacol. 120:1103922023. View Article : Google Scholar : PubMed/NCBI | |
Tortorella C, Simone O, Piazzolla G, Stella I and Antonaci S: Age-related impairment of GM-CSF-induced signalling in neutrophils: Role of SHP-1 and SOCS proteins. Ageing Res Rev. 6:81–93. 2007. View Article : Google Scholar | |
Jost MM, Ninci E, Meder B, Kempf C, Van Royen N, Hua J, Berger B, Hoefer I, Modolell M and Buschmann I: Divergent effects of GM-CSF and TGFbeta1 on bone marrow-derived macrophage arginase-1 activity, MCP-1 expression, and matrix metalloproteinase-12: A potential role during arteriogenesis. FASEB J. 17:2281–2283. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Zhao J, Ali IHA, Marry S, Augustine J, Bhuckory M, Lynch A, Kissenpfennig A and Xu H: Cytokine signaling protein 3 deficiency in myeloid cells promotes retinal degeneration and angiogenesis through arginase-1 up-regulation in experimental autoimmune uveoretinitis. Am J Pathol. 188:1007–1020. 2018. View Article : Google Scholar : PubMed/NCBI | |
Benitez JT and Bouchard KR: Brain stem auditory evoked response correlates in patients with spinocerebellar lesions. Am J Otol. 7:183–187. 1986.PubMed/NCBI | |
Horstmann L, Schmid H, Heinen AP, Kurschus FC, Dick HB and Joachim SC: Inflammatory demyelination induces glia alterations and ganglion cell loss in the retina of an experimental autoimmune encephalomyelitis model. J Neuroinflamm. 10:1202013. View Article : Google Scholar | |
Cui Q, Yin Y and Benowitz LI: The role of macrophages in optic nerve regeneration. Neuroscience. 158:1039–1048. 2009. View Article : Google Scholar | |
Starossom SC, Veremeyko T, Yung AWY, Dukhinova M, Au C, Lau AY, Weiner HL and Ponomarev ED: Platelets play differential role during the initiation and progression of autoimmune neuroinflammation. Circ Res. 117:779–792. 2015. View Article : Google Scholar : PubMed/NCBI | |
Martinez FO and Gordon S: The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep. 6:132014. View Article : Google Scholar : PubMed/NCBI | |
McGeachy MJ: GM-CSF: The secret weapon in the T(H)17 arsenal. Nat Immunol. 12:521–522. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ponomarev ED, Shriver LP, Maresz K, Pedras-Vasconcelos J, Verthelyi D and Dittel BN: GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J Immunol. 178:39–48. 2007. View Article : Google Scholar | |
Ponomarev ED, Shriver LP, Maresz K and Dittel BN: Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J Neurosci Res. 81:374–389. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ponomarev ED, Maresz K, Tan Y and Dittel BN: CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci. 27:10714–10721. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang HL, Hassan MY, Zheng XY, Azimullah S, Quezada HC, Amir N, Elwasila M, Mix E, Adem A and Zhu J: Attenuated EAN in TNF-α deficient mice is associated with an altered balance of M1/M2 macrophages. PLoS One. 7:e381572012. View Article : Google Scholar | |
Kroenke MA, Carlson TJ, Andjelkovic AV and Segal BM: IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med. 205:1535–1541. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ha Y, Liu H, Zhu S, Yi P, Liu W, Nathanson J, Kayed R, Loucas B, Sun J, Frishman LJ, et al: Critical Role of the CXCL10/C-X-C chemokine receptor 3 axis in promoting leukocyte recruitment and neuronal injury during traumatic optic neuropathy induced by optic nerve crush. Am J Pathol. 187:352–365. 2017. View Article : Google Scholar : | |
Kwon MJ, Shin HY, Cui Y, Kim H, Thi AH, Choi JY, Kim EY, Hwang DH and Kim BG: CCL2 mediates neuron-macrophage interactions to drive proregenerative macrophage activation following preconditioning injury. J Neurosci. 35:15934–15947. 2015. View Article : Google Scholar : PubMed/NCBI | |
Butti E, Bergami A, Recchia A, Brambilla E, Del Carro U, Amadio S, Cattalini A, Esposito M, Stornaiuolo A, Comi G, et al: IL4 gene delivery to the CNS recruits regulatory T cells and induces clinical recovery in mouse models of multiple sclerosis. Gene Ther. 15:504–515. 2008. View Article : Google Scholar : PubMed/NCBI | |
