Topical calcineurin and mammalian target of rapamycin inhibitors in inflammatory dermatoses: Current challenges and nanotechnology‑based prospects (Review)
- Authors:
- Polytimi Sidiropoulou
- Martha Katsarou
- Maria Sifaki
- Maria Papasavva
- Nikolaos Drakoulis
-
Affiliations: 1st Department of Dermatology‑Venereology, School of Medicine, National and Kapodistrian University of Athens, ‘A. Sygros’ Hospital for Skin and Venereal Diseases, 16121 Athens, Greece, Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece, Department of Pharmacy, School of Health Sciences, Frederick University, 1036 Nicosia, Cyprus - Published online on: August 5, 2024 https://doi.org/10.3892/ijmm.2024.5409
- Article Number: 85
-
Copyright: © Sidiropoulou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Rodriguez-Cerdeira C, Sanchez-Blanco E and Molares-Vila A: Clinical application of development of nonantibiotic macrolides that correct inflammation-driven immune dysfunction in inflammatory skin diseases. Mediators Inflamm. 2012:5637092012. View Article : Google Scholar : PubMed/NCBI | |
Marsland AM and Griffiths CEM: Therapeutic potential of macrolide immunosuppressants in dermatology. Expert Opin Investig Drugs. 13:125–137. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kemény L: The golden ages of inflammatory skin diseases: Skyrocketing developments in the therapy of psoriasis and atopic dermatitis. Acad Dermatol Venereol. 35:2239–2240. 2021. View Article : Google Scholar | |
Leducq S, Giraudeau B, Tavernier E and Maruani A: Topical use of mammalian target of rapamycin inhibitors in dermatology: A systematic review with meta-analysis. J Am Acad Dermatol. 80:735–742. 2019. View Article : Google Scholar : PubMed/NCBI | |
Reynolds NJ and Al-Daraji WI: Calcineurin inhibitors and sirolimus: Mechanisms of action and applications in dermatology. Clin Exp Dermatol. 27:555–561. 2002. View Article : Google Scholar : PubMed/NCBI | |
Remitz A, De Pità O, Mota A, Serra-Baldrich E, Vakirlis E and Kapp A: Position statement: Topical calcineurin inhibitors in atopic dermatitis. J Eur Acad Dermatol Venereol. 32:2074–2082. 2018. View Article : Google Scholar : PubMed/NCBI | |
Alavi A and Shear NH: New perspectives on topical calcineurin inhibitors: Role in dermatology today and into the future. J Cutan Med Surg. 23(4 Suppl): 3S–4S. 2019. View Article : Google Scholar : PubMed/NCBI | |
Buerger C: Epidermal mTORC1 signaling contributes to the pathogenesis of psoriasis and could serve as a therapeutic target. Front Immunol. 9:27862018. View Article : Google Scholar : PubMed/NCBI | |
Peramo A and Marcelo CL: Visible effects of rapamycin (sirolimus) on human skin explants in vitro. Arch Dermatol Res. 305:163–171. 2013. View Article : Google Scholar | |
Bornhövd E, Burgdorf WH and Wollenberg A: Macrolactam immunomodulators for topical treatment of inflammatory skin diseases. J Am Acad Dermatol. 45:736–743. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gutfreund K, Bienias W, Szewczyk A and Kaszuba A: Topical calcineurin inhibitors in dermatology. Part I: Properties, method and effectiveness of drug use. Postepy Dermatol Alergol. 30:165–169. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pinter A, Tsianakas A and Eichner A; ScaTAC study group: Efficacy and safety of topical tacrolimus microemulsion applied twice daily in patients with mild to moderate scalp psoriasis. Dermatol Ther (Heidelb). 14:521–532. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kirchner GI, Meier-Wiedenbach I and Manns MP: Clinical pharmacokinetics of everolimus. Clin Pharmacokinet. 43:83–95. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bos JD and Meinardi MM: The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 9:165–169. 2000. View Article : Google Scholar : PubMed/NCBI | |
Pariser D: Topical corticosteroids and topical calcineurin inhibitors in the treatment of atopic dermatitis: Focus on percutaneous absorption. Am J Ther. 16:264–273. 2009. View Article : Google Scholar : PubMed/NCBI | |
Alomar A, Berth-Jones J, Bos JD, Giannetti A, Reitamo S, Ruzicka T, Stalder JF and Thestrup-Pedersen K; European Working Group on Atopic Dermatitis: The role of topical calcineurin inhibitors in atopic dermatitis. Br J Dermatol. 151(Suppl 70): S3–S27. 2004. View Article : Google Scholar | |
