Cell death‑related molecules and targets in the progression of urolithiasis (Review)
- Authors:
- Liping Wu
- Xiaoyan Xue
- Chengwu He
- Yongchang Lai
- Lingfei Tong
-
Affiliations: Department of Pharmacy, Ganzhou People's Hospital, Ganzhou, Jiangxi 341099, P.R. China, Department of Urology, The Eighth Affiliated Hospital of Sun Yat‑sen University, Shenzhen, Guangdong 518033, P.R. China, Department of Pharmacy, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, P.R. China - Published online on: April 22, 2024 https://doi.org/10.3892/ijmm.2024.5376
- Article Number: 52
-
Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Wigner P, Grębowski R, Bijak M, Szemraj J and Saluk-Bijak J: The molecular aspect of nephrolithiasis development. Cells. 10:19262021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Chen Y, Liao B, Luo D, Wang K, Li H and Zeng G: Epidemiology of urolithiasis in Asia. Asian J Urol. 5:205–214. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lai Y, Zheng H, Sun X, Lin J, Li Q, Huang H, Hou Y, Zhong H, Zhang D, Fucai T and He Z: The advances of calcium oxalate calculi associated drugs and targets. Eur J Pharmacol. 935:1753242022. View Article : Google Scholar : PubMed/NCBI | |
Tang D, Kang R, Berghe TV, Vandenabeele P and Kroemer G: The molecular machinery of regulated cell death. Cell Res. 29:347–364. 2019. View Article : Google Scholar : PubMed/NCBI | |
Vitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, Agostini M, Agostinis P, Alnemri ES, Altucci L, et al: Apoptotic cell death in disease-current understanding of the NCCD 2023. Cell Death Differ. 30:1097–1154. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, et al: Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 375:1254–1261. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Nie L, Zhang Y, Yan Y, Wang C, Colic M, Olszewski K, Horbath A, Chen X, Lei G, et al: Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat Cell Biol. 25:404–414. 2023. View Article : Google Scholar : PubMed/NCBI | |
Martin-Sanchez D, Fontecha-Barriuso M, Sanchez-Niño MD, Ramos AM, Cabello R, Gonzalez-Enguita C, Linkermann A, Sanz AB and Ortiz A: Cell death-based approaches in treatment of the urinary tract-associated diseases: A fight for survival in the killing fields. Cell Death Dis. 9:1182018. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Liu Y, Zhou S, Feng Q, Lu Y, Liu D and Liu Z: Novel insight into ferroptosis in kidney diseases. Am J Nephrol. 54:184–199. 2023. View Article : Google Scholar : PubMed/NCBI | |
Bayir H, Dixon SJ, Tyurina YY, Kellum JA and Kagan VE: Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney. Nat Rev Nephrol. 19:315–336. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sun XY and Ouyang JM: New view in cell death mode: Effect of crystal size in renal epithelial cells. Cell Death Dis. 6:e20132015. View Article : Google Scholar : PubMed/NCBI | |
Gan QZ, Sun XY, Bhadja P, Yao XQ and Ouyang JM: Reinjury risk of nano-calcium oxalate monohydrate and calcium oxalate dihydrate crystals on injured renal epithelial cells: Aggravation of crystal adhesion and aggregation. Int J Nanomedicine. 11:2839–2854. 2016.PubMed/NCBI | |
Sanz AB, Sanchez-Niño MD, Ramos AM and Ortiz A: Regulated cell death pathways in kidney disease. Nat Rev Nephrol. 19:281–299. 2023. View Article : Google Scholar : PubMed/NCBI | |
Abhishek A, Benita S, Kumari M, Ganesan D, Paul E, Sasikumar P, Mahesh A, Yuvaraj S, Ramprasath T and Selvam GS: Molecular analysis of oxalate-induced endoplasmic reticulum stress mediated apoptosis in the pathogenesis of kidney stone disease. J Physiol Biochem. 73:561–573. 2017. View Article : Google Scholar : PubMed/NCBI | |
Canela VH, Bowen WS, Ferreira RM, Syed F, Lingeman JE, Sabo AR, Barwinska D, Winfree S, Lake BB, Cheng YH, et al: A spatially anchored transcriptomic atlas of the human kidney papilla identifies significant immune injury in patients with stone disease. Nat Commun. 14:41402023. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Huang J, Gong B, Cheng S, Liu Y, Chen Y, Feng Q, Li J, Qiu M, Yu G and Liao Y: Polydatin protects against calcium oxalate crystal-induced renal injury through the cytoplasmic/mitochondrial reactive oxygen species-NLRP3 inflammasome pathway. Biomed Pharmacother. 167:1156212023. View Article : Google Scholar : PubMed/NCBI | |
Singh P, Harris PC, Sas DJ and Lieske JC: The genetics of kidney stone disease and nephrocalcinosis. Nat Rev Nephrol. 18:224–240. 2022. View Article : Google Scholar | |