Georgiou T, Wen YT, Chang CH, Kolovos P, Kalogerou M, Prokopiou E, Neokleous A, Huang CT and Tsai RK: Neuroprotective effects of Omega-3 polyunsaturated fatty acids in a rat model of anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci. 58:1603–1611. 2017. View Article : Google Scholar : PubMed/NCBI | |
Locri F, Cammalleri M, Pini A, Dal Monte M, Rusciano D and Bagnoli P: Further evidence on efficacy of diet supplementation with fatty acids in ocular pathologies: Insights from the EAE model of optic neuritis. Nutrients. 10:14472018. View Article : Google Scholar : PubMed/NCBI | |
Sen HN and Nussenblatt RB: Sympathetic ophthalmia: What have we learned? Am J Ophthalmol. 148:632–633. 2009. View Article : Google Scholar : PubMed/NCBI | |
Castiblanco CP and Adelman RA: Sympathetic ophthalmia. Graefes Arch Clin Exp Ophthalmol. 247:289–302. 2009. View Article : Google Scholar | |
Jakobiec FA, Marboe CC, Knowles DN II, Iwamoto T, Harrison W, Chang S and Coleman DJ: Human sympathetic ophthalmia. An analysis of the inflammatory infiltrate by hybridoma-monoclonal antibodies, immunochemistry, and correlative electron microscopy. Ophthalmology. 90:76–95. 1983. View Article : Google Scholar : PubMed/NCBI | |
Shah DN, Piacentini MA, Burnier MN, McLean IW, Nussenblatt RB and Chan CC: Inflammatory cellular kinetics in sympathetic ophthalmia a study of 29 traumatized (exciting) eyes. Ocul Immunol Inflamm. 1:255–262. 1993. View Article : Google Scholar : PubMed/NCBI | |
Abu El-Asrar AM, Struyf S, Van den Broeck C, Van Damme J, Opdenakker G, Geboes K and Kestelyn P: Expression of chemokines and gelatinase B in sympathetic ophthalmia. Eye (Lond). 21:649–657. 2007. View Article : Google Scholar | |
Aziz HA, Flynn HW Jr, Young RC, Davis JL and Dubovy SR: Sympathetic ophthalmia: Clinicopathologic correlation in a consecutive case series. Retina. 35:1696–1703. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chan CC, Nussenblatt RB, Fujikawa LS, Palestine AG, Stevens G Jr, Parver LM, Luckenbach MW and Kuwabara T: Sympathetic ophthalmia. Immunopathological findings. Ophthalmology. 93:690–695. 1986. View Article : Google Scholar : PubMed/NCBI | |
Furusato E, Shen D, Cao X, Furusato B, Nussenblatt RB, Rushing EJ and Chan CC: Inflammatory cytokine and chemokine expression in sympathetic ophthalmia: A pilot study. Histol Histopathol. 26:1145–1151. 2011.PubMed/NCBI | |
Marak GE Jr: Recent advances in sympathetic ophthalmia. Surv Ophthalmol. 24:141–156. 1979. View Article : Google Scholar : PubMed/NCBI | |
Ben M'Barek K and Monville C: Cell therapy for retinal dystrophies: From cell suspension formulation to complex retinal tissue bioengineering. Stem Cells Int. 2019:45689792019.PubMed/NCBI | |
Athanasiou D, Aguila M, Bellingham J, Li W, McCulley C, Reeves PJ and Cheetham ME: The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Prog Retin Eye Res. 62:1–23. 2018. View Article : Google Scholar : | |
Kyger M, Worley A and Adamus G: Autoimmune responses against photoreceptor antigens during retinal degeneration and their role in macrophage recruitment into retinas of RCS rats. J Neuroimmunol. 254:91–100. 2013. View Article : Google Scholar : | |
Sevenich L: Brain-resident microglia and blood-borne macrophages orchestrate central nervous system inflammation in neurodegenerative disorders and brain cancer. Front Immunol. 9:6972018. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Chen M and Forrester JV: Para-inflammation in the aging retina. Prog Retin Eye Res. 28:348–368. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wohleb ES: Neuron-microglia interactions in mental health disorders: 'For better, and for worse'. Front Immunol. 7:5442016. View Article : Google Scholar | |
Edholm ES, Rhoo KH and Robert J: Evolutionary aspects of macrophages polarization. Results Probl Cell Differ. 62:3–22. 2017. View Article : Google Scholar : PubMed/NCBI | |