Mao J, Wang H, Xie Y, Fu Y, Li Y, Liu P, Du H, Zhu J, Dong L, Hussain M, et al: Transdermal delivery of rapamycin with poor water-solubility by dissolving polymeric microneedles for anti-angiogenesis. J Mater Chem B. 8:928–934. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kang JH, Chon J, Kim YI, Lee HJ, Oh DW, Lee HG, Han CS, Kim DW and Park CW: Preparation and evaluation of tacrolimus-loaded thermosensitive solid lipid nanoparticles for improved dermal distribution. Int J Nanomedicine. 14:5381–5396. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Feng X and Meng S: Site-specific drug delivery in the skin for the localized treatment of skin diseases. Expert Opin Drug Deliv. 16:847–867. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pandey P, Satija S, Wadhwa R, Mehta M, Purohit D, Gupta G, Prasher P, Chellappan DK, Awasthi R, Dureja H and Dua K: Emerging trends in nanomedicine for topical delivery in skin disorders: Current and translational approaches. Dermatol Ther. 33:e132922020. View Article : Google Scholar : PubMed/NCBI | |
Abdel-Mottaleb MM, Try C, Pellequer Y and Lamprecht A: Nanomedicine strategies for targeting skin inflammation. Nanomedicine (Lond). 9:1727–1743. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hwa C, Bauer EA and Cohen DE: Skin biology. Dermatol Ther. 24:464–470. 2011. View Article : Google Scholar | |
Münch S, Wohlrab J and Neubert RHH: Dermal and transdermal delivery of pharmaceutically relevant macromolecules. Eur J Pharm Biopharm. 119:235–242. 2017. View Article : Google Scholar : PubMed/NCBI | |
Eyerich S, Eyerich K, Traidl-Hoffmann C and Biedermann T: Cutaneous barriers and skin immunity: Differentiating A connected network. Trends Immunol. 39:315–327. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bäsler K, Bergmann S, Heisig M, Naegel A, Zorn-Kruppa M and Brandner JM: The role of tight junctions in skin barrier function and dermal absorption. J Control Release. 242:105–118. 2016. View Article : Google Scholar : PubMed/NCBI | |
Andrews SN, Jeong E and Prausnitz MR: Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum. Pharm Res. 30:1099–1109. 2013. View Article : Google Scholar : | |
Knudsen NØ and Pedersen GP: pH and drug delivery. pH of the Skin: Issues and Challenges. 54. Karger Publishers; Berlin: pp. 143–151. 2018 | |
Pyo SM and Maibach HI: Skin metabolism: Relevance of skin enzymes for rational drug design. Skin Pharmacol Physiol. 32:283–294. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kubo A, Nagao K, Yokouchi M, Sasaki H and Amagai M: External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J Exp Med. 206:2937–2946. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vogt A, Wischke C, Neffe AT, Ma N, Alexiev U and Lendlein A: Nanocarriers for drug delivery into and through the skin-Do existing technologies match clinical challenges? J Control Release. 242:3–15. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chavira A, Belda-Ferre P, Kosciolek T, Ali F, Dorrestein PC and Knight R: The microbiome and its potential for pharmacology. Concepts and Principles of Pharmacology. Handbook of Experimental Pharmacology. Barrett JE, Page CP and Michel MC: 260. Springer; Cham: pp. 301–326. 2019, View Article : Google Scholar | |
Savić V, Ilić T, Nikolić I, Marković B, Čalija B, Cekić N and Savić S: Tacrolimus-loaded lecithin-based nanostructured lipid carrier and nanoemulsion with propylene glycol monocaprylate as a liquid lipid: Formulation characterization and assessment of dermal delivery compared to referent ointment. Int J Pharm. 569:1186242019. View Article : Google Scholar | |
Raphael AP, Garrastazu G, Sonvico F and Prow TW: Formulation design for topical drug and nanoparticle treatment of skin disease. Ther Deliv. 6:197–216. 2015. View Article : Google Scholar : PubMed/NCBI | |
Viegas J, Dias S, Carvalho AM and Sarmento B: Characterization of a human lesioned-skin model to assess the influence of skin integrity on drug permeability. Biomed Pharmacother. 169:1158412023. View Article : Google Scholar : PubMed/NCBI | |
Chiang A, Tudela E and Maibach HI: Percutaneous absorption in diseased skin: An overview. J Appl Toxicol. 32:537–563. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jakasa I, De Jongh CM, Verberk MM, Bos JD and Kežić S: Percutaneous penetration of sodium lauryl sulphate is increased in uninvolved skin of patients with atopic dermatitis compared with control subjects. Br J Dermatol. 155:104–109. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gattu S and Maibach HI: Modest but increased penetration through damaged skin: An overview of the in vivo human model. Skin Pharmacol Physiol. 24:2–9. 2011. View Article : Google Scholar | |
Orsmond A, Bereza-Malcolm L, Lynch T, March L and Xue M: Skin barrier dysregulation in psoriasis. Int J Mol Sci. 22:108412021. View Article : Google Scholar : PubMed/NCBI | |