Shastri S, Patel J, Sambandam KK and Lederer ED: Kidney stone pathophysiology, evaluation and management: Core curriculum 2023. Am J Kidney Dis. 82:617–634. 2023. View Article : Google Scholar : PubMed/NCBI | |
Grases F, Rodriguez A and Costa-Bauza A: Efficacy of mixtures of magnesium, citrate and phytate as calcium oxalate crystallization inhibitors in urine. J Urol. 194:812–819. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Zhang Y, Zhang J, Deng Q and Liang H: Recent advances on the mechanisms of kidney stone formation (review). Int J Mol Med. 48:1492021. View Article : Google Scholar : PubMed/NCBI | |
Letavernier E, Bouderlique E, Zaworski J, Martin L and Daudon M: Pseudoxanthoma elasticum, kidney stones and pyrophosphate: From a rare disease to urolithiasis and vascular calcifications. Int J Mol Sci. 20:63532019. View Article : Google Scholar : PubMed/NCBI | |
Dedinszki D, Szeri F, Kozák E, Pomozi V, Tőkési N, Mezei TR, Merczel K, Letavernier E, Tang E, Le Saux O, et al: Oral administration of pyrophosphate inhibits connective tissue calcification. EMBO Mol Med. 9:1463–1470. 2017. View Article : Google Scholar : PubMed/NCBI | |
Robinson TE, Hughes EAB, Wiseman OJ, Stapley SA, Cox SC and Grover LM: Hexametaphosphate as a potential therapy for the dissolution and prevention of kidney stones. J Mater Chem B. 8:5215–5224. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zeng G, Zhu W, Robertson WG, Penniston KL, Smith D, Pozdzik A, Tefik T, Prezioso D, Pearle MS, Chew BH, et al: International alliance of urolithiasis (IAU) guidelines on the metabolic evaluation and medical management of urolithiasis. Urolithiasis. 51:42022. View Article : Google Scholar : PubMed/NCBI | |
Liu BC, Tang TT, Lv LL and Lan HY: Renal tubule injury: A driving force toward chronic kidney disease. Kidney Int. 93:568–579. 2018. View Article : Google Scholar : PubMed/NCBI | |
Honarpisheh M, Foresto-Neto O, Desai J, Steiger S, Gómez LA, Popper B, Boor P, Anders HJ and Mulay SR: Phagocytosis of environmental or metabolic crystalline particles induces cytotoxicity by triggering necroptosis across a broad range of particle size and shape. Sci Rep. 7:155232017. View Article : Google Scholar : PubMed/NCBI | |
Guo H, Wang M, Shang Y, Zhang B, Zhang S, Liu X, Cao P, Fan Y and Tan K: Apoptosis-related prognostic biomarkers and potential targets for acute kidney injury based on machine learning algorithm and in vivo experiments. Apoptosis. 29:303–320. 2024. View Article : Google Scholar | |
Klinkhammer BM, Buchtler S, Djudjaj S, Bouteldja N, Palsson R, Edvardsson VO, Thorsteinsdottir M, Floege J, Mack M and Boor P: Current kidney function parameters overestimate kidney tissue repair in reversible experimental kidney disease. Kidney Int. 102:307–320. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kumar R, Soni H, Afolabi JM, Kanthakumar P, Mankuzhy PD, Iwhiwhu SA and Adebiyi A: Induction of reactive oxygen species by mechanical stretch drives endothelin production in neonatal pig renal epithelial cells. Redox Biol. 55:1023942022. View Article : Google Scholar : PubMed/NCBI | |
Li J, Lin Q, Shao X, Li S, Zhu X, Wu J, Mou S, Gu L, Wang Q, Zhang M, et al: HIF1α-BNIP3-mediated mitophagy protects against renal fibrosis by decreasing ROS and inhibiting activation of the NLRP3 inflammasome. Cell Death Dis. 14:2002023. View Article : Google Scholar | |
Li Y, Yuan Y, Huang ZX, Chen H, Lan R, Wang Z, Lai K, Chen H, Chen Z, Zou Z, et al: GSDME-mediated pyroptosis promotes inflammation and fibrosis in obstructive nephropathy. Cell Death Differ. 28:2333–2350. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Chen X, Ru F, Gan Y, Li B, Xia W, Dai G, He Y and Chen Z: Liproxstatin-1 attenuates unilateral ureteral obstruction-induced renal fibrosis by inhibiting renal tubular epithelial cells ferroptosis. Cell Death Dis. 12:8432021. View Article : Google Scholar : PubMed/NCBI | |
Jung HD, Cho S and Lee JY: Update on the effect of the urinary microbiome on urolithiasis. Diagnostics (Basel). 13:9512023. View Article : Google Scholar : PubMed/NCBI | |