Neves J, Zhu J, Sousa-Victor P, Konjikusic M, Riley R, Chew S, Qi Y, Jasper H and Lamba DA: Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science. 353:aaf36462016. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Li Y, Dai J, He Y, Sun D, Dai C, Xu H and Yin ZQ: Olfactory ensheathing cells grafted into the retina of RCS rats suppress inflammation by down-regulating the JAK/STAT pathway. Front Cell Neurosci. 13:3412019. View Article : Google Scholar : PubMed/NCBI | |
Olivares-González L, Velasco S, Gallego I, Esteban-Medina M, Puras G, Loucera C, Martínez-Romero A, Peña-Chilet M, Pedraz JL and Rodrigo R: An SPM-enriched marine oil supplement shifted microglia polarization toward M2, ameliorating retinal degeneration in rd10 mice. Antioxidants (Basel). 12:982022. View Article : Google Scholar | |
Quigley HA, Nickells RW, Kerrigan LA, Pease ME, Thibault DJ and Zack DJ: Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci. 36:774–786. 1995.PubMed/NCBI | |
Levkovitch-Verbin H, Dardik R, Vander S, Nisgav Y, Kalev-Landoy M and Melamed S: Experimental glaucoma and optic nerve transection induce simultaneous upregulation of proapoptotic and prosurvival genes. Invest Ophthalmol Vis Sci. 47:2491–2497. 2006. View Article : Google Scholar : PubMed/NCBI | |
Prilloff S, Henrich-Noack P and Sabel BA: Recovery of axonal transport after partial optic nerve damage is associated with secondary retinal ganglion cell death in vivo. Invest Ophthalmol Vis Sci. 53:1460–1466. 2012. View Article : Google Scholar : PubMed/NCBI | |
Levkovitch-Verbin H, Quigley HA, Martin KRG, Zack DJ, Pease ME and Valenta DF: A model to study differences between primary and secondary degeneration of retinal ganglion cells in rats by partial optic nerve transection. Invest Ophthalmol Vis Sci. 44:3388–3393. 2003. View Article : Google Scholar : PubMed/NCBI | |
Levkovitch-Verbin H, Quigley HA, Kerrigan-Baumrind LA, D'Anna SA, Kerrigan D and Pease ME: Optic nerve transection in monkeys may result in secondary degeneration of retinal ganglion cells. Invest Ophthalmol Vis Sci. 42:975–982. 2001.PubMed/NCBI | |
Yoles E and Schwartz M: Degeneration of spared axons following partial white matter lesion: Implications for optic nerve neuropathies. Exp Neurol. 153:1–7. 1998. View Article : Google Scholar : PubMed/NCBI | |
Li HY, Huang M, Luo QY, Hong X, Ramakrishna S and So KF: Lycium barbarum (wolfberry) increases retinal ganglion cell survival and affects both microglia/macrophage polarization and autophagy after rat partial optic nerve transection. Cell Transplant. 28:607–618. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wada Y, Nakamachi T, Endo K, Seki T, Ohtaki H, Tsuchikawa D, Hori M, Tsuchida M, Yoshikawa A, Matkovits A, et al: PACAP attenuates NMDA-induced retinal damage in association with modulation of the microglia/macrophage status into an acquired deactivation subtype. J Mol Neurosci. 51:493–502. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schwartz M: Macrophages and microglia in central nervous system injury: Are they helpful or harmful? J Cereb Blood Flow Metab. 23:385–394. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hayreh SS: Ischemic optic neuropathy. Prog Retin Eye Res. 28:34–62. 2009. View Article : Google Scholar | |
Salgado C, Vilson F, Miller NR and Bernstein SL: Cellular inflammation in nonarteritic anterior ischemic optic neuropathy and its primate model. Arch Ophthalmol. 129:1583–1591. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Guo Y, Miller NR and Bernstein SL: Optic nerve infarction and post-ischemic inflammation in the rodent model of anterior ischemic optic neuropathy (rAION). Brain Res. 1264:67–75. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nicholson JD, Leiba H and Goldenberg-Cohen N: Translational preclinical research may lead to improved medical management of non-arteritic anterior ischemic optic neuropathy. Front Neurol. 5:1222014. View Article : Google Scholar : PubMed/NCBI | |
Hayreh SS and Zimmerman MB: Nonarteritic anterior ischemic optic neuropathy: Natural history of visual outcome. Ophthalmology. 115:298–305.e2. 2008. View Article : Google Scholar | |