Kocsis D, Horváth S, Kemény Á, Varga-Medveczky Z, Pongor C, Molnár R, Mihály A, Farkas D, Naszlady BM, Fülöp A, et al: Drug delivery through the psoriatic epidermal barrier-A 'skin-on-a-chip' permeability study and ex vivo optical imaging. Int J Mol Sci. 23:42372022. View Article : Google Scholar | |
Zuberbier T, Chong SU, Grunow K, Guhl S, Welker P, Grassberger M and Henz BM: The ascomycin macrolactam pimecrolimus (Elidel, SDZ ASM 981) is a potent inhibitor of mediator release from human dermal mast cells and peripheral blood basophils. J Allergy Clin Immunol. 108:275–280. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hoetzenecker W, Meingassner JG, Ecker R, Stingl G, Stuetz A and Elbe-Bürger A: Corticosteroids but not pimecrolimus affect viability, maturation and immune function of murine epidermal Langerhans cells. J Invest Dermatol. 122:673–684. 2004. View Article : Google Scholar : PubMed/NCBI | |
Learned C, Alsukait S and Rosmarin D: Usage of topical calcineurin inhibitors in the medicare population from 2013 to 2018. J Drugs Dermatol. 21:912–913. 2022. View Article : Google Scholar : PubMed/NCBI | |
Guenther L, Lynde C and Poulin Y: Off-label use of topical calcineurin inhibitors in dermatologic disorders. J Cutan Med Surg. 23(4 Suppl): 27S–34S. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Lu W, Yuan J, Zeng B, Li D, Zhang F and Li J: Utility of dermoscopy for evaluating the therapeutic efficacy of tacrolimus ointment plus 308-nm excimer laser combination therapy in localized vitiligo patients. Exp Ther Med. 15:3981–3988. 2018.PubMed/NCBI | |
Bos JD: Non-steroidal topical immunomodulators provide skin-selective, self-limiting treatment in atopic dermatitis. Eur J Dermatol. 13:455–461. 2003.PubMed/NCBI | |
Kumar P, Ashawat MS, Pandit V, Singh Verma CP, Ankalgi AD and Kumar M: Recent trends in nanocarriers for the management of atopic dermatitis. Pharm Nanotechnol. 11:397–409. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jain A, Doppalapudi S, Domb AJ and Khan W: Tacrolimus and curcumin co-loaded liposphere gel: Synergistic combination towards management of psoriasis. J Control Release. 243:132–145. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pople PV and Singh KK: Targeting tacrolimus to deeper layers of skin with improved safety for treatment of atopic dermatitis. Int J Pharm. 398:165–178. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hanna S, Zip C and Shear NH: What Is the risk of harm associated with topical calcineurin inhibitors? J Cutan Med Surg. 23(4 Suppl): 19S–26S. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chat VS, Kearns DG, Uppal SK, Han G and Wu JJ: Management of psoriasis with topicals: Applying the 2020 AAD-NPF guidelines of care to clinical practice. Cutis. 110(2 Suppl): S8–S14. 2022. View Article : Google Scholar | |
Malecic N and Young H: Tacrolimus for the management of psoriasis: Clinical utility and place in therapy. Psoriasis (Auckl). 6:153–163. 2016.PubMed/NCBI | |
Zonneveld IM, Rubins A, Jablonska S, Dobozy A, Ruzicka T, Kind P, Dubertret L and Bos JD: Topical tacrolimus is not effective in chronic plaque psoriasis. A pilot study. Arch Dermatol. 134:1101–1102. 1998. View Article : Google Scholar : PubMed/NCBI | |
Remitz A, Reitamo S, Erkko P, Granlund H and Lauerma AI: Tacrolimus ointment improves psoriasis in a microplaque assay. Br J Dermatol. 141:103–107. 1999. View Article : Google Scholar : PubMed/NCBI | |
Quartier J, Lapteva M, Boulaguiem Y, Guerrier S and Kalia YN: Influence of molecular structure and physicochemical properties of immunosuppressive drugs on micelle formulation characteristics and cutaneous delivery. Pharmaceutics. 15:12782023. View Article : Google Scholar : PubMed/NCBI | |
Sehgal VN, Srivastava G and Dogra S: Tacrolimus in dermatology-pharmacokinetics, mechanism of action, drug interactions, dosages, and side effects: Part I. Skinmed. 7:27–30. 2008. View Article : Google Scholar : PubMed/NCBI | |
Stuetz A, Grassberger M and Meingassner JG: Pimecrolimus (Elidel, SDZ ASM 981)-preclinical pharmacologic profile and skin selectivity. Semin Cutan Med Surg. 20:233–241. 2001. View Article : Google Scholar | |
Stuetz A, Baumann K, Grassberger M, Wolff K and Meingassner JG: Discovery of topical calcineurin inhibitors and pharmacological profile of pimecrolimus. Int Arch Allergy Immunol. 141:199–212. 2006. View Article : Google Scholar : PubMed/NCBI | |
