
Role of lactate and lactate metabolism in liver diseases (Review)
- Authors:
- Shun Yao
- Hongyu Chai
- Ting Tao
- Li Zhang
- Xingyue Yang
- Xin Li
- Zhiqiang Yi
- Yongfeng Wang
- Jiaxin An
- Guorong Wen
- Hai Jin
- Biguang Tuo
-
Affiliations: Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China, Department of Burns and Plastic Surgery, Fuling Hospital, Chongqing University, Chongqing 408099, P.R. China, Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China - Published online on: May 20, 2024 https://doi.org/10.3892/ijmm.2024.5383
- Article Number: 59
-
Copyright: © Yao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Ferguson BS, Rogatzki MJ, Goodwin ML, Kane DA, Rightmire Z and Gladden LB: Lactate metabolism: Historical context, prior misinterpretations, and current understanding. Eur J Appl Physiol. 118:691–728. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liberti MV and Locasale JW: The warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 41:211–218. 2016. View Article : Google Scholar : PubMed/NCBI | |
Certo M, Tsai CH, Pucino V, Ho PC and Mauro C: Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat Rev Immunol. 21:151–161. 2021. View Article : Google Scholar | |
Syed M, Kammala AK, Callahan B, Oskeritzian CA and Subramanian H: Lactic acid suppresses MRGPRX2 mediated mast cell responses. Cell Immunol. 368:1044222021. View Article : Google Scholar : PubMed/NCBI | |
Souto-Carneiro MM, Klika KD, Abreu MT, Meyer AP, Saffrich R, Sandhoff R, Jennemann R, Kraus FV, Tykocinski L, Eckstein V, et al: Effect of increased lactate dehydrogenase a activity and aerobic glycolysis on the proinflammatory profile of autoimmune CD8+ T cells in rheumatoid arthritis. Arthritis Rheumatol. 72:2050–2064. 2020. View Article : Google Scholar : PubMed/NCBI | |
Brooks GA: Lactate shuttles in nature. Biochem Soc Trans. 30:258–264. 2002. View Article : Google Scholar : PubMed/NCBI | |
Brooks GA: Cell-cell and intracellular lactate shuttles. J Physiol. 587(Pt 23): 5591–5600. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Pan RY, Guan F and Yuan Z: Lactate metabolism in neurodegenerative diseases. Neural Regen Res. 19:69–74. 2024. View Article : Google Scholar | |
Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang JX, Wang Z and Yu T: Lactate metabolism in human health and disease. Signal Transduct Target Ther. 7:3052022. View Article : Google Scholar : PubMed/NCBI | |
Gaffney DO, Jennings EQ, Anderson CC, Marentette JO, Shi T, Schou Oxvig AM, Streeter MD, Johannsen M, Spiegel DA, Chapman E, et al: Non-enzymatic lysine lactoylation of glycolytic enzymes. Cell Chem Biol. 27:206–213.e6. 2020. View Article : Google Scholar : | |
Yao S, Yang X, An J, Jin H, Wen G, Wang H and Tuo B: Role of the S100 protein family in liver disease (Review). Int J Mol Med. 48:1662021. View Article : Google Scholar : PubMed/NCBI | |
Kang JH, Toita R and Murata M: Liver cell-targeted delivery of therapeutic molecules. Crit Rev Biotechnol. 36:132–143. 2016. View Article : Google Scholar | |
Gao B: Hepatoprotective and anti-inflammatory cytokines in alcoholic liver disease. J Gastroenterol Hepatol. 27(Suppl 2): S89–S93. 2012. View Article : Google Scholar | |
Asrani SK, Devarbhavi H, Eaton J and Kamath PS: Burden of liver diseases in the world. J Hepatol. 70:151–171. 2019. View Article : Google Scholar | |
Paik JM, Golabi P, Younossi Y, Mishra A and Younossi ZM: Changes in the global burden of chronic liver diseases from 2012 to 2017: The growing impact of NAFLD. Hepatology. 72:1605–1616. 2020. View Article : Google Scholar | |
van Hall G: Lactate kinetics in human tissues at rest and during exercise. Acta Physiol (Oxf). 199:499–508. 2010. View Article : Google Scholar : PubMed/NCBI | |
Feron O: Pyruvate into lactate and back: From the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol. 92:329–333. 2009. View Article : Google Scholar : PubMed/NCBI | |
de Bari L, Atlante A, Guaragnella N, Principato G and Passarella S: D-Lactate transport and metabolism in rat liver mitochondria. Biochem J. 365(Pt 2): 391–403. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bennis Y, Bodeau S, Batteux B, Gras-Champel V, Masmoudi K, Maizel J, De Broe ME, Lalau JD and Lemaire-Hurtel AS: A study of associations between plasma metformin concentration, lactic acidosis, and mortality in an emergency hospitalization context. Crit Care Med. 48:e1194–e1202. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jha MK, Lee IK and Suk K: Metabolic reprogramming by the pyruvate dehydrogenase kinase-lactic acid axis: Linking metabolism and diverse neuropathophysiologies. Neurosci Biobehav Rev. 68:1–19. 2016. View Article : Google Scholar : PubMed/NCBI | |
Soreze Y, Boutron A, Habarou F, Barnerias C, Nonnenmacher L, Delpech H, Mamoune A, Chrétien D, Hubert L, Bole-Feysot C, et al: Mutations in human lipoyltransferase gene LIPT1 cause a Leigh disease with secondary deficiency for pyruvate and alpha-ketoglutarate dehydrogenase. Orphanet J Rare Dis. 8:1922013. View Article : Google Scholar : PubMed/NCBI | |