An L, Wu W, Li S, Lai Y, Chen D, He Z, Chang Z, Xu P, Huang Y, Lei M, et al: Escherichia coli aggravates calcium oxalate stone formation via PPK1/flagellin-mediated renal oxidative injury and inflammation. Oxid Med Cell Longev. 2021:99496972021. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Lin X, Yang X and Yang Y: Research progress on related mechanisms of uric acid activating NLRP3 inflammasome in chronic kidney disease. Ren Fail. 44:615–624. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yifan Z, Luming S, Wei C, Luwei X, Zheng X and Ruipeng J: Cystine crystal-induced reactive oxygen species associated with NLRP3 inflammasome activation: Implications for the pathogenesis of cystine calculi. Int Urol Nephrol. 54:3097–3106. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mayayo-Vallverdú C, López de Heredia M, Prat E, González L, Espino Guarch M, Vilches C, Muñoz L, Asensi MA, Serra C, Llebaria A, et al: The antioxidant l-Ergothioneine prevents cystine lithiasis in the Slc7a9-/- mouse model of cystinuria. Redox Biol. 64:1028012023. View Article : Google Scholar | |
Rao CY, Sun XY and Ouyang JM: Effects of physical properties of nano-sized hydroxyapatite crystals on cellular toxicity in renal epithelial cells. Mater Sci Eng C Mater Biol Appl. 103:1098072019. View Article : Google Scholar : PubMed/NCBI | |
Yuan J and Ofengeim D: A guide to cell death pathways. Nat Rev Mol Cell Bio. Dec;–18. 2023.Epub ahead of print. | |
Ai Y, Meng Y, Yan B, Zhou Q and Wang X: The biochemical pathways of apoptotic, necroptotic, pyroptotic, and ferroptotic cell death. Mol Cell. 84:170–179. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Kang J, Guan X, Xu H, Wang X and Deng Y: Regulation of endoplasmic reticulum stress on the damage and apoptosis of renal tubular epithelial cells induced by calcium oxalate crystals. Urolithiasis. 49:291–299. 2021. View Article : Google Scholar : PubMed/NCBI | |
Howles SA and Thakker RV: Genetics of kidney stone disease. Nat Rev Urol. 17:407–421. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cil O, Chu T, Lee S, Haggie PM and Verkman AS: Small-molecule inhibitor of intestinal anion exchanger SLC26A3 for treatment of hyperoxaluria and nephrolithiasis. JCI Insight. 7:e1533592022. View Article : Google Scholar : PubMed/NCBI | |
Ming S, Tian J, Ma K, Pei C, Li L, Wang Z, Fang Z, Liu M, Dong H, Li W, et al: Oxalate-induced apoptosis through ERS-ROS-NF-κB signalling pathway in renal tubular epithelial cell. Mol Med. 28:882022. View Article : Google Scholar | |
Wu D, Huang LF, Chen XC, Huang XR, Li HY, An N, Tang JX, Liu HF and Yang C: Research progress on endoplasmic reticulum homeostasis in kidney diseases. Cell Death Dis. 14:4732023. View Article : Google Scholar : PubMed/NCBI | |
Sharma M, Naura AS and Singla SK: A deleterious interplay between endoplasmic reticulum stress and its functional linkage to mitochondria in nephrolithiasis. Free Radical Bio Med. 168:70–80. 2021. View Article : Google Scholar | |
Wu Y, Zhang J, Li C, Hu H, Qin B, Wang T, Lu Y and Wang S: The activation of ROS/NF-κB/MMP-9 pathway promotes calcium-induced kidney crystal deposition. Oxid Med Cell Longev. 2021:88363552021. View Article : Google Scholar | |
Yiu AJ, Ibeh CL, Roy SK and Bandyopadhyay BC: Melamine induces Ca2+-sensing receptor activation and elicits apoptosis in proximal tubular cells. Am J Physiol Cell Physiol. 313:C27–C41. 2017. View Article : Google Scholar | |
Wu CF, Liu CC, Tsai YC, Chen CC, Wu MT and Hsieh TJ: Diminishment of Nrf2 antioxidative defense aggravates nephrotoxicity of melamine and oxalate coexposure. Antioxidants (Basel). 10:14642021. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Fang Z, Liu M, Wang Z, Li L, Ming S, Lu C, Dong H, Zhang W, Wang Q, et al: Testosterone induces renal tubular epithelial cell death through the HIF-1alpha/BNIP3 pathway. J Transl Med. 17:622019. View Article : Google Scholar | |
Gombedza FC, Shin S, Kanaras YL and Bandyopadhyay BC: Abrogation of store-operated Ca2+ entry protects against crystal-induced ER stress in human proximal tubular cells. Cell Death Discov. 5:1242019. View Article : Google Scholar | |
Yan L, Chen J and Fang W: Exosomes derived from calcium oxalate-treated macrophages promote apoptosis of HK-2 cells by promoting autophagy. Bioengineered. 13:2442–2450. 2022. View Article : Google Scholar : PubMed/NCBI | |
Khan SR, Canales BK and Dominguez-Gutierrez PR: Randall's plaque and calcium oxalate stone formation: Role for immunity and inflammation. Nat Rev Nephrol. 17:417–433. 2021. View Article : Google Scholar : PubMed/NCBI | |
He J, Cao Y, Zhu Q, Wang X, Cheng G, Wang Q, He R, Lu H, Weng Y, Mao G, et al: Renal macrophages monitor and remove particles from urine to prevent tubule obstruction. Immunity. 57:106–123.e7. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Liu Y, Guan X, Wu J, He Z, Kang J, Tao Z and Deng Y: Effect of M2 macrophages on injury and apoptosis of renal tubular epithelial cells induced by calcium oxalate crystals. Kidney Blood Press Res. 44:777–791. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lu H, Sun X, Jia M, Sun F, Zhu J, Chen X, Chen K and Jiang K: Rosiglitazone suppresses renal crystal deposition by ameliorating tubular injury resulted from oxidative stress and inflammatory response via promoting the Nrf2/HO-1 pathway and shifting macrophage polarization. Oxid Med Cell Longev. 2021:55271372021. View Article : Google Scholar : PubMed/NCBI | |