Bernstein SL, Johnson MA and Miller NR: Nonarteritic anterior ischemic optic neuropathy (NAION) and its experimental models. Prog Retin Eye Res. 30:167–187. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yin Y, Cui Q, Li Y, Irwin N, Fischer D, Harvey AR and Benowitz LI: Macrophage-derived factors stimulate optic nerve regeneration. J Neurosci. 23:2284–2293. 2003. View Article : Google Scholar : PubMed/NCBI | |
Orihuela R, McPherson CA and Harry GJ: Microglial M1/M2 polarization and metabolic states. Brit J Pharmacol. 173:649–665. 2016. View Article : Google Scholar | |
Wen YT, Huang TL, Huang SP, Chang CH and Tsai RK: Early applications of granulocyte colony-stimulating factor (G-CSF) can stabilize the blood-optic-nerve barrier and ameliorate inflammation in a rat model of anterior ischemic optic neuropathy (rAION). Dis Model Mech. 9:1193–1202. 2016.PubMed/NCBI | |
Desai TD, Wen YT, Daddam JR, Cheng F, Chen CC, Pan CL, Lin KL and Tsai RK: Long term therapeutic effects of icariin-loaded PLGA microspheres in an experimental model of optic nerve ischemia via modulation of CEBP-β/G-CSF/noncanonical NF-κB axis. Bioeng Transl Med. 7:e102892022. View Article : Google Scholar | |
Nguyen Ngo Le MA, Wen YT, Ho YC, Kapupara K and Tsai RK: Therapeutic effects of puerarin against anterior ischemic optic neuropathy through antiapoptotic and anti-inflammatory actions. Invest Ophthalmol Vis Sci. 60:3481–3491. 2019. View Article : Google Scholar : PubMed/NCBI | |
Arranz A, Doxaki C, Vergadi E, Martinez de la Torre Y, Vaporidi K, Lagoudaki ED, Ieronymaki E, Androulidaki A, Venihaki M, Margioris AN, et al: Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc Natl Acad Sci USA. 109:9517–9522. 2012. View Article : Google Scholar : PubMed/NCBI | |
Friedlander M: Fibrosis and diseases of the eye. J Clin Invest. 117:576–586. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R and Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wynn TA: Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest. 117:524–529. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wermuth PJ and Jimenez SA: The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases. Clin Transl Med. 4:22015. View Article : Google Scholar : PubMed/NCBI | |
Pastor JC, de la Rúa ER and Martin F: Proliferative vitreoretinopathy: Risk factors and pathobiology. Prog Retin Eye Res. 21:127–144. 2002. View Article : Google Scholar : PubMed/NCBI | |
Cordeiro MF, Schultz GS, Ali RR, Bhattacharya SS and Khaw PT: Molecular therapy in ocular wound healing. Br J Ophthalmol. 83:1219–1224. 1999. View Article : Google Scholar : PubMed/NCBI | |
Agrawal RN, He S, Spee C, Cui JZ, Ryan SJ and Hinton DR: In vivo models of proliferative vitreoretinopathy. Nat Protoc. 2:67–77. 2007. View Article : Google Scholar : PubMed/NCBI | |
Esser P, Heimann K and Wiedemann P: Macrophages in proliferative vitreoretinopathy and proliferative diabetic retinopathy: Differentiation of subpopulations. Br J Ophthalmol. 77:731–733. 1993. View Article : Google Scholar : PubMed/NCBI | |
Martin F, Pastor JC, De La Rúa ER, Mayo-Iscar A, García-Arumí J, Martínez V, Fernández N and Saornil MA: Proliferative vitreoretinopathy: Cytologic findings in vitreous samples. Ophthalmic Res. 35:232–238. 2003. View Article : Google Scholar : PubMed/NCBI | |
Garweg JG, Tappeiner C and Halberstadt M: Pathophysiology of proliferative vitreoretinopathy in retinal detachment. Surv Ophthalmol. 58:321–329. 2013. View Article : Google Scholar : PubMed/NCBI | |
Biswas SK and Mantovani A: Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat Immunol. 11:889–896. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wong CW, Cheung N, Ho C, Barathi V, Storm G and Wong TT: Characterisation of the inflammatory cytokine and growth factor profile in a rabbit model of proliferative vitreoretinopathy. Sci Rep. 9:154192019. View Article : Google Scholar : PubMed/NCBI | |
Ishikawa K, Kannan R and Hinton DR: Molecular mechanisms of subretinal fibrosis in age-related macular degeneration. Exp Eye Res. 142:19–25. 2016. View Article : Google Scholar | |