Emhoff CA, Messonnier LA, Horning MA, Fattor JA, Carlson TJ and Brooks GA: Gluconeogenesis and hepatic glycogenolysis during exercise at the lactate threshold. J Appl Physiol (1985). 114:297–306. 2013. View Article : Google Scholar | |
Wang T, Chen K, Yao W, Zheng R, He Q, Xia J, Li J, Shao Y, Zhang L, Huang L, et al: Acetylation of lactate dehydrogenase B drives NAFLD progression by impairing lactate clearance. J Hepatol. 74:1038–1052. 2021. View Article : Google Scholar | |
Brown TP and Ganapathy V: Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. Pharmacol Ther. 206:1074512020. View Article : Google Scholar | |
Felmlee MA, Jones RS, Rodriguez-Cruz V, Follman KE and Morris ME: Monocarboxylate transporters (SLC16): Function, regulation, and role in health and disease. Pharmacol Rev. 72:466–485. 2020. View Article : Google Scholar : PubMed/NCBI | |
Halestrap AP: The SLC16 gene family-structure, role and regulation in health and disease. Mol Aspects Med. 34:337–349. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sun S, Li H, Chen J and Qian Q: Lactic Acid: No longer an inert and end-product of glycolysis. Physiology (Bethesda). 32:453–463. 2017.PubMed/NCBI | |
Contreras-Baeza Y, Sandoval PY, Alarcón R, Galaz A, Cortés-Molina F, Alegría K, Baeza-Lehnert F, Arce-Molina R, Guequén A, Flores CA, et al: Monocarboxylate transporter 4 (MCT4) is a high affinity transporter capable of exporting lactate in high-lactate microenvironments. J Biol Chem. 294:20135–20147. 2019. View Article : Google Scholar : PubMed/NCBI | |
Halestrap AP: Monocarboxylic acid transport. Compr Physiol. 3:1611–1643. 2013. View Article : Google Scholar : PubMed/NCBI | |
Valença I, Ferreira AR, Correia M, Kühl S, van Roermund C, Waterham HR, Máximo V, Islinger M and Ribeiro D: Prostate cancer proliferation is affected by the subcellular localization of MCT2 and accompanied by significant peroxisomal alterations. Cancers (Basel). 12:31522020. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Zhang Y, Dong D, Wang F, Ma X, Guan F and Sun L: MCT1 regulates aggressive and metabolic phenotypes in bladder cancer. J Cancer. 9:2492–2501. 2018. View Article : Google Scholar : PubMed/NCBI | |
Halestrap AP: The monocarboxylate transporter family-Structure and functional characterization. IUBMB Life. 64:1–9. 2012. View Article : Google Scholar | |
Droździk M, Szeląg-Pieniek S, Grzegółkowska J, Łapczuk-Romańska J, Post M, Domagała P, Miętkiewski J, Oswald S and Kurzawski M: Monocarboxylate transporter 1 (MCT1) in liver pathology. Int J Mol Sci. 21:16062020. View Article : Google Scholar | |
Min K, Yenilmez B, Kelly M, Echeverria D, Elleby M, Lifshitz LM, Raymond N, Tsagkaraki E, Harney SM, DiMarzio C, et al: Lactate transporter MCT1 in hepatic stellate cells promotes fibrotic collagen expression in nonalcoholic steatohepatitis. bioRxiv [Preprint] 2023.05.03.539244. 2023. | |
Martini T, Ripperger JA, Chavan R, Stumpe M, Netzahualcoyotzi C, Pellerin L and Albrecht U: The hepatic monocarboxylate transporter 1 (MCT1) contributes to the regulation of food anticipation in mice. Front Physiol. 12:6654762021. View Article : Google Scholar : PubMed/NCBI | |
Carneiro L, Asrih M, Repond C, Sempoux C, Stehle JC, Leloup C, Jornayvaz FR and Pellerin L: AMPK activation caused by reduced liver lactate metabolism protects against hepatic steatosis in MCT1 haploinsufficient mice. Mol Metab. 6:1625–1633. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lengacher S, Nehiri-Sitayeb T, Steiner N, Carneiro L, Favrod C, Preitner F, Thorens B, Stehle JC, Dix L, Pralong F, et al: Resistance to diet-induced obesity and associated metabolic perturbations in haploinsufficient monocarboxylate transporter 1 mice. PLoS One. 8:e825052013. View Article : Google Scholar : PubMed/NCBI | |
Fan Q, Yang L, Zhang X, Ma Y, Li Y, Dong L, Zong Z, Hua X, Su D, Li H and Liu J: Autophagy promotes metastasis and glycolysis by upregulating MCT1 expression and Wnt/β-catenin signaling pathway activation in hepatocellular carcinoma cells. J Exp Clin Cancer Res. 37:92018. View Article : Google Scholar | |
Gao HJ, Zhao MC, Zhang YJ, Zhou DS, Xu L, Li GB, Chen MS and Liu J: Monocarboxylate transporter 4 predicts poor prognosis in hepatocellular carcinoma and is associated with cell proliferation and migration. J Cancer Res Clin Oncol. 141:1151–1162. 2015. View Article : Google Scholar | |
Chen HL, OuYang HY, Le Y, Jiang P, Tang H, Yu ZS, He MK, Tang YQ and Shi M: Aberrant MCT4 and GLUT1 expression is correlated with early recurrence and poor prognosis of hepatocellular carcinoma after hepatectomy. Cancer Med. 7:5339–5350. 2018. View Article : Google Scholar : PubMed/NCBI | |
Niu Z, Yang F, Li H, Wang J, Ni Q, Ma C, Zhu H, Chang H, Zhou X, Lu J and Gao H: MCT4 promotes hepatocellular carcinoma progression by upregulating TRAPPC5 gene. J Hepatocell Carcinoma. 9:289–300. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Li W, Li M, Hu Y, Zhang H, Song G, Yang L, Cai K and Luo Z: Targeted inhibition of MCT4 disrupts intracellular pH homeostasis and confers self-regulated apoptosis on hepatocellular carcinoma. Exp Cell Res. 384:1115912019. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Shao Q, Lu Y, Li Y, Xu Z, Zhou B, Chen Q, Li X, Xu X, Pan Y, et al: Monocarboxylate transporter upregulation in induced regulatory T cells promotes resistance to anti-PD-1 therapy in hepatocellular carcinoma patients. Front Oncol. 12:9600662022. View Article : Google Scholar | |