Xi J, Chen Y, Jing J, Qi W and Zhang Y: LncRNA LINC01197 inhibited the formation of calcium oxalate-induced kidney stones by regulating miR-516b-5p/SIRT3/FOXO1 signaling pathway. Cell Tissue Res. 392:553–563. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xi J, Jing J, Zhang Y, Liang C, Hao Z, Zhang L and Chen Y: SIRT3 inhibited the formation of calcium oxalate-induced kidney stones through regulating NRF2/HO-1 signaling pathway. J Cell Biochem. 120:8259–8271. 2019. View Article : Google Scholar | |
Li Y, Ding T, Hu H, Zhao T, Zhu C, Ding J, Yuan J and Guo Z: LncRNA-ATB participates in the regulation of calcium oxalate crystal-induced renal injury by sponging the miR-200 family. Mol Med. 27:1432021. View Article : Google Scholar : PubMed/NCBI | |
Su B, Han H, Ji C, Hu W, Yao J, Yang J, Fan Y and Li J: MiR-21 promotes calcium oxalate-induced renal tubular cell injury by targeting PPARA. Am J Physiol Renal Physiol. 319:F202–F214. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cabuzu D, Ramakrishnan SK, Moor MB, Harmacek D, Auberson M, Durussel F and Bonny O: Loss of Ecrg4 improves calcium oxalate nephropathy. PLoS One. 17:e2759722022. View Article : Google Scholar | |
Gao X, Peng Y, Fang Z, Li L, Ming S, Dong H, Li R, Zhu Y, Zhang W, Zhu B, et al: Inhibition of EZH2 ameliorates hyperoxaluria-induced kidney injury through the JNK/FoxO3a pathway. Life Sci. 291:1202582022. View Article : Google Scholar | |
Zhou Z, Zhou X, Zhang Y, Yang Y, Wang L and Wu Z: Butyric acid inhibits oxidative stress and inflammation injury in calcium oxalate nephrolithiasis by targeting CYP2C9. Food Chem Toxicol. 178:1139252023. View Article : Google Scholar : PubMed/NCBI | |
Song Q, Song C, Chen X, Xiong Y, Li L, Liao W, Xue L and Yang S: FKBP5 deficiency attenuates calcium oxalate kidney stone formation by suppressing cell-crystal adhesion, apoptosis and macrophage M1 polarization via inhibition of NF-κB signaling. Cell Mol Life Sci. 80:3012023. View Article : Google Scholar | |
Xun Y, Zhou P, Yang Y, Li C, Zhang J, Hu H, Qin B, Zhang Z, Wang Q, Lu Y and Wang S: Role of Nox4 in high calcium-induced renal oxidative stress damage and crystal deposition. Antioxid Redox Sign. 36:15–38. 2022. View Article : Google Scholar | |
Thomas K, Zondler L, Ludwig N, Kardell M, Lüneburg C, Henke K, Mersmann S, Margraf A, Spieker T, Tekath T, et al: Glutamine prevents acute kidney injury by modulating oxidative stress and apoptosis in tubular epithelial cells. JCI Insight. 7:e1631612022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Lu X, Yu Z, Wang H and Gao B: Meta-data analysis of kidney stone disease highlights ATP1A1 involvement in renal crystal formation. Redox Biol. 61:1026482023. View Article : Google Scholar : PubMed/NCBI | |
Ye QL, Wang DM, Wang X, Zhang ZQ, Tian QX, Feng SY, Zhang ZH, Yu DX, Ding DM and Xie DD: Sirt1 inhibits kidney stones formation by attenuating calcium oxalate-induced cell injury. Chem Biol Interact. 347:1096052021. View Article : Google Scholar : PubMed/NCBI | |
Ji N, Qi Z, Wang Y, Yang X, Yan Z, Li M, Ge Q and Zhang J: Pyroptosis: A new regulating mechanism in cardiovascular disease. J Inflamm Res. 14:2647–2666. 2021. View Article : Google Scholar : PubMed/NCBI | |
Vande WL and Lamkanfi M: Drugging the NLRP3 inflammasome: From signalling mechanisms to therapeutic targets. Nat Rev Drug Discov. 23:43–66. 2024. View Article : Google Scholar | |
Que X, Zheng S, Song Q, Pei H and Zhang P: Fantastic voyage: The journey of NLRP3 inflammasome activation. Genes Dis. 11:819–829. 2023. View Article : Google Scholar : PubMed/NCBI | |
Darisipudi MN and Knauf F: An update on the role of the inflammasomes in the pathogenesis of kidney diseases. Pediatr Nephrol. 31:535–544. 2016. View Article : Google Scholar | |
Chen Y, Yang S, Kong H, Wang Q, Chen S, Wang X, Chen L and Qi S: Oxalate-induced renal pyroptotic injury and crystal formation mediated by NLRP3-GSDMD signaling in vitro and in vivo. Mol Med Rep. 28:2092023. View Article : Google Scholar | |
Gu Y, Shen Y, Chen W, He H, Ma Y, Mei X, Ju D and Liu H: Protective effects of interleukin-22 on oxalate-induced crystalline renal injury via alleviating mitochondrial damage and inflammatory response. Appl Microbiol Biot. 106:2637–2649. 2022. View Article : Google Scholar | |