Song Y, Liao M, Zhao X, Han H, Dong X, Wang X, Du M and Yan H: Vitreous M2 macrophage-derived microparticles promote RPE cell proliferation and migration in traumatic proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci. 62:262021. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi Y, Yoshida S, Nakama T, Zhou Y, Ishikawa K, Arita R, Nakao S, Miyazaki M, Sassa Y, Oshima Y, et al: Overexpression of CD163 in vitreous and fibrovascular membranes of patients with proliferative diabetic retinopathy: possible involvement of periostin. Br J Ophthalmol. 99:451–456. 2015. View Article : Google Scholar | |
Zhang J, Zhou Q, Yuan G, Dong M and Shi W: Notch signaling regulates M2 type macrophage polarization during the development of proliferative vitreoretinopathy. Cell Immunol. 298:77–82. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lim LS, Mitchell P, Seddon JM, Holz FG and Wong TY: Age-related macular degeneration. Lancet. 379:1728–1738. 2012. View Article : Google Scholar : PubMed/NCBI | |
Greaves NS, Ashcroft KJ, Baguneid M and Bayat A: Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. J Dermatol Sci. 72:206–217. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kent D and Sheridan C: Choroidal neovascularization: A wound healing perspective. Mol Vis. 9:747–755. 2003. | |
Cherepanoff S, McMenamin P, Gillies MC, Kettle E and Sarks SH: Bruch's membrane and choroidal macrophages in early and advanced age-related macular degeneration. Br J Ophthalmol. 94:918–925. 2010. View Article : Google Scholar | |
Bo Q, Shen M, Xiao M, Liang J, Zhai Y, Zhu H, Jiang M, Wang F, Luo X and Sun X: 3-Methyladenine alleviates experimental subretinal fibrosis by inhibiting macrophages and M2 polarization through the PI3K/Akt pathway. J Ocul Pharmacol Ther. 36:618–628. 2020. View Article : Google Scholar : PubMed/NCBI | |
He L and Marneros AG: Macrophages are essential for the early wound healing response and the formation of a fibrovascular scar. Am J Pathol. 182:2407–2417. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cao X, Shen D, Patel MM, Tuo J, Johnson TM, Olsen TW and Chan CC: Macrophage polarization in the maculae of age-related macular degeneration: A pilot study. Pathol Int. 61:528–535. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lai K, Li Y, Li L, Gong Y, Huang C, Zhang Y, Cheng L, Xu F, Zhao H, Li C, et al: Intravitreal injection of triptolide attenuates subretinal fibrosis in laser-induced murine model. Phytomedicine. 93:1537472021. View Article : Google Scholar : PubMed/NCBI | |
Mehla K and Singh PK: Metabolic regulation of macrophage polarization in cancer. Trends Cancer. 5:822–834. 2019. View Article : Google Scholar : PubMed/NCBI | |
Egan KM, Seddon JM, Glynn RJ, Gragoudas ES and Albert DM: Epidemiologic aspects of uveal melanoma. Surv Ophthalmol. 32:239–251. 1988. View Article : Google Scholar : PubMed/NCBI | |
Johnson DB and Daniels AB: Continued poor survival in metastatic uveal melanoma: Implications for molecular prognostication, surveillance imaging, adjuvant therapy, and clinical trials. JAMA Ophthalmol. 136:986–988. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hood JL: The association of exosomes with lymph nodes. Semin Cell Dev Biol. 67:29–38. 2017. View Article : Google Scholar | |
Bardi GT, Smith MA and Hood JL: Melanoma exosomes promote mixed M1 and M2 macrophage polarization. Cytokine. 105:63–72. 2018. View Article : Google Scholar : PubMed/NCBI | |
Delwar ZM, Kuo Y, Wen YH, Rennie PS and Jia W: Oncolytic virotherapy blockade by microglia and macrophages requires STAT1/3. Cancer Res. 78:718–730. 2018. View Article : Google Scholar | |
Zhou D, Huang C, Lin Z, Zhan S, Kong L, Fang C and Li J: Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 26:192–197. 2014. View Article : Google Scholar | |
Liu S, Zhang J, Fang S, Zhang Q, Zhu G, Tian Y, Zhao M and Liu F: Macrophage polarization contributes to the efficacy of an oncolytic HSV-1 targeting human uveal melanoma in a murine xenograft model. Exp Eye Res. 202:1082852021. View Article : Google Scholar | |
Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW and Vunjak-Novakovic G: The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials. 35:4477–4488. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MPJ and Donners MMPC: Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis. 17:109–118. 2014. View Article : Google Scholar | |
Cheung N, Mitchell P and Wong TY: Diabetic retinopathy. Lancet. 376:124–136. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jenkins AJ, Joglekar MV, Hardikar AA, Keech AC, O'Neal DN and Januszewski AS: Biomarkers in diabetic retinopathy. Rev Diabet Stud. 12:159–195. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu JH, Li YN, Chen AQ, Hong CD, Zhang CL, Wang HL, Zhou YF, Li PC, Wang Y, Mao L, et al: Inhibition of Sema4D/PlexinB1 signaling alleviates vascular dysfunction in diabetic retinopathy. EMBO Mol Med. 12:e101542020. View Article : Google Scholar : PubMed/NCBI | |
Madonna R, Balistreri CR, Geng YJ and De Caterina R: Diabetic microangiopathy: Pathogenetic insights and novel therapeutic approaches. Vasc Pharmacol. 90:1–7. 2017. View Article : Google Scholar | |
Chen C, Wu S, Hong Z, Chen X, Shan X, Fischbach S and Xiao X: Chronic hyperglycemia regulates microglia polarization through ERK5. Aging (Albany NY). 11:697–706. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen T, Zhu W, Wang C, Dong X, Yu F, Su Y, Huang J, Huo L and Wan P: ALKBH5-mediated m6A modification of A20 regulates microglia polarization in diabetic retinopathy. Front Immunol. 13:8139792022. View Article : Google Scholar | |
Yao Y, Li J, Zhou Y, Wang S, Zhang Z, Jiang Q and Li K: Macrophage/microglia polarization for the treatment of diabetic retinopathy. Front Endocrinol (Lausanne). 14:12762252023. View Article : Google Scholar : PubMed/NCBI | |
Tang L, Zhang C, Lu L, Tian H, Liu K, Luo D, Qiu Q, Xu GT and Zhang J: Melatonin maintains inner blood-retinal barrier by regulating microglia via inhibition of PI3K/Akt/Stat3/NF-κB signaling pathways in experimental diabetic retinopathy. Front Immunol. 13:8316602022. View Article : Google Scholar | |
Fang M, Wan W, Li Q, Wan W, Long Y, Liu H and Yang X: Asiatic acid attenuates diabetic retinopathy through TLR4/MyD88/NF-κB p65 mediated modulation of microglia polarization. Life Sci. 277:1195672021. View Article : Google Scholar | |
Good WV, Hardy RJ, Dobson V, Palmer EA, Phelps DL, Quintos M and Tung B; Early Treatment for Retinopathy of Prematurity Cooperative Group: The incidence and course of retinopathy of prematurity: Findings from the early treatment for retinopathy of prematurity study. Pediatrics. 116:15–23. 2005. View Article : Google Scholar : PubMed/NCBI | |
Dogra MR, Katoch D and Dogra M: An update on retinopathy of prematurity (ROP). Indian J Pediatr. 84:930–936. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dhawan A, Dogra M, Vinekar A, Gupta A and Dutta S: Structural sequelae and refractive outcome after successful laser treatment for threshold retinopathy of prematurity. J Pediatr Ophthalmol Strabismus. 45:356–361. 2008. View Article : Google Scholar : PubMed/NCBI | |
Katoch D, Sanghi G, Dogra MR, Beke N and Gupta A: Structural sequelae and refractive outcome 1 year after laser treatment for type 1 prethreshold retinopathy of prematurity in Asian Indian eyes. Indian J Ophthalmol. 59:423–426. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lee J, Kim KE, Choi DK, Jang JY, Jung JJ, Kiyonari H, Shioi G, Chang W, Suda T, Mochizuki N, et al: Angiopoietin-1 guides directional angiogenesis through integrin αvβ5 signaling for recovery of ischemic retinopathy. Sci Transl Med. 5:203ra1272013. View Article : Google Scholar | |
Ma J, Mehta M, Lam G, Cyr D, Ng TF, Hirose T, Tawansy KA, Taylor AW and Lashkari K: Influence of subretinal fluid in advanced stage retinopathy of prematurity on proangiogenic response and cell proliferation. Mol Vis. 20:881–893. 2014.PubMed/NCBI | |