Hu J, Cai M, Liu Y, Liu B, Xue X, Ji R, Bian X and Lou S: The roles of GRP81 as a metabolic sensor and inflammatory mediator. J Cell Physiol. 235:8938–8950. 2020. View Article : Google Scholar | |
Hoque R, Farooq A, Ghani A, Gorelick F and Mehal WZ: Lactate reduces liver and pancreatic injury in Toll-like receptorand inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology. 146:1763–1774. 2014. View Article : Google Scholar | |
Ahmed K, Tunaru S, Tang C, Müller M, Gille A, Sassmann A, Hanson J and Offermanns S: An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. Cell Metab. 11:311–319. 2010. View Article : Google Scholar | |
Wu G, Dai Y, Yan Y, Zheng X, Zhang H, Li H and Chen W: The lactate receptor GPR81 mediates hepatic lipid metabolism and the therapeutic effect of metformin on experimental NAFLDs. Eur J Pharmacol. 924:1749592022. View Article : Google Scholar | |
Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T, Le Zhan, Yanxiang Guo J, et al: Glucose feeds the TCA cycle via circulating lactate. Nature. 551:115–118. 2017. View Article : Google Scholar | |
Dienel GA: Brain glucose metabolism: Integration of energetics with function. Physiol Rev. 99:949–1045. 2019. View Article : Google Scholar | |
Lhomme T, Clasadonte J, Imbernon M, Fernandois D, Sauve F, Caron E, da Silva Lima N, Heras V, Martinez-Corral I, Mueller-Fielitz H, et al: Tanycytic networks mediate energy balance by feeding lactate to glucose-insensitive POMC neurons. J Clin Invest. 131:e1405212021. View Article : Google Scholar | |
Gómez-Valadés AG, Pozo M, Varela L, Boudjadja MB, Ramírez S, Chivite I, Eyre E, Haddad-Tóvolli R, Obri A, Milà-Guasch M, et al: Mitochondrial cristae-remodeling protein OPA1 in POMC neurons couples Ca(2+) homeostasis with adipose tissue lipolysis. Cell Metab. 33:1820–1835.e9. 2021. View Article : Google Scholar | |
Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, et al: Lactate metabolism in human lung tumors. Cell. 171:358–371.e9. 2017. View Article : Google Scholar | |
Pucino V, Certo M, Bulusu V, Cucchi D, Goldmann K, Pontarini E, Haas R, Smith J, Headland SE, Blighe K, et al: Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4(+) T cell metabolic rewiring. Cell Metab. 30:1055–1074.e8. 2019. View Article : Google Scholar | |
Irizarry-Caro RA, McDaniel MM, Overcast GR, Jain VG, Troutman TD and Pasare C: TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation. Proc Natl Acad Sci USA. 117:30628–30638. 2020. View Article : Google Scholar | |
Rho H, Terry AR, Chronis C and Hay N: Hexokinase 2-mediated gene expression via histone lactylation is required for hepatic stellate cell activation and liver fibrosis. Cell Metab. 35:1406–1423.e8. 2023. View Article : Google Scholar | |
Yang Z, Yan C, Ma J, Peng P, Ren X, Cai S, Shen X, Wu Y, Zhang S, Wang X, et al: Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nat Metab. 5:61–79. 2023. View Article : Google Scholar | |
Pan L, Feng F, Wu J, Fan S, Han J, Wang S, Yang L, Liu W, Wang C and Xu K: Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells. Pharmacol Res. 181:1062702022. View Article : Google Scholar | |
Hayes C, Donohoe CL, Davern M and Donlon NE: The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment. Cancer Lett. 500:75–86. 2021. View Article : Google Scholar | |
Li Y, Mo H, Wu S, Liu X and Tu K: A novel lactate metabolism-related gene signature for predicting clinical outcome and tumor microenvironment in hepatocellular carcinoma. Front Cell Dev Biol. 9:8019592022. View Article : Google Scholar | |
Yang L, Tan P, Sun H, Zeng Z and Pan Y: Integrative dissection of novel lactate metabolism-related signature in the tumor immune microenvironment and prognostic prediction in breast cancer. Front Oncol. 12:8747312022. View Article : Google Scholar | |
Wang Z, Zhang S, Li J, Yuan Y, Chen S, Zuo M, Li W, Feng W, Chen M and Liu Y: Prognostic value of lactate metabolism-related gene expression signature in adult primary gliomas and its impact on the tumor immune microenvironment. Front Oncol. 12:10082192022. View Article : Google Scholar | |
Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, et al: Metabolic regulation of gene expression by histone lactylation. Nature. 574:575–580. 2019. View Article : Google Scholar | |
Izzo LT and Wellen KE: Histone lactylation links metabolism and gene regulation. Nature. 574:492–493. 2019. View Article : Google Scholar | |
Oosterveer MH and Schoonjans K: Hepatic glucose sensing and integrative pathways in the liver. Cell Mol Life Sci. 71:1453–1467. 2014. View Article : Google Scholar | |
Lei Y, Han P, Chen Y, Wang H, Wang S, Wang M, Liu J, Yan W, Tian D and Liu M: Protein arginine methyltransferase 3 promotes glycolysis and hepatocellular carcinoma growth by enhancing arginine methylation of lactate dehydrogenase A. Clin Transl Med. 12:e6862022. View Article : Google Scholar | |