Zhang Y, Wang S, Dai X, Liu T, Liu Y, Shi H, Yin J, Xu T, Zhang Y, Zhao D, et al: Simiao San alleviates hyperuricemia and kidney inflammation by inhibiting NLRP3 inflammasome and JAK2/STAT3 signaling in hyperuricemia mice. J Ethnopharmacol. 312:1165302023. View Article : Google Scholar : PubMed/NCBI | |
Gan XG, Wang ZH and Xu HT: Mechanism of miRNA-141-3p in calcium oxalate-induced renal tubular epithelial cell injury via NLRP3-mediated pyroptosis. Kidney Blood Press Res. 47:300–308. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ding T, Zhao T, Li Y, Liu Z, Ding J, Ji B, Wang Y and Guo Z: Vitexin exerts protective effects against calcium oxalate crystal-induced kidney pyroptosis in vivo and in vitro. Phytomedicine. 86:1535622021. View Article : Google Scholar : PubMed/NCBI | |
Song Z, Zhang Y, Gong B, Xu H, Hao Z and Liang C: Long noncoding RNA LINC00339 promotes renal tubular epithelial pyroptosis by regulating the miR-22-3p/NLRP3 axis in calcium oxalate-induced kidney stone. J Cell Biochem. 120:10452–10462. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Yang K, Jin Y, Liu Y, Chen Y, Zhang X, Yu S, Song E, Chen S, Zhang J, et al: H3 relaxin protects against calcium oxalate crystal-induced renal inflammatory pyroptosis. Cell Prolif. 53:e129022020. View Article : Google Scholar : PubMed/NCBI | |
Yifan Z, Benxiang N, Zheng X, Luwei X, Liuhua Z, Yuzheng G and Ruipeng J: Ceftriaxone Calcium crystals induce acute kidney injury by NLRP3-mediated inflammation and oxidative stress injury. Oxid Med Cell Longev. 2020:64284982020. View Article : Google Scholar : PubMed/NCBI | |
Sundaram B, Pandian N, Mall R, Wang Y, Sarkar R, Kim HJ, Malireddi RKS, Karki R, Janke LJ, Vogel P and Kanneganti TD: NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs. Cell. 186:2783–2801. 2023. View Article : Google Scholar : PubMed/NCBI | |
Mulay SR, Shi C, Ma X and Anders HJ: Novel insights into crystal-induced kidney injury. Kidney Dis (Basel). 4:49–57. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hou B, Liu M, Chen Y, Ni W, Suo X, Xu Y, He Q, Meng X and Hao Z: Cpd-42 protects against calcium oxalate nephrocalcinosis-induced renal injury and inflammation by targeting RIPK3-mediated necroptosis. Front Pharmacol. 13:10411172022. View Article : Google Scholar : PubMed/NCBI | |
Sedmaki K, Karnam K, Sharma P, Mahale A, Routholla G, Ghosh B and Prakash Kulkarni O: HDAC6 inhibition attenuates renal injury by reducing IL-1β secretion and RIP kinase mediated necroptosis in acute oxalate nephropathy. Int Immunopharmacol. 110:1089192022. View Article : Google Scholar | |
Prajapati S, Tomar B, Srivastava A, Narkhede YB, Gaikwad AN, Lahiri A and Mulay SR: 6,7-Dihydroxycoumarin ameliorates crystal-induced necroptosis during crystal nephropathies by inhibiting MLKL phosphorylation. Life Sci. 271:1191932021. View Article : Google Scholar : PubMed/NCBI | |
Mulay SR, Eberhard JN, Desai J, Marschner JA, Kumar SV, Weidenbusch M, Grigorescu M, Lech M, Eltrich N, Müller L, et al: Hyperoxaluria requires TNF receptors to initiate crystal adhesion and kidney stone disease. J Am Soc Nephrol. 28:761–768. 2017. View Article : Google Scholar : | |
Sun S, Shen J, Jiang J, Wang F and Min J: Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther. 8:3722023. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Kang R, Kroemer G and Tang D: Broadening horizons: The role of ferroptosis in cancer. Nat Rev Clin Oncol. 18:280–296. 2021. View Article : Google Scholar : PubMed/NCBI | |
He Z, Liao W, Song Q, Li B, Liu J, Xiong Y, Song C and Yang S: Role of ferroptosis induced by a high concentration of calcium oxalate in the formation and development of urolithiasis. Int J Mol Med. 47:289–301. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ye Z, Xia Y, Li L, Li B, Chen L, Yu W, Ruan Y, Rao T, Zhou X and Cheng F: p53 deacetylation alleviates calcium oxalate deposition-induced renal fibrosis by inhibiting ferroptosis. Biomed Pharmacother. 164:1149252023. View Article : Google Scholar : PubMed/NCBI | |
Song Q, Liao W, Chen X, He Z, Li D, Li B, Liu J, Liu L, Xiong Y, Song C and Yang S: Oxalate activates autophagy to induce ferroptosis of renal tubular epithelial cells and participates in the formation of kidney stones. Oxid Med Cell Longev. 2021:66303432021. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Ye Z, Li L, Xia Y, Yuan R, Ruan Y and Zhou X: Ferrostatin-1 alleviates oxalate-induced renal tubular epithelial cell injury, fibrosis and calcium oxalate stone formation by inhibiting ferroptosis. Mol Med Rep. 26:2562022. View Article : Google Scholar : | |