Billich A, Aschauer H, Aszódi A and Stuetz A: Percutaneous absorption of drugs used in atopic eczema: Pimecrolimus permeates less through skin than corticosteroids and tacrolimus. Int J Pharm. 269:29–35. 2004. View Article : Google Scholar | |
Nghiem P, Pearson G and Langley RG: Tacrolimus and pimecrolimus: From clever prokaryotes to inhibiting calcineurin and treating atopic dermatitis. J Am Acad Dermatol. 46:228–241. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ruzicka T, Assmann T and Homey B: Tacrolimus: The drug for the turn of the millennium? Arch Dermatol. 135:574–580. 1999. View Article : Google Scholar : PubMed/NCBI | |
Lauerma AI, Surber C and Maibach HI: Absorption of topical tacrolimus (FK506) in vitro through human skin: Comparison with cyclosporin A. Skin Pharmacol Physiol. 10:230–234. 1997. View Article : Google Scholar | |
Lauerma AI, Stein B, Lee HL, Homey B, Bloom E and Maibach HI: Topical tacrolimus (FK506): Percutaneous absorption and effect on allergic and irritant contact dermatitis. J Invest Dermatol. 110:4911993. | |
Undre NA: Pharmacokinetics of tacrolimus ointment: Clinical relevance. Tacrolimus Ointment. Ruzicka T and Reitamo S: Springer; Berlin, Heidelberg: pp. 99–110. 2004, View Article : Google Scholar | |
Meingassner JG, Aschauer H, Stuetz A and Billich A: Pimecrolimus permeates less than tacrolimus through normal, inflamed, or corticosteroid-pretreated skin. Exp Dermatol. 14:752–757. 2005. View Article : Google Scholar : PubMed/NCBI | |
Undre NA, Moloney FJ, Ahmadi S, Stevenson P and Murphy GM: Skin and systemic pharmacokinetics of tacrolimus following topical application of tacrolimus ointment in adults with moderate to severe atopic dermatitis. Br J Dermatol. 160:665–669. 2009. View Article : Google Scholar | |
Gschwind HP, Waldmeier F, Zollinger M, Schweitzer A and Grassberger M: Pimecrolimus: Skin disposition after topical administration in minipigs in vivo and in human skin in vitro. Eur J Pharm Sci. 33:9–19. 2008. View Article : Google Scholar | |
Weiss HM, Fresneau M, Moenius T, Stuetz A and Billich A: Binding of pimecrolimus and tacrolimus to skin and plasma proteins: Implications for systemic exposure after topical application. Drug Metab Dispos. 36:1812–1818. 2008. View Article : Google Scholar : PubMed/NCBI | |
Luger T, Boguniewicz M, Carr W, Cork M, Deleuran M, Eichenfield L, Eigenmann P, Fölster-Holst R, Gelmetti C, Gollnick H, et al: Pimecrolimus in atopic dermatitis: Consensus on safety and the need to allow use in infants. Pediatr Allergy Immunol. 26:306–315. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cury Martins J, Martins C, Aoki V, Gois AF, Ishii HA and Da Silva EM: Topical tacrolimus for atopic dermatitis. Cochrane Database Syst Rev. 2015:CD0098642015.PubMed/NCBI | |
Fogel AL, Hill S and Teng JMC: Advances in the therapeutic use of mammalian target of rapamycin (mTOR) inhibitors in dermatology. J Am Acad Dermatol. 72:879–889. 2015. View Article : Google Scholar : PubMed/NCBI | |
Roy T, Boateng ST, Uddin MB, Banang-Mbeumi S, Yadav RK, Bock CR, Folahan JT, Siwe-Noundou X, Walker AL, King JA, et al: The PI3K-Akt-mTOR and associated signaling pathways as molecular drivers of immune-mediated inflammatory skin diseases: Update on therapeutic strategy using natural and synthetic compounds. Cells. 12:16712023. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Cui B, Chen Z and Ding X: The regulation of skin homeostasis, repair and the pathogenesis of skin diseases by spatiotemporal activation of epidermal mTOR signaling. Front Cell Dev Biol. 10:9509732022. View Article : Google Scholar : PubMed/NCBI | |
Mercurio L, Albanesi C and Madonna S: Recent updates on the involvement of PI3K/AKT/mTOR molecular cascade in the pathogenesis of hyperproliferative skin disorders. Front Med (Lausanne). 8:6656472021. View Article : Google Scholar : PubMed/NCBI | |
Huang T, Lin X, Meng X and Lin M: Phosphoinositide-3 kinase/protein kinase-B/mammalian target of rapamycin pathway in psoriasis pathogenesis. A potential therapeutic target? Acta Derm Venerol. 94:371–379. 2014. View Article : Google Scholar | |
Chamcheu JC, Chaves-Rodriquez MI, Adhami VM, Siddiqui IA, Wood GS, Longley BJ and Mukhtar H: Upregulation of PI3K/AKT/mTOR, FABP5 and PPARβ/δ in human psoriasis and imiquimod-induced murine psoriasiform dermatitis model. Acta Derm Venerol. 96:854–856. 2016. | |
Buerger C, Malisiewicz B, Eiser A, Hardt K and Boehncke WH: Mammalian target of rapamycin and its downstream signalling components are activated in psoriatic skin. Br J Dermatol. 169:156–159. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wei KC and Lai PC: Combination of everolimus and tacrolimus: A potentially effective regimen for recalcitrant psoriasis. Dermatol Ther. 28:25–27. 2015. View Article : Google Scholar : | |