Li J, Yu S, Lu X, Cui K, Tang X, Xu Y and Liang X: The phase changes of M1/M2 phenotype of microglia/macrophage following oxygen-induced retinopathy in mice. Inflamm Res. 70:183–192. 2021. View Article : Google Scholar : PubMed/NCBI | |
Outtz HH, Tattersall IW, Kofler NM, Steinbach N and Kitajewski J: Notch1 controls macrophage recruitment and Notch signaling is activated at sites of endothelial cell anastomosis during retinal angiogenesis in mice. Blood. 118:3436–3439. 2011. View Article : Google Scholar : PubMed/NCBI | |
Marchetti V, Yanes O, Aguilar E, Wang M, Friedlander D, Moreno S, Storm K, Zhan M, Naccache S, Nemerow G, et al: Differential macrophage polarization promotes tissue remodeling and repair in a model of ischemic retinopathy. Sci Rep. 1:762011. View Article : Google Scholar : | |
Sun X, Ma L, Li X, Wang J, Li Y and Huang Z: Ferulic acid alleviates retinal neovascularization by modulating microglia/macrophage polarization through the ROS/NF-κB axis. Front Immunol. 13:9767292022. View Article : Google Scholar | |
Sui A, Chen X, Demetriades AM, Shen J, Cai Y, Yao Y, Yao Y, Zhu Y, Shen X and Xie B: Inhibiting NF-κB signaling activation reduces retinal neovascularization by promoting a polarization shift in macrophages. Invest Ophthalmol Vis Sci. 61:42020. View Article : Google Scholar | |
Zhu Y, Tan W, Demetriades AM, Cai Y, Gao Y, Sui A, Lu Q, Shen X, Jiang C, Xie B and Sun X: Interleukin-17A neutralization alleviated ocular neovascularization by promoting M2 and mitigating M1 macrophage polarization. Immunology. 147:414–428. 2016. View Article : Google Scholar : | |
Gao S, Li C, Zhu Y, Wang Y, Sui A, Zhong Y, Xie B and Shen X: PEDF mediates pathological neovascularization by regulating macrophage recruitment and polarization in the mouse model of oxygen-induced retinopathy. Sci Rep. 7:428462017. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Yoshida S, Nakao S, Yoshimura T, Kobayashi Y, Nakama T, Kubo Y, Miyawaki K, Yamaguchi M, Ishikawa K, et al: M2 macrophages enhance pathological neovascularization in the mouse model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci. 56:4767–4777. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ritter MR, Banin E, Moreno SK, Aguilar E, Dorrell MI and Friedlander M: Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy. J Clin Invest. 116:3266–3276. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fine SL, Berger JW, Maguire MG and Ho AC: Age-related macular degeneration. New Engl J Med. 342:483–492. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rosenfeld PJ, Shapiro H, Tuomi L, Webster M, Elledge J and Blodi B; MARINA and ANCHOR Study Groups: Characteristics of patients losing vision after 2 years of monthly dosing in the phase III ranibizumab clinical trials. Ophthalmology. 118:523–530. 2011. View Article : Google Scholar | |
CATT Research Group; Martin DF, Maguire MG, Ying GS, Grunwald JE, Fine SL and Jaffe GJ: Ranibizumab and bevacizumab for neovascular age-related macular degeneration. New Engl J Med. 364:1897–1908. 2011. View Article : Google Scholar : PubMed/NCBI | |
Takeda A, Baffi JZ, Kleinman ME, Cho WG, Nozaki M, Yamada K, Kaneko H, Albuquerque RJ, Dridi S, Saito K, et al: CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature. 460:225–230. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY and Kim RY; MARINA Study Group: Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 355:1419–1431. 2006. View Article : Google Scholar : PubMed/NCBI | |
Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, Sy JP and Schneider S; ANCHOR Study Group: Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med. 355:1432–1444. 2006. View Article : Google Scholar : PubMed/NCBI | |
Grisanti S and Tatar O: The role of vascular endothelial growth factor and other endogenous interplayers in age-related macular degeneration. Prog Retin Eye Res. 27:372–390. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zarbin MA: Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol. 122:598–614. 2004. View Article : Google Scholar : PubMed/NCBI | |