Martin-Saiz L, Guerrero-Mauvecin J, Martin-Sanchez D, Fresnedo O, Gómez MJ, Carrasco S, Cannata-Ortiz P, Ortiz A, Fernandez JA and Sanz AB: Ferrostatin-1 modulates dysregulated kidney lipids in acute kidney injury. J Pathol. 257:285–299. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xia C, Xing X, Zhang W, Wang Y, Jin X, Wang Y, Tian M, Ba X and Hao F: Cysteine and homocysteine can be exploited by GPX4 in ferroptosis inhibition independent of GSH synthesis. Redox Biol. 69:1029992024. View Article : Google Scholar : | |
Ide S, Ide K, Abe K, Kobayashi Y, Kitai H, McKey J, Strausser SA, O'Brien LL, Tata A, Tata PR and Souma T: Sex differences in resilience to ferroptosis underlie sexual dimorphism in kidney injury and repair. Cell Rep. 41:1116102022. View Article : Google Scholar : PubMed/NCBI | |
Chu LK, Cao X, Wan L, Diao Q, Zhu Y, Kan Y, Ye LL, Mao YM, Dong XQ, Xiong QW, et al: Autophagy of OTUD5 destabilizes GPX4 to confer ferroptosis-dependent kidney injury. Nat Commun. 14:83932023. View Article : Google Scholar : PubMed/NCBI | |
Song J, Wang H, Sheng J, Zhang W, Lei J, Gan W, Cai F and Yang Y: Vitexin attenuates chronic kidney disease by inhibiting renal tubular epithelial cell ferroptosis via NRF2 activation. Mol Med. 29:1472023. View Article : Google Scholar : PubMed/NCBI | |
Lee J and Roh JL: SLC7A11 as a gateway of metabolic perturbation and ferroptosis vulnerability in cancer. Antioxidants (Basel). 11:24442022. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Wu Y, Zhou K, Huang M, Sun Y, Kang J, Su Q, Zhao Y, Liu Q and Li C: Ferroptosis in calcium oxalate kidney stone formation and the possible regulatory mechanism of ANKRD1. Biochim Biophys Acta Mol Cell Res. 1870:1194522023. View Article : Google Scholar : PubMed/NCBI | |
Hao W, Zhang H, Hong P, Zhang X, Zhao X, Ma L, Qiu X, Ping H, Lu D and Yin Y: Critical role of VHL/BICD2/STAT1 axis in crystal-associated kidney disease. Cell Death Dis. 14:6802023. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Li J, Kang R, Klionsky DJ and Tang D: Ferroptosis: Machinery and regulation. Autophagy. 17:2054–2081. 2021. View Article : Google Scholar : | |
Liu Q, Tang J, Chen Z, Wei L, Chen J and Xie Z: Polyunsaturated fatty acids ameliorate renal stone-induced renal tubular damage via miR-93-5p/Pknox1 axis. Nutrition. 105:1118632023. View Article : Google Scholar | |
Li L, Ye Z, Xia Y, Li B, Chen L, Yan X, Yuan T, Song B, Yu W, Rao T, et al: YAP/ACSL4 pathway-mediated ferroptosis promotes renal fibrosis in the presence of kidney stones. Biomedicines. 11:26922023. View Article : Google Scholar : PubMed/NCBI | |
Mishima E, Ito J, Wu Z, Nakamura T, Wahida A, Doll S, Tonnus W, Nepachalovich P, Eggenhofer E, Aldrovandi M, et al: A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature. 608:778–783. 2022. View Article : Google Scholar : PubMed/NCBI | |
Nishizawa H, Yamanaka M and Igarashi K: Ferroptosis: Regulation by competition between NRF2 and BACH1 and propagation of the death signal. FEBS J. 290:1688–1704. 2023. View Article : Google Scholar | |
Dong C, Song C, He Z, Song Q, Song T, Liu J, Xiong Y, Su X, Zhou J, Yang S and Liao W: Protective efficacy of Schizandrin B on ameliorating nephrolithiasis via regulating GSK3β/Nrf2 signaling-mediated ferroptosis in vivo and in vitro. Int Immunopharmacol. 117:1100422023. View Article : Google Scholar | |
Zhou D, Wu Y, Yan H, Shen T, Li S, Gong J, Li G, Mai H, Wang D and Tan X: Gallic acid ameliorates calcium oxalate crystal-induced renal injury via upregulation of Nrf2/HO-1 in the mouse model of stone formation. Phytomedicine. 106:1544292022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhang J, Liu H, Yuan J, Yin Y, Wang T, Cheng B, Sun S and Guo Z: Curcumin ameliorates glyoxylate-induced calcium oxalate deposition and renal injuries in mice. Phytomedicine. 61:1528612019. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Wang Q, Li C, Lu Y, Hu H, Qin B, Xun Y, Zhu Y, Wu Y, Zhang J and Wang S: Inhibiting inflammation and modulating oxidative stress in oxalate-induced nephrolithiasis with the Nrf2 activator dimethyl fumarate. Free Radical Bio Med. 134:9–22. 2019. View Article : Google Scholar | |
Ushimoto C, Sugiki S, Kunii K, Inoue S, Kuroda E, Akai R, Iwawaki T and Miyazawa K: Dynamic change and preventive role of stress response via Keap1-Nrf2 during renal crystal formation. Free Radic Bio Med. 207:120–132. 2023. View Article : Google Scholar | |