Frigerio E, Colombo MD, Franchi C, Altomare A, Garutti C and Altomare GF: Severe psoriasis treated with a new macrolide: Everolimus. Br J Dermatol. 156:372–374. 2007. View Article : Google Scholar : PubMed/NCBI | |
Reitamo S, Spuls P, Sassolas B, Lahfa M, Claudy A and Griffiths CE; Sirolimus European Psoriasis Study Group: Efficacy of sirolimus (rapamycin) administered concomitantly with a subtherapeutic dose of cyclosporin in the treatment of severe psoriasis: A randomized controlled trial. Br J Dermatol. 145:438–445. 2001. View Article : Google Scholar : PubMed/NCBI | |
Van Velsen SGA, Haeck IM and Bruijnzeel-Koomen CAFM: Severe atopic dermatitis treated with everolimus. J Dermatolog Treat. 20:365–367. 2009. View Article : Google Scholar : PubMed/NCBI | |
Feldman SR: Adherence must always be considered: Is everolimus really ineffective as a treatment for atopic dermatitis? J Dermatolog Treat. 20:317–318. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ormerod AD, Shah SAA, Copeland P, Omar G and Winfield A: Treatment of psoriasis with topical sirolimus: Preclinical development and a randomized, double-blind trial. Br J Dermatol. 152:758–764. 2005. View Article : Google Scholar : PubMed/NCBI | |
Meingassner JG and Stütz A: Immunosuppressive macrolides of the type FK 506: A novel class of topical agents for treatment of skin diseases? J Invest Dermatol. 98:851–855. 1992. View Article : Google Scholar : PubMed/NCBI | |
Meingassner JG and Stütz A: Anti-inflammatory effects of macrophilin-lnteracting drugs in animal models of irritant and allergic contact dermatitis. Int Arch Allergy Immunol. 99:486–489. 1992. View Article : Google Scholar : PubMed/NCBI | |
Duncan JI: Differential inhibition of cutaneous T-cell-mediated reactions and epidermal cell proliferation by cyclosporin A, FK-506, and rapamycin. J Invest Dermatol. 102:84–88. 1994. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Tanaka M, Wataya-Kaneda M, Yang L, Nakamura A, Matsumoto S, Attia M, Murota H and Katayama I: Topical application of rapamycin ointment ameliorates Dermatophagoides farina body extract-induced atopic dermatitis in NC/Nga mice. Exp Dermatol. 23:568–572. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jung KE, Lee YJ, Ryu YH, Kim JE, Kim HS, Kim BJ, Kang H and Park YM: Effects of topically applied rapamycin and mycophenolic acid on TNCB-induced atopic dermatitis-like skin lesions in NC/Nga mice. Int Immunopharmacol. 26:432–438. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bürger C, Shirsath N, Lang V, Diehl S, Kaufmann R, Weigert A, Han YY, Ringel C and Wolf P: Blocking mTOR signalling with rapamycin ameliorates imiquimod-induced psoriasis in mice. Acta Derm Venerol. 97:1087–1094. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gao M and Si X: Rapamycin ameliorates psoriasis by regulating the expression and methylation levels of tropomyosin via ERK1/2 and mTOR pathways in vitro and in vivo. Exp Dermatol. 27:1112–1119. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim HR, Kim JC, Kang SY, Kim HO, Park CW and Chung BY: Rapamycin alleviates 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced aggravated dermatitis in mice with imiquimod-induced psoriasis-like dermatitis by inducing autophagy. Int J Mol Sci. 22:39682021. View Article : Google Scholar : PubMed/NCBI | |
Rancan F, Guo X, Rajes K, Sidiropoulou P, Zabihi F, Hoffmann L, Hadam S, Blume-Peytavi U, Rühl E, Haag R and Vogt A: Topical delivery of rapamycin by means of microenvironment-sensitive core-multi-shell nanocarriers: Assessment of anti-inflammatory activity in an ex vivo Skin/T cell co-culture model. Int J Nanomedicine. 16:7137–7151. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rancan F, Rajes K, Sidiropoulou P, Hadam S, Guo X, Zabihi F, Mirastschijski U, Rühl E, Haag R, Blume-Peytavi U and Vogt A: Efficacy of topically applied rapamycin-loaded redox-sensitive nanocarriers in a human skin/T cell co-culture model. Int Immunopharmacol. 117:1099032023. View Article : Google Scholar : PubMed/NCBI | |
Dong S, Li D and Shi D: Skin barrier-inflammatory pathway is a driver of the psoriasis-atopic dermatitis transition. Front Med (Lausanne). 11:13355512024. View Article : Google Scholar : PubMed/NCBI | |
Furue M and Kadono T: 'Inflammatory skin march' in atopic dermatitis and psoriasis. Inflamm Res. 66:833–842. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sehgal SN: Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc. 35(3 Suppl): 7S–14S. 2003. View Article : Google Scholar : PubMed/NCBI | |