He L and Marneros AG: Doxycycline inhibits polarization of macrophages to the proangiogenic M2-type and subsequent neovascularization. J Biol Chem. 289:8019–8028. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nakamura R, Sene A, Santeford A, Gdoura A, Kubota S, Zapata N and Apte RS: IL10-driven STAT3 signalling in senescent macrophages promotes pathological eye angiogenesis. Nat Commun. 6:78472015. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Liu F, Tang M, Yuan M, Hu A, Zhan Z, Li Z, Li J, Ding X and Lu L: Macrophage polarization in experimental and clinical choroidal neovascularization. Sci Rep. 6:309332016. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Zhang R, Zhang Q, Jin H, Wei C, Wu C, Mei L, Liu Y and Zhang P: Cytokine profiles and the effect of intravitreal aflibercept treatment on experimental choroidal neovascularization. Ophthalmic Res. 65:68–76. 2022. View Article : Google Scholar | |
Manthey CL, Moore BA, Chen Y, Loza MJ, Yao X, Liu H, Belkowski SM, Raymond-Parks H, Dunford PJ, Leon F, et al: The CSF-1-receptor inhibitor, JNJ-40346527 (PRV-6527), reduced inflammatory macrophage recruitment to the intestinal mucosa and suppressed murine T cell mediated colitis. PLoS One. 14:e2239182019. View Article : Google Scholar | |
Braza MS, Conde P, Garcia M, Cortegano I, Brahmachary M, Pothula V, Fay F, Boros P, Werner SA, Ginhoux F, et al: Neutrophil derived CSF1 induces macrophage polarization and promotes transplantation tolerance. Am J Transplant. 18:1247–1255. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Zeng J, Tu Y, Li L, Du S, Zhu L, Cang X, Lu J, Zhu M and Liu X: CSF1/CSF1R-mediated crosstalk between choroidal vascular endothelial cells and macrophages promotes choroidal neovascularization. Invest Ophthalmol Vis Sci. 62:372021. View Article : Google Scholar | |
Zhang P, Lu B, Zhang Q, Xu F, Zhang R, Wang C, Liu Y, Wei C and Mei L: LncRNA NEAT1 sponges MiRNA-148a-3p to suppress choroidal neovascularization and M2 macrophage polarization. Mol Immunol. 127:212–222. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zandi S, Nakao S, Chun KH, Fiorina P, Sun D, Arita R, Zhao M, Kim E, Schueller O, Campbell S, et al: ROCK-isoform-specific polarization of macrophages associated with age-related macular degeneration. Cell Rep. 10:1173–1186. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Cui K, Li J, Tang X, Lin J, Lu X, Huang R, Yang B, Shi Y, Ye D, et al: Melatonin attenuates choroidal neovascularization by regulating macrophage/microglia polarization via inhibition of RhoA/ROCK signaling pathway. J Pineal Res. 69:e126602020. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Lu L, Liu Q, Chen J, Yuan Q, Qiu S and Wang X: MiR-505 promotes M2 polarization in choroidal neovascularization model mice by targeting transmembrane protein 229B. Scand J Immunol. 90:e128322019. View Article : Google Scholar : PubMed/NCBI | |
Gao L, Jiang W, Liu H, Chen Z and Lin Y: Receptor-selective interleukin-4 mutein attenuates laser-induced choroidal neovascularization through the regulation of macrophage polarization in mice. Exp Ther Med. 22:13672021. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Mao X, Yang Q, Zhang X, Xu J, Ma Q, Zhou Y, Da Q, Cai Y, Sopeyin A, et al: Suppression of myeloid PFKFB3-driven glycolysis protects mice from choroidal neovascularization. Br J Pharmacol. 179:5109–5131. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Cheng T and Qu Y: TIMP-3 suppression induces choroidal neovascularization by moderating the polarization of macrophages in age-related macular degeneration. Mol Immunol. 106:119–126. 2019. View Article : Google Scholar | |
Lai K, Gong Y, Zhao W, Li L, Huang C, Xu F, Zhong X and Jin C: Triptolide attenuates laser-induced choroidal neovascularization via M2 macrophage in a mouse model. Biomed Pharmacother. 129:1103122020. View Article : Google Scholar : PubMed/NCBI | |
Chanmee T, Ontong P, Konno K and Itano N: Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel). 6:1670–1690. 2014. View Article : Google Scholar : PubMed/NCBI |