Lazzeri C, Gensini GF, Sori A, Bernardo P, Chiostri M, Tommasi E, Grossi F and Valente S: Dynamic behaviour of lactate values during mild hypothermia in patients with cardiac arrest. Eur Heart J Acute Cardiovasc Care. 3:176–182. 2014. View Article : Google Scholar | |
Scheiner B, Lindner G, Reiberger T, Schneeweiss B, Trauner M, Zauner C and Funk GC: Acid-base disorders in liver disease. J Hepatol. 67:1062–1073. 2017. View Article : Google Scholar | |
Drolz A, Horvatits T, Rutter K, Landahl F, Roedl K, Meersseman P, Wilmer A, Kluwe J, Lohse AW, Kluge S, et al: Lactate improves prediction of short-term mortality in Critically Ill patients with cirrhosis: A multinational study. Hepatology. 69:258–269. 2019. View Article : Google Scholar | |
Gao Y, Zhang H, Zhong H, Yang S and Wang Q: Lactate and blood ammonia on admission as biomarkers to predict the prognosis of patients with acute mushroom poisoning and liver failure: A retrospective study. Toxicol Res (Camb). 10:850–855. 2021. View Article : Google Scholar | |
Roehlen N, Crouchet E and Baumert TF: Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells. 9:8752020. View Article : Google Scholar | |
Dulai PS, Singh S, Patel J, Soni M, Prokop LJ, Younossi Z, Sebastiani G, Ekstedt M, Hagstrom H, Nasr P, et al: Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis. Hepatology. 65:1557–1565. 2017. View Article : Google Scholar | |
Tan Z, Sun H, Xue T, Gan C, Liu H, Xie Y, Yao Y and Ye T: Liver fibrosis: Therapeutic targets and advances in drug therapy. Front Cell Dev Biol. 9:7301762021. View Article : Google Scholar | |
Sherman MH: Stellate cells in tissue repair, inflammation, and cancer. Annu Rev Cell Dev Biol. 34:333–355. 2018. View Article : Google Scholar | |
Mejias M, Gallego J, Naranjo-Suarez S, Ramirez M, Pell N, Manzano A, Suñer C, Bartrons R, Mendez R and Fernandez M: CPEB4 increases expression of PFKFB3 to induce glycolysis and activate mouse and human hepatic stellate cells, promoting liver fibrosis. Gastroenterology. 159:273–288. 2020. View Article : Google Scholar | |
Trivedi P, Wang S and Friedman SL: The power of plasticity-metabolic regulation of hepatic stellate cells. Cell Metab. 33:242–257. 2021. View Article : Google Scholar | |
Shangguan X, He J, Ma Z, Zhang W, Ji Y, Shen K, Yue Z, Li W, Xin Z, Zheng Q, et al: SUMOylation controls the binding of hexokinase 2 to mitochondria and protects against prostate cancer tumorigenesis. Nat Commun. 12:18122021. View Article : Google Scholar | |
Riazi K, Azhari H, Charette JH, Underwood FE, King JA, Afshar EE, Swain MG, Congly SE, Kaplan GG and Shaheen AA: The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 7:851–861. 2022. View Article : Google Scholar | |
Estes C, Razavi H, Loomba R, Younossi Z and Sanyal AJ: Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology. 67:123–133. 2018. View Article : Google Scholar | |
Afonso MB, Rodrigues PM, Simão AL and Castro RE: Circulating microRNAs as potential biomarkers in non-alcoholic fatty liver disease and hepatocellular carcinoma. J Clin Med. 5:302016. View Article : Google Scholar | |
Jeppesen JB, Mortensen C, Bendtsen F and Møller S: Lactate metabolism in chronic liver disease. Scand J Clin Lab Invest. 73:293–299. 2013. View Article : Google Scholar | |
Ha TS, Shin TG, Jo IJ, Hwang SY, Chung CR, Suh GY and Jeon K: Lactate clearance and mortality in septic patients with hepatic dysfunction. Am J Emerg Med. 34:1011–1015. 2016. View Article : Google Scholar | |
Li J, Wang T, Xia J, Yao W and Huang F: Enzymatic and nonenzymatic protein acetylations control glycolysis process in liver diseases. FASEB J. 33:11640–11654. 2019. View Article : Google Scholar | |
Vazquez JH, Kennon-McGill S, Byrum SD, Mackintosh SG, Jaeschke H, Williams DK, Lee WM, Dranoff JA and McGill MR; Acute Liver Failure Study Group: Proteomics indicates lactate dehydrogenase is prognostic in acetaminophen-induced acute liver failure patients and reveals altered signaling pathways. Toxicol Sci. 187:25–34. 2022. View Article : Google Scholar | |
Bernal W, Donaldson N, Wyncoll D and Wendon J: Blood lactate as an early predictor of outcome in paracetamol-induced acute liver failure: A cohort study. Lancet. 359:558–563. 2002. View Article : Google Scholar | |
Macquillan GC, Seyam MS, Nightingale P, Neuberger JM and Murphy N: Blood lactate but not serum phosphate levels can predict patient outcome in fulminant hepatic failure. Liver Transpl. 11:1073–1079. 2005. View Article : Google Scholar | |
Dabos KJ, Newsome PN, Parkinson JA, Davidson JS, Sadler IH, Plevris JN and Hayes PC: A biochemical prognostic model of outcome in paracetamol-induced acute liver injury. Transplantation. 80:1712–1717. 2005. View Article : Google Scholar | |
Schmidt LE and Larsen FS: Prognostic implications of hyperlactatemia, multiple organ failure, and systemic inflammatory response syndrome in patients with acetaminophen-induced acute liver failure. Crit Care Med. 34:337–343. 2006. View Article : Google Scholar | |
Cholongitas EB, Betrossian A, Leandro G, Shaw S, Patch D and Burroughs AK: King's criteria, APACHE II, and SOFA scores in acute liver failure. Hepatology. 43:881author reply 882. 2006. View Article : Google Scholar | |