Song Q, He Z, Li B, Liu J, Liu L, Liao W, Xiong Y, Song C, Yang S and Liu Y: Melatonin inhibits oxalate-induced endoplasmic reticulum stress and apoptosis in HK-2 cells by activating the AMPK pathway. Cell Cycle. 19:2600–2610. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Meng L, He Z, Song Q, Liu J, Su X, Wang C, Ke H, Dong C, Liao W and Yang S: Melatonin exerts a protective effect in ameliorating nephrolithiasis via targeting AMPK/PINK1-Parkin mediated mitophagy and inhibiting ferroptosis in vivo and in vitro. Int Immunopharmacol. 124:1108012023. View Article : Google Scholar : PubMed/NCBI | |
Su X, Song C, He Z, Song Q, Meng L, Dong C, Zhou J, Ke H, Xiong Y, Liu J, et al: Ambra1 in exosomes secreted by HK-2 cells damaged by supersaturated oxalate induce mitophagy and autophagy-ferroptosis in normal HK-2 cells to participate in the occurrence of kidney stones. Biochim Biophys Acta Mol Cell Res. 1871:1196042024. View Article : Google Scholar | |
Khan MA, Nag P, Grivei A, Giuliani KTK, Wang X, Diwan V, Hoy W, Healy H, Gobe G and Kassianos AJ: Adenine overload induces ferroptosis in human primary proximal tubular epithelial cells. Cell Death Dis. 13:1042022. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Yao S, Yang H, Liu S and Wang Y: Autophagy: Regulator of cell death. Cell Death Dis. 14:6482023. View Article : Google Scholar : PubMed/NCBI | |
Lee S, Hwang N, Seok BG, Lee S, Lee SJ and Chung SW: Autophagy mediates an amplification loop during ferroptosis. Cell Death Dis. 14:4642023. View Article : Google Scholar : PubMed/NCBI | |
Bhatia D and Choi ME: Autophagy and mitophagy: Physiological implications in kidney inflammation and diseases. Am J Physiol Renal Physiol. 325:F1–F21. 2023. View Article : Google Scholar : PubMed/NCBI | |
Duan X, Kong Z, Mai X, Lan Y, Liu Y, Yang Z, Zhao Z, Deng T, Zeng T, Cai C, et al: Autophagy inhibition attenuates hyperoxaluria-induced renal tubular oxidative injury and calcium oxalate crystal depositions in the rat kidney. Redox Biol. 16:414–425. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Kang J, Tao Z, Wang X, Liu Q, Li D, Guan X, Xu H, Liu Y and Deng Y: Effect of endoplasmic reticulum stress-mediated excessive autophagy on apoptosis and formation of kidney stones. Life Sci. 244:1172322020. View Article : Google Scholar | |
Kang J, Sun Y, Deng Y, Liu Q, Li D, Liu Y, Guan X, Tao Z and Wang X: Autophagy-endoplasmic reticulum stress inhibition mechanism of superoxide dismutase in the formation of calcium oxalate kidney stones. Biomed Pharmacother. 121:1096492020. View Article : Google Scholar | |
Kumar P, Laurence E, Crossman DK, Assimos DG, Murphy MP and Mitchell T: Oxalate disrupts monocyte and macrophage cellular function via Interleukin-10 and mitochondrial reactive oxygen species (ROS) signaling. Redox Biol. 67:1029192023. View Article : Google Scholar : PubMed/NCBI | |
Nakamura S, Shigeyama S, Minami S, Shima T, Akayama S, Matsuda T, Esposito A, Napolitano G, Kuma A, Namba-Hamano T, et al: LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury. Nat Cell Biol. 22:1252–1263. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Xun Y, Zhang J, Hu H, Qin B, Wang T, Wang S, Li C and Lu Y: Resveratrol attenuates oxalate-induced renal oxidative injury and calcium oxalate crystal deposition by regulating TFEB-induced autophagy pathway. Front Cell Dev Biol. 9:6387592021. View Article : Google Scholar : PubMed/NCBI | |
Dong F, Jiang S, Tang C, Wang X, Ren X, Wei Q, Tian J, Hu W, Guo J, Fu X, et al: Trimethylamine N-oxide promotes hyperoxaluria-induced calcium oxalate deposition and kidney injury by activating autophagy. Free Radic Bio Med. 179:288–300. 2022. View Article : Google Scholar | |
Alaygut D, Ozturk I, Ulu S and Gungor O: NETosis and kidney disease: What do we know? Int Urol Nephrol. 55:1985–1994. 2023. View Article : Google Scholar : PubMed/NCBI | |
Makki MS, Winfree S, Lingeman JE, Witzmann FA, Worcester EM, Krambeck AE, Coe FL, Evan AP, Bledsoe S, Bergsland KJ, et al: A precision medicine approach uncovers a unique signature of neutrophils in patients with brushite kidney stones. Kidney Int Rep. 5:663–677. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cai Z, Wu X, Song Z, Sun S, Su Y, Wang T, Cheng X, Yu Y, Yu C, Chen E, et al: Metformin potentiates nephrotoxicity by promoting NETosis in response to renal ferroptosis. Cell Discov. 9:1042023. View Article : Google Scholar : PubMed/NCBI | |