Haeri A, Osouli M, Bayat F, Alavi S and Dadashzadeh S: Nanomedicine approaches for sirolimus delivery: A review of pharmaceutical properties and preclinical studies. Artif Cells Nanomed Biotechnol. 46(Suppl 1): S1–S14. 2018. View Article : Google Scholar | |
Balestri R, Rizzoli L, Pedrolli A, Urru SAM, Rech G, Neri I, Girardelli CR and Magnano M: Analysis of current data on the use of topical mTOR inhibitors in the treatment of facial angiofibromas in tuberous sclerosis complex-an update. Eur Acad Dermatol Venereol. 37:474–487. 2023. View Article : Google Scholar | |
Tanaka M, Wataya-Kaneda M, Nakamura A, Matsumoto S and Katayama I: First left-right comparative study of topical rapamycin vs vehicle for facial angiofibromas in patients with tuberous sclerosis complex. Br J Dermatol. 169:1314–1318. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kitayama K, Maeda S, Nakamura A, Katayama I and Wataya-Kaneda M: Efficiency of sirolimus delivery to the skin is dependent on administration route and formulation. J Dermatol Sci. 94:350–353. 2019. View Article : Google Scholar : PubMed/NCBI | |
Le Guyader G, Do B, Vieillard V, Andrieux K and Paul M: Comparison of the in vitro and ex vivo permeation of existing topical formulations used in the treatment of facial angiofibroma and characterization of the variations observed. Pharmaceutics. 12:10602020. View Article : Google Scholar : PubMed/NCBI | |
Germer G, Ohigashi T, Yuzawa H, Kosugi N, Flesch R, Rancan F, Vogt A and Rühl E: Improved skin permeability after topical treatment with serine protease: Probing the penetration of rapamycin by scanning transmission X-ray microscopy. ACS Omega. 6:12213–12222. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kovačević AB, Müller RH and Keck CM: Formulation development of lipid nanoparticles: Improved lipid screening and development of tacrolimus loaded nanostructured lipid carriers (NLC). Int J Pharm. 576:1189182020. View Article : Google Scholar | |
Dantas IL, Bastos KTS, Machado M, Galvao JG, Lima AD, Gonsalves JKMC, Almeida EDP, Araújo AAS, de Meneses CT, Sarmento VHV, et al: Influence of stearic acid and beeswax as solid lipid matrix of lipid nanoparticles containing tacrolimus. J Therm Anal Calorim. 132:1557–1566. 2018. View Article : Google Scholar | |
Wang R, Li L, Wang B, Zhang T and Sun L: FK506-loaded solid lipid nanoparticles: Preparation, characterization and in vitro transdermal drug delivery. Afr J Pharm Pharmacol. 6:904–913. 2012. | |
Khan AS, Shah KU, Mohaini MA, Alsalman AJ, Hawaj MAA, Alhashem YN, Ghazanfar S, Khan KA, Niazi ZR and Farid A: Tacrolimus-loaded solid lipid nanoparticle gel: Formulation development and in vitro assessment for topical applications. Gels. 8:1292022. View Article : Google Scholar : PubMed/NCBI | |
Andrade LM, Silva LAD, Krawczyk-Santos AP, Amorim ICDSM, Rocha PBRD, Lima EM, Anjos JLV, Alonso A, Marreto RN and Taveira SF: Improved tacrolimus skin permeation by co-encapsulation with clobetasol in lipid nanoparticles: Study of drug effects in lipid matrix by electron paramagnetic resonance. Eur J Pharm Biopharm. 119:142–149. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fereig SA, El-Zaafarany GM, Arafa MG and Abdel-Mottaleb MMA: Tacrolimus-loaded chitosan nanoparticles for enhanced skin deposition and management of plaque psoriasis. Carbohydr Polym. 268:1182382021. View Article : Google Scholar : PubMed/NCBI | |
Yu K, Wang Y, Wan T, Zhai Y, Cao S, Ruan W, Wu C and Xu Y: Tacrolimus nanoparticles based on chitosan combined with nicotinamide: Enhancing percutaneous delivery and treatment efficacy for atopic dermatitis and reducing dose. Int J Nanomedicine. 13:129–142. 2017. View Article : Google Scholar | |
Viegas JSR, Praça FG, Caron AL, Suzuki I, Silvestrini AVP, Medina WSG, Del Ciampo JO, Kravicz M and Bentley MVLB: Nanostructured lipid carrier co-delivering tacrolimus and TNF-α siRNA as an innovate approach to psoriasis. Drug Deliv Transl Res. 10:646–660. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nam SH, Ji XY and Park J: Investigation of tacrolimus loaded nanostructured lipid carriers for topical drug delivery. Bull Korean Chem Soc. 32:956–960. 2011. View Article : Google Scholar | |
Erdogan M, Wright JR Jr and McAlister VC: Liposomal tacrolimus lotion as a novel topical agent for treatment of immune-mediated skin disorders: Experimental studies in a murine model. Br J Dermatol. 146:964–967. 2002. View Article : Google Scholar : PubMed/NCBI | |