Gow PJ, Warrilow S, Lontos S, Lubel J, Wongseelashote S, MacQuillan GC, Jones RM, Bellomo R and Angus PW: Time to review the selection criteria for transplantation in paracetamol-induced fulminant hepatic failure? Liver Transpl. 13:1762–1763. 2007. View Article : Google Scholar | |
Agrawal T, Maiwall R, Rajan V, Bajpai M, Jagdish RK, Sarin SK and Trehanpati N: Higher circulating natural killer cells and lower lactate levels at admission predict spontaneous survival in non-acetaminophen induced acute liver failure. Clin Immunol. 231:1088292021. View Article : Google Scholar | |
Karvellas CJ, Tillman H, Leung AA, Lee WM, Schilsky ML, Hameed B, Stravitz RT, McGuire BM and Fix OK; United States Acute Liver Failure Study Group: Acute liver injury and acute liver failure from mushroom poisoning in North America. Liver Int. 36:1043–1050. 2016. View Article : Google Scholar | |
Feldman AG, Sokol RJ, Hardison RM, Alonso EM, Squires RH and Narkewicz MR; Pediatric Acute Liver Failure Study Group: Lactate and Lactate: Pyruvate ratio in the diagnosis and outcomes of pediatric acute liver failure. J Pediatr. 182:217–222.e3. 2017. View Article : Google Scholar | |
Haidar MK, Morton N, Roederer T, Mayronne S, Bawo L, Kerkula J, Porten K and Baud FJ: Evaluating lactate prognostic value in children suspected of acetaminophen-induced liver failure in Liberia. Pediatr Res. 88:605–611. 2020. View Article : Google Scholar | |
Schmidt LE and Larsen FS: Is lactate concentration of major value in determining the prognosis in patients with acute liver failure? Hardly. J Hepatol. 53:211–212. 2010. View Article : Google Scholar | |
Bernal W: Lactate is important in determining prognosis in acute liver failure. J Hepatol. 53:209–210. 2010. View Article : Google Scholar | |
Niederwieser T, Braunwarth E, Dasari BVM, Pufal K, Szatmary P, Hackl H, Haselmann C, Connolly CE, Cardini B, Öfner D, et al: Early postoperative arterial lactate concentrations to stratify risk of post-hepatectomy liver failure. Br J Surg. 108:1360–1370. 2021. View Article : Google Scholar | |
Popescu M, Dima S, Brasoveanu V, Tudor A, Simionescu M and Tomescu D: High perioperative lactate levels and decreased lactate clearance are associated with increased incidence of posthepatectomy liver failure. Hepatobiliary Pancreat Dis Int. 20:592–594. 2021. View Article : Google Scholar | |
Gao F, Huang XL, Cai MX, Lin MT, Wang BF, Wu W and Huang ZM: Prognostic value of serum lactate kinetics in critically ill patients with cirrhosis and acute-on-chronic liver failure: A multicenter study. Aging (Albany NY). 11:4446–4462. 2019. View Article : Google Scholar | |
Cardoso FS, Abraldes JG, Sy E, Ronco JJ, Bagulho L, Mcphail MJ and Karvellas CJ: Lactate and number of organ failures predict intensive care unit mortality in patients with acute-on-chronic liver failure. Liver Int. 39:1271–1280. 2019. View Article : Google Scholar | |
Kotoh K, Kato M, Kohjima M, Tanaka M, Miyazaki M, Nakamura K, Enjoji M, Nakamuta M and Takayanagi R: Lactate dehydrogenase production in hepatocytes is increased at an early stage of acute liver failure. Exp Ther Med. 2:195–199. 2011. View Article : Google Scholar | |
Cassidy WM and Reynolds TB: Serum lactic dehydrogenase in the differential diagnosis of acute hepatocellular injury. J Clin Gastroenterol. 19:118–121. 1994. View Article : Google Scholar | |
Krispin I, Mahamid M, Goldin E and Fteiha B: Elevated lactate/albumin ratio as a novel predictor of in-hospital mortality in hospitalized cirrhotics. Ann Hepatol. 28:1008972023. View Article : Google Scholar | |
Nie Y, Liu LX, Chen T, Zhang Y and Zhu X: Serum lactate level predicts 6-months mortality in patients with hepatitis B virus-related decompensated cirrhosis: A retrospective study. Epidemiol Infect. 149:e262021. View Article : Google Scholar | |
Forner A, Reig M and Bruix J: Hepatocellular carcinoma. Lancet. 391:1301–1314. 2018. View Article : Google Scholar | |
Chen Z, Xie H, Hu M, Huang T, Hu Y, Sang N and Zhao Y: Recent progress in treatment of hepatocellular carcinoma. Am J Cancer Res. 10:2993–3036. 2020. | |
Hanahan D and Coussens LM: Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell. 21:309–322. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee DC, Sohn HA, Park ZY, Oh S, Kang YK, Lee KM, Kang M, Jang YJ, Yang SJ, Hong YK, et al: A lactate-induced response to hypoxia. Cell. 161:595–609. 2015. View Article : Google Scholar : PubMed/NCBI | |
Deng H, Kan A, Lyu N, He M, Huang X, Qiao S, Li S, Lu W, Xie Q, Chen H, et al: Tumor-derived lactate inhibit the efficacy of lenvatinib through regulating PD-L1 expression on neutrophil in hepatocellular carcinoma. J Immunother Cancer. 9:e0023052021. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Hao X, Ren Y, Xu Q, Liu X, Song S and Wang Y: Research progress of abnormal lactate metabolism and lactate modification in immunotherapy of hepatocellular carcinoma. Front Oncol. 12:10634232022. View Article : Google Scholar | |
Tu CE, Hu Y, Zhou P, Guo X, Gu C, Zhang Y, Li A and Liu S: Lactate and TGF-β antagonistically regulate inflammasome activation in the tumor microenvironment. J Cell Physiol. 236:4528–4537. 2021. View Article : Google Scholar | |