Malireddi RKS, Kesavardhana S and Kanneganti TD: ZBP1 and TAK1: Master regulators of NLRP3 inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis). Front Cell Infect Microbiol. 9:4062019. View Article : Google Scholar : PubMed/NCBI | |
Hadian K and Stockwell BR: The therapeutic potential of targeting regulated non-apoptotic cell death. Nat Rev Drug Discov. 22:723–742. 2023. View Article : Google Scholar : PubMed/NCBI | |
Peerapen P and Thongboonkerd V: Kidney stone prevention. Adv Nutr. 14:555–569. 2023. View Article : Google Scholar : PubMed/NCBI | |
Baltazar P, de Melo Junior AF, Fonseca NM, Lança MB, Faria A, Sequeira CO, Teixeira-Santos L, Monteiro EC, Campos Pinheiro L, Calado J, et al: Oxalate (dys)metabolism: Person-to-person variability, kidney and cardiometabolic toxicity. Genes (Basel). 14:17192023. View Article : Google Scholar : PubMed/NCBI | |
Marengo SR and Romani AMP: Oxalate in renal stone disease: The terminal metabolite that just won't go away. Nat Clin Pract Nephrol. 4:368–377. 2008. View Article : Google Scholar : PubMed/NCBI | |
Grocholski C, Derain Dubourg L, Guebre-Egziabher F, Acquaviva-Bourdain C, Abid N, Bacchetta J, Chambrier C and Lemoine S: Oxalate: From physiology to pathology. Nephrol Ther. 19:201–214. 2023.In French. View Article : Google Scholar : PubMed/NCBI | |
Kim D, Rimer JD and Asplin JR: Hydroxycitrate: A potential new therapy for calcium urolithiasis. Urolithiasis. 47:311–320. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lunyera J, Diamantidis CJ, Bosworth HB, Patel UD, Bain J, Muehlbauer MJ, Ilkayeva O, Nguyen M, Sharma B, Ma JZ, et al: Urine tricarboxylic acid cycle signatures of early-stage diabetic kidney disease. Metabolomics. 18:52021. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Min J and Wang F: Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther. 7:3782022. View Article : Google Scholar : PubMed/NCBI | |
Humphries F, Shmuel-Galia L, Ketelut-Carneiro N, Li S, Wang B, Nemmara VV, Wilson R, Jiang Z, Khalighinejad F, Muneeruddin K, et al: Succination inactivates gasdermin D and blocks pyroptosis. Science. 369:1633–1637. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang XZ, Lei XX, Jiang YL, Zhao LM, Zou CY, Bai YJ, Li YX, Wang R, Li QJ, Chen QZ, et al: Application of metabolomics in urolithiasis: The discovery and usage of succinate. Signal Transduct Target Ther. 8:412023. View Article : Google Scholar : PubMed/NCBI | |
Sun K, Zhi Y, Ren W, Li S, Zhou X, Gao L and Zhi K: The mitochondrial regulation in ferroptosis signaling pathway and its potential strategies for cancer. Biomed Pharmacother. 169:1158922023. View Article : Google Scholar : PubMed/NCBI | |
Duan X, Zhang T, Ou L, Kong Z, Wu W and Zeng G: 1H NMR-based metabolomic study of metabolic profiling for the urine of kidney stone patients. Urolithiasis. 48:27–35. 2020. View Article : Google Scholar | |
Hernandez Y, Costa-Bauza A, Calvó P, Benejam J, Sanchis P and Grases F: Comparison of two dietary supplements for treatment of uric acid renal lithiasis: Citrate vs Citrate + theobromine. Nutrients. 12:20122020. View Article : Google Scholar | |
Eisner BH, Asplin JR, Goldfarb DS, Ahmad A and Stoller ML: Citrate, malate and alkali content in commonly consumed diet sodas: Implications for nephrolithiasis treatment. J Urol. 183:2419–2423. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, Liu Y, Lan Y, Li X, Luo L, Duan X, Lei M, Liu G, Yang Z, Mai X, et al: Dietary vinegar prevents kidney stone recurrence via epigenetic regulations. EBioMedicine. 45:231–250. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang JY, Zhou B, Sun RY, Ai YL, Cheng K, Li FN, Wang BR, Liu FJ, Jiang ZH, Wang WJ, et al: The metabolite α-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8. Cell Res. 31:980–997. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kumar P, Saini K, Saini V and Mitchell T: Oxalate alters cellular bioenergetics, redox homeostasis, antibacterial response, and immune response in macrophages. Front Immunol. 12:6948652021. View Article : Google Scholar : PubMed/NCBI | |
Cai W, Wannemuehler Y, Dell'anna G, Nicholson B, Barbieri NL, Kariyawasam S, Feng Y, Logue CM, Nolan LK and Li G: A novel two-component signaling system facilitates uropathogenic Escherichia coli's ability to exploit abundant host metabolites. PLoS Pathog. 9:e10034282013. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Gan D, Luo Z, Yang Q, An D, Zhang H, Hu Y, Ma Z, Zeng Q, Xu D and Ren H: α-Ketoglutarate improves cardiac insufficiency through NAD+-SIRT1 signaling-mediated mitophagy and ferroptosis in pressure overload-induced mice. Mol Med. 30:152024. View Article : Google Scholar |