Patel SS, Patel MS, Salampure S, Vishwanath B and Patel NM: Development and evaluation of liposomes for topical delivery of tacrolimus (Fk-506). J Sci Res. 2:585–596. 2010. View Article : Google Scholar | |
Li G, Fan C, Li X, Fan Y, Wang X, Li M and Liu Y: Preparation and in vitro evaluation of tacrolimus-loaded ethosomes. Sci World J. 2012:8740532012. View Article : Google Scholar | |
Li G, Fan Y, Fan C, Li X, Wang X, Li M and Liu Y: Tacrolimus-loaded ethosomes: physicochemical characterization and in vivo evaluation. Eur J Pharm Biopharm. 82:49–57. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lei W, Yu C, Lin H and Zhou X: Development of tacrolimus-loaded transfersomes for deeper skin penetration enhancement and therapeutic effect improvement in vivo. Asian J Pharm Sci. 8:336–345. 2013. View Article : Google Scholar | |
Parkash V, Maan S, Chaudhary V, Jogpal V, Mittal G and Jain V: Implementation of design of experiments in development and optimization of transfersomal carrier system of tacrolimus for the dermal management of psoriasis in albino wistar rat. J Bioequiv Availab. 10:98–105. 2018. View Article : Google Scholar | |
Ren J, Liu T, Bi B, Sohail S and Din FU: Development and evaluation of tacrolimus loaded nano-transferosomes for skin targeting and dermatitis treatment. J Pharm Sci. 113:471–485. 2024. View Article : Google Scholar | |
Thapa RK, Baskaran R, Madheswaran T, Kim JO, Yong CS and Yoo BK: Preparation, characterization, and release study of tacrolimus-loaded liquid crystalline nanoparticles. J Disper Sci Technol. 34:72–77. 2013. View Article : Google Scholar | |
Thapa RK and Yoo BK: Evaluation of the effect of tacrolimus-loaded liquid crystalline nanoparticles on psoriasis-like skin inflammation. J Dermatolog Treat. 25:22–25. 2014. View Article : Google Scholar | |
Jain S, Addan R, Kushwah V, Harde H and Mahajan RR: Comparative assessment of efficacy and safety potential of multifarious lipid based Tacrolimus loaded nanoformulations. Int J Pharm. 562:96–104. 2019. View Article : Google Scholar : PubMed/NCBI | |
Singh KK and Pople P: Safer than safe: Lipid nanoparticulate encapsulation of tacrolimus with enhanced targeting and improved safety for atopic dermatitis. J Biomed Nanotechnol. 7:40–41. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pople PV and Singh KK: Targeting tacrolimus to deeper layers of skin with improved safety for treatment of atopic dermatitis-part II: In vivo assessment of dermatopharmacokinetics, biodistribution and efficacy. Int J Pharm. 434:70–79. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pople PV and Singh KK: Development and evaluation of colloidal modified nanolipid carrier: Application to topical delivery of tacrolimus. Eur J Pharm Biopharm. 79:82–94. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pople PV and Singh KK: Development and evaluation of colloidal modified nanolipid carrier: Application to topical delivery of tacrolimus, part II-In vivo assessment, drug targeting, efficacy, and safety in treatment for atopic dermatitis. Eur J Pharm Biopharm. 84:72–83. 2013. View Article : Google Scholar | |
Müller F, Hönzke S, Luthardt WO, Wong EL, Unbehauen M, Bauer J, Haag R, Hedtrich S, Rühl E and Rademann J: Rhamnolipids form drug-loaded nanoparticles for dermal drug delivery. Eur J Pharm Biopharm. 116:31–37. 2017. View Article : Google Scholar | |
Goebel ASB, Neubert RHH and Wohlrab J: Dermal targeting of tacrolimus using colloidal carrier systems. Int J Pharm. 404:159–168. 2011. View Article : Google Scholar | |
Lalan MS, Laddha NC, Lalani J, Imran MJ, Begum R and Misra A: Suppression of cytokine gene expression and improved therapeutic efficacy of microemulsion-based tacrolimus cream for atopic dermatitis. Drug Deliv Transl Res. 2:129–141. 2012. View Article : Google Scholar : PubMed/NCBI | |
Savić V, Todosijević M, Ilić T, Lukić M, Mitsou E, Papadimitriou V, Avramiotis S, Marković B, Cekić N and Savić S: Tacrolimus loaded biocompatible lecithin-based microemulsions with improved skin penetration: Structure characterization and in vitro/in vivo performances. Int J Pharm. 529:491–505. 2017. View Article : Google Scholar | |