Apicella M, Giannoni E, Fiore S, Ferrari KJ, Fernández-Pérez D, Isella C, Granchi C, Minutolo F, Sottile A, Comoglio PM, et al: Increased lactate secretion by cancer cells sustains non-cell-autonomous adaptive resistance to MET and EGFR targeted therapies. Cell Metab. 28:848–65 e6. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Gan G, Wang X, Xu T and Xie W: The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance. Autophagy. 15:1258–1279. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shan T, Chen S, Chen X, Wu T, Yang Y, Li S, Ma J, Zhao J, Lin W, Li W, et al: M2-TAM subsets altered by lactic acid promote T-cell apoptosis through the PD-L1/PD-1 pathway. Oncol Rep. 44:1885–1894. 2020.PubMed/NCBI | |
Lu LG, Zhou ZL, Wang XY, Liu BY, Lu JY, Liu S, Zhang GB, Zhan MX and Chen Y: PD-L1 blockade liberates intrinsic antitumourigenic properties of glycolytic macrophages in hepatocellular carcinoma. Gut. 71:2551–2560. 2022. View Article : Google Scholar : PubMed/NCBI | |
Stone SC, Rossetti RAM, Alvarez KLF, Carvalho JP, Margarido PFR, Baracat EC, Tacla M, Boccardo E, Yokochi K, Lorenzi NP and Lepique AP: Lactate secreted by cervical cancer cells modulates macrophage phenotype. J Leukoc Biol. 105:1041–1054. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chu X, Di C, Chang P, Li L, Feng Z, Xiao S, Yan X, Xu X, Li H, Qi R, et al: Lactylated histone H3K18 as a potential biomarker for the diagnosis and predicting the severity of septic shock. Front Immunol. 12:7866662022. View Article : Google Scholar : PubMed/NCBI | |
Suk FM, Wu CY, Fang CC, Chen TL and Liao YJ: β-HB treatment reverses sorafenib resistance by shifting glycolysis-lactate metabolism in HCC. Biomed Pharmacother. 166:1152932023. View Article : Google Scholar | |
Baltazar F, Afonso J, Costa M and Granja S: Lactate beyond a waste metabolite: Metabolic affairs and signaling in malignancy. Front Oncol. 10:2312020. View Article : Google Scholar : PubMed/NCBI | |
Sheng SL, Liu JJ, Dai YH, Sun XG, Xiong XP and Huang G: Knockdown of lactate dehydrogenase A suppresses tumor growth and metastasis of human hepatocellular carcinoma. FEBS J. 279:3898–3910. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fukao T, Lopaschuk GD and Mitchell GA: Pathways and control of ketone body metabolism: On the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fatty Acids. 70:243–251. 2004. View Article : Google Scholar : PubMed/NCBI | |
Li X, Lu P, Li B, Yang R, Chu Y, Zhang Z, Wan H, Niu C, Wang C and Luo K: Sensitization of hepatocellular carcinoma cells to irradiation by miR-34a through targeting lactate dehydrogenase-A. Mol Med Rep. 13:3661–3667. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Mu L, Ding MC, Xu R, Ding ZJ and Liang J: NFκB mediated elevation of KCNJ11 promotes tumor progression of hepatocellular carcinoma through interaction of lactate dehydrogenase A. Biochem Biophys Res Commun. 495:246–253. 2018. View Article : Google Scholar | |
Serra M, Di Matteo M, Serneels J, Pal R, Cafarello ST, Lanza M, Sanchez-Martin C, Evert M, Castegna A, Calvisi DF, et al: Deletion of lactate dehydrogenase-a impairs oncogene-induced mouse hepatocellular carcinoma development. Cell Mol Gastroenterol Hepatol. 14:609–624. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cui W, Lv W, Qu Y, Ma R, Wang YW, Xu YJ, Wu D and Chen X: Discovery of 2-((3-cyanopyridin-2-yl)thio)acetamides as human lactate dehydrogenase A inhibitors to reduce the growth of MG-63 osteosarcoma cells: Virtual screening and biological validation. Bioorg Med Chem Lett. 26:3984–3987. 2016. View Article : Google Scholar : PubMed/NCBI | |
Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL and Dang CV: Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA. 107:2037–2042. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen CY, Feng Y, Chen JY and Deng H: Identification of a potent inhibitor targeting human lactate dehydrogenase A and its metabolic modulation for cancer cell line. Bioorg Med Chem Lett. 26:72–75. 2016. View Article : Google Scholar | |
McDonald B, Zucoloto AZ, Yu IL, Burkhard R, Brown K, Geuking MB and McCoy KD: Programing of an intravascular immune firewall by the gut microbiota protects against pathogen dissemination during infection. Cell Host Microbe. 28:660–668.e4. 2020. View Article : Google Scholar : PubMed/NCBI | |
Han S, Bao X, Zou Y, Wang L, Li Y, Yang L, Liao A, Zhang X, Jiang X, Liang D, et al: d-lactate modulates M2 tumor-associated macrophages and remodels immunosuppressive tumor microenvironment for hepatocellular carcinoma. Sci Adv. 9:eadg26972023. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Bei J, Chen M, Cai W, Zhou Z, Cai M, Huang W, Lin L, Guo Y, Liu M, et al: Intratumoral lactate depletion based on injectable nanoparticles-hydrogel composite system synergizes with immunotherapy against postablative hepatocellular carcinoma recurrence. Adv Healthc Mater. 13:e23030312024. View Article : Google Scholar | |
Kubackova K, Bortlicek Z, Pavlik T, Melichar B, Linke Z, Pokorna P, Vyzula R, Prausova J and Buchler T; Czech Renal Cancer Cooperative Group: Prognostic factors in renal cell carcinoma patients treated with sorafenib: Results from the Czech registry. Target Oncol. 10:385–392. 2015. View Article : Google Scholar | |
Scartozzi M, Giampieri R, Maccaroni E, Del Prete M, Faloppi L, Bianconi M, Galizia E, Loretelli C, Belvederesi L, Bittoni A and Cascinu S: Pre-treatment lactate dehydrogenase levels as predictor of efficacy of first-line bevacizumab-based therapy in metastatic colorectal cancer patients. Br J Cancer. 106:799–804. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hermes A, Gatzemeier U, Waschki B and Reck M: Lactate dehydrogenase as prognostic factor in limited and extensive disease stage small cell lung cancer-a retrospective single institution analysis. Respir Med. 104:1937–1942. 2010. View Article : Google Scholar : PubMed/NCBI | |
Faloppi L, Scartozzi M, Bianconi M, Svegliati Baroni G, Toniutto P, Giampieri R, Del Prete M, De Minicis S, Bitetto D, Loretelli C, et al: The role of LDH serum levels in predicting global outcome in HCC patients treated with sorafenib: implications for clinical management. BMC Cancer. 14:1102014. View Article : Google Scholar : PubMed/NCBI | |
Sacco R, Mismas V, Granito A, Musettini G, Masi G, Caparello C, Vivaldi C, Felder M, Bresci G and Fornaro L; Italian Liver Cancer (IT.LI.CA) group: Correlation between LDH levels and response to sorafenib in HCC patients: An analysis of the ITA. LI.CA database. Int J Biol Markers. 30:e65–e72. 2015. View Article : Google Scholar | |
Yada M, Miyazaki M, Motomura K, Masumoto A, Nakamuta M, Kohjima M, Sugimoto R, Aratake Y, Higashi N, Morizono S, et al: The prognostic role of lactate dehydrogenase serum levels in patients with hepatocellular carcinoma who are treated with sorafenib: the influence of liver fibrosis. J Gastrointest Oncol. 7:615–623. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu SJ, Lin YX, Ye H, Xiong XZ, Li FY and Cheng NS: Prognostic value of alkaline phosphatase, gamma-glutamyl transpeptidase and lactate dehydrogenase in hepatocellular carcinoma patients treated with liver resection. Int J Surg. 36(Pt A): 143–151. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gan Y, Gao F, Du B, Liu Y, Xue Q and Fu J: Effects of preoperative serum lactate dehydrogenase levels on long-term prognosis in elderly patients with hepatocellular carcinoma undergoing transcatheter arterial chemoembolization. Front Surg. 9:9821142022. View Article : Google Scholar : PubMed/NCBI | |
Zhuang G, Xie Y, Hong J, Lin S, Chen T and Fang W: Arterial chemoembolization for patients with hepatocellular carcinoma and elevated lactate dehydrogenase is associated with low survival: A cohort study. Infect Agent Cancer. 17:312022. View Article : Google Scholar : PubMed/NCBI | |
Su K, Huang W, Li X, Xu K, Gu T, Liu Y, Song J, Qian K, Xu Y, Zeng H, et al: Evaluation of lactate dehydrogenase and alkaline phosphatase as predictive biomarkers in the prognosis of hepatocellular carcinoma and development of a new nomogram. J Hepatocell Carcinoma. 10:69–79. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cui Z, Li Y, Gao Y, Kong L, Lin Y and Chen Y: Cancer-testis antigen lactate dehydrogenase C4 in hepatocellular carcinoma: A promising biomarker for early diagnosis, efficacy evaluation and prognosis prediction. Aging (Albany NY). 12:19455–19467. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jin J, Bai L, Wang D, Ding W, Cao Z, Yan P, Li Y, Xi L, Wang Y, Zheng X, et al: SIRT3-dependent delactylation of cyclin E2 prevents hepatocellular carcinoma growth. EMBO Rep. 24:e560522023. View Article : Google Scholar : PubMed/NCBI | |
Cheng Z, Huang H, Li M, Liang X, Tan Y and Chen Y: Lactylation-Related gene signature effectively predicts prognosis and treatment responsiveness in hepatocellular carcinoma. Pharmaceuticals (Basel). 16:6442023. View Article : Google Scholar : PubMed/NCBI | |
Doherty JR and Cleveland JL: Targeting lactate metabolism for cancer therapeutics. J Clin Invest. 123:3685–3692. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kooshki L, Mahdavi P, Fakhri S, Akkol EK and Khan H: Targeting lactate metabolism and glycolytic pathways in the tumor microenvironment by natural products: A promising strategy in combating cancer. BioFactors. 48:359–383. 2022. View Article : Google Scholar | |
Li Y, Zhou Y, Xia S, Chen L, Yang T, Zhao D, Zhang Z, Shao J, Xu X, Zhang F and Zheng S: Blockade of KLF5/LDH-A feedback loop contributes to Curcumol inhibition of sinusoidal endothelial cell glycolysis and mitigation of liver fibrosis. Phytomedicine. 114:1547592023. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Chen L, Kong D, Zhang X, Xia S, Liang B, Li Y, Zhou Y, Zhang Z, Shao J, et al: Canonical Wnt signaling promotes HSC glycolysis and liver fibrosis through an LDH-A/HIF-1α transcriptional complex. Hepatolog. 79:606–623. 2024. View Article : Google Scholar | |
Ban D, Hua S, Zhang W, Shen C, Miao X and Liu W: Costunolide reduces glycolysis-associated activation of hepatic stellate cells via inhibition of hexokinase-2. Cell Mol Biol Lett. 24:522019. View Article : Google Scholar : PubMed/NCBI | |
Reyes R, Wani NA, Ghoshal K, Jacob ST and Motiwala T: Sorafenib and 2-deoxyglucose synergistically inhibit proliferation of both sorafenib-sensitive and -resistant HCC cells by inhibiting ATP production. Gene Expr. 17:129–140. 2017. View Article : Google Scholar : | |
Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S and Ishige N: 2-Deoxyglucose and sorafenib synergistically suppress the proliferation and motility of hepatocellular carcinoma cells. Oncol Lett. 13:800–804. 2017. View Article : Google Scholar : PubMed/NCBI | |
Raez LE, Papadopoulos K, Ricart AD, Chiorean EG, Dipaola RS, Stein MN, Rocha Lima CM, Schlesselman JJ, Tolba K, Langmuir VK, et al: A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol. 71:523–530. 2013. View Article : Google Scholar | |
Stein M, Lin H, Jeyamohan C, Dvorzhinski D, Gounder M, Bray K, Eddy S, Goodin S, White E and Dipaola RS: Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies. Prostate. 70:1388–1394. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sasaki K, Nishina S, Yamauchi A, Fukuda K, Hara Y, Yamamura M, Egashira K and Hino K: Nanoparticle-Mediated Delivery of 2-Deoxy-D-Glucose induces antitumor immunity and cytotoxicity in liver tumors in mice. Cell Mol Gastroenterol Hepatol. 11:739–762. 2021. View Article : Google Scholar : | |
Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S and Ishige N: Suppressive effects of 3-bromopyruvate on the proliferation and the motility of hepatocellular carcinoma cells. Oncol Rep. 35:59–63. 2016. View Article : Google Scholar | |
Yoo JJ, Yu SJ, Na J, Kim K, Cho YY, Lee YB, Cho EJ, Lee JH, Kim YJ, Youn H and Yoon JH: Hexokinase-II inhibition synergistically augments the anti-tumor efficacy of sorafenib in hepatocellular carcinoma. Int J Mol Sci. 20:12922019. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Sun G, Huang Y, Hao Y, Tang X, Zhang N, Zhao L, Zhong R and Peng Y: 3-Bromopyruvate regulates the status of glycolysis and BCNU sensitivity in human hepatocellular carcinoma cells. Biochem Pharmacol. 177:1139882020. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Pan L, Gao C, Xu H, Li Y, Zhang L, Ma L, Meng L, Sun X and Qin H: Quercetin inhibits the proliferation of glycolysis-addicted HCC cells by reducing hexokinase 2 and Akt-mTOR pathway. Molecules. 24:19932019. View Article : Google Scholar : PubMed/NCBI | |
Xu Q, Dou C, Liu X, Yang L, Ni C, Wang J, Guo Y, Yang W, Tong X and Huang D: Oviductus ranae protein hydrolysate (ORPH) inhibits the growth, metastasis and glycolysis of HCC by targeting miR-491-5p/PKM2 axis. Biomed Pharmacother. 107:1692–1704. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ferriero R, Nusco E, De Cegli R, Carissimo A, Manco G and Brunetti-Pierri N: Pyruvate dehydrogenase complex and lactate dehydrogenase are targets for therapy of acute liver failure. J Hepatol. 69:325–335. 2018. View Article : Google Scholar : PubMed/NCBI | |
Billiard J, Dennison JB, Briand J, Annan RS, Chai D, Colón M, Dodson CS, Gilbert SA, Greshock J, Jing J, et al: Quinoline 3-sulfonamides inhibit lactate dehydrogenase A and reverse aerobic glycolysis in cancer cells. Cancer Metab. 1:192013. View Article : Google Scholar : PubMed/NCBI | |
Manerba M, Di Ianni L, Govoni M, Roberti M, Recanatini M and Di Stefano G: LDH inhibition impacts on heat shock response and induces senescence of hepatocellular carcinoma cells. Eur J Pharm Sci. 105:91–98. 2017. View Article : Google Scholar : PubMed/NCBI | |
Payen VL, Mina E, Van Hée VF, Porporato PE and Sonveaux P: Monocarboxylate transporters in cancer. Mol Metab. 33:48–66. 2020. View Article : Google Scholar : | |
Hadjihambi A, Konstantinou C, Klohs J, Monsorno K, Le Guennec A, Donnelly C, Cox IJ, Kusumbe A, Hosford PS, Soffientini U, et al: Partial MCT1 invalidation protects against diet-induced non-alcoholic fatty liver disease and the associated brain dysfunction. J Hepatol. 78:180–190. 2023. View Article : Google Scholar | |
Jeon JY, Lee M, Whang SH, Kim JW, Cho A and Yun M: Regulation of acetate utilization by monocarboxylate transporter 1 (MCT1) in hepatocellular carcinoma (HCC). Oncol Res. 26:71–81. 2018. View Article : Google Scholar | |
Fang Y, Liu W, Tang Z, Ji X, Zhou Y, Song S, Tian M, Tao C, Huang R, Zhu G, et al: Monocarboxylate transporter 4 inhibition potentiates hepatocellular carcinoma immunotherapy through enhancing T cell infiltration and immune attack. Hepatology. 77:109–123. 2023. View Article : Google Scholar | |
Xu H, Li L, Wang S, Wang Z, Qu L, Wang C and Xu K: Royal jelly acid suppresses hepatocellular carcinoma tumorigenicity by inhibiting H3 histone lactylation at H3K9la and H3K14la sites. Phytomedicine. 118:1549402023. View Article : Google Scholar : PubMed/NCBI | |
Zhou F, Shang W, Yu X and Tian J: Glypican-3: A promising biomarker for hepatocellular carcinoma diagnosis and treatment. Med Res Rev. 38:741–767. 2018. View Article : Google Scholar | |
Yao G and Yang Z: Glypican-3 knockdown inhibits the cell growth, stemness, and glycolysis development of hepatocellular carcinoma cells under hypoxic microenvironment through lactylation. Arch Physiol Biochem. May 2–2023.Online ahead of print. View Article : Google Scholar : PubMed/NCBI |