Wang Y, Cao S, Yu K, Yang F, Yu X, Zhai Y, Wu C and Xu Y: Integrating tacrolimus into eutectic oil-based microemulsion for atopic dermatitis: Simultaneously enhancing percutaneous delivery and treatment efficacy with relieving side effects. Int J Nanomedicine. 14:5849–5863. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sahu S, Katiyar SS, Kushwah V and Jain S: Active natural oil-based nanoemulsion containing tacrolimus for synergistic antipsoriatic efficacy. Nanomedicine (Lond). 13:1985–1998. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lapteva M, Mondon K, Möller M, Gurny R and Kalia YN: Polymeric micelle nanocarriers for the cutaneous delivery of tacrolimus: A targeted approach for the treatment of psoriasis. Mol Pharm. 11:2989–3001. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto K, Klossek A, Fuchs K, Watts B, Raabe J, Flesch R, Rancan F, Pischon H, Radbruch M, Gruber AD, et al: Soft X-ray microscopy for probing of topical tacrolimus delivery via micelles. Eur J Pharm Biopharm. 139:68–75. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gabriel D, Mugnier T, Courthion H, Kranidioti K, Karagianni N, Denis MC, Lapteva M, Kalia Y, Möller M and Gurny R: Improved topical delivery of tacrolimus: A novel composite hydrogel formulation for the treatment of psoriasis. J Control Release. 242:16–24. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zabihi F, Graff P, Schumacher F, Kleuser B, Hedtrich S and Haag R: Synthesis of poly(lactide-co-glycerol) as a biodegradable and biocompatible polymer with high loading capacity for dermal drug delivery. Nanoscale. 10:16848–16856. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhuo F, Abourehab MAS and Hussain Z: Hyaluronic acid decorated tacrolimus-loaded nanoparticles: Efficient approach to maximize dermal targeting and anti-dermatitis efficacy. Carbohydr Polym. 197:478–489. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pan W, Qin M, Zhang G, Long Y, Ruan W, Pan J, Wu Z, Wan T, Wu C and Xu Y: Combination of hydrotropic nicotinamide with nanoparticles for enhancing tacrolimus percutaneous delivery. Int J Nanomedicine. 11:4037–4050. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wan T, Pan W, Long Y, Yu K, Liu S, Ruan W, Pan J, Qin M, Wu C and Xu Y: Effects of nanoparticles with hydrotropic nicotinamide on tacrolimus: Permeability through psoriatic skin and antipsoriatic and antiproliferative activities. Int J Nanomedicine. 12:1485–1497. 2017. View Article : Google Scholar : PubMed/NCBI | |
Radbruch M, Pischon H, Du F, Haag R, Schumacher F, Kleuser B, Mundhenk L and Gruber AD: Biodegradable core-multishell nanocarrier: Topical tacrolimus delivery for treatment of dermatitis. J Control Release. 349:917–928. 2022. View Article : Google Scholar : PubMed/NCBI | |
Unbehauen ML, Fleige E, Paulus F, Schemmer B, Mecking S, Moré S and Haag R: Biodegradable core-multishell nanocarriers: Influence of inner shell structure on the encapsulation behavior of dexamethasone and tacrolimus. Polymers (Basel). 9:3162017. View Article : Google Scholar | |
Rancan F, Volkmann H, Giulbudagian M, Schumacher F, Stanko JI, Kleuser B, Blume-Peytavi U, Calderón M and Vogt A: Dermal delivery of the high-molecular-weight drug tacrolimus by means of polyglycerol-based nanogels. Pharmaceutics. 11:3942019. View Article : Google Scholar : PubMed/NCBI | |
Limón D, Talló Domínguez K, Garduño-Ramírez ML, Andrade B, Calpena AC and Pérez-García L: Nanostructured supramolecular hydrogels: Towards the topical treatment of Psoriasis and other skin diseases. Colloids Surf B Biointerfaces. 181:657–670. 2019. View Article : Google Scholar : PubMed/NCBI | |
Parekh K, Hariharan K, Qu Z, Rewatkar P, Cao Y, Moniruzzaman M, Pandey P, Popat A and Mehta T: Tacrolimus encapsulated mesoporous silica nanoparticles embedded hydrogel for the treatment of atopic dermatitis. Int J Pharm. 608:1210792021. View Article : Google Scholar : PubMed/NCBI | |
Wan T, Pan J, Long Y, Yu K, Wang Y, Pan W, Ruan W, Qin M, Wu C and Xu Y: Dual roles of TPGS based microemulsion for tacrolimus: Enhancing the percutaneous delivery and anti-psoriatic efficacy. Int J Pharm. 528:511–523. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shams G, Rad AN, Safdarian M, Rezaie A, Bavarsad N and Abbaspour M: Self-microemulsification-assisted incorporation of tacrolimus into hydrophilic nanofibers for facilitated treatment of 2,4-dinitrochlorobenzene induced atopic dermatitis like lesions. J Drug Deliv Sci Technol. 62:1023262021. View Article : Google Scholar | |
Quartier J, Lapteva M, Boulaguiem Y, Guerrier S and Kalia YN: Polymeric micelle formulations for the cutaneous delivery of sirolimus: A new approach for the treatment of facial angiofibromas in tuberous sclerosis complex. Int J Pharm. 604:1207362021. View Article : Google Scholar : PubMed/NCBI | |
Le Guyader G, Do B, Rietveld IB, Coric P, Bouaziz S, Guigner JM, Secretan PH, Andrieux K and Paul M: Mixed polymeric micelles for rapamycin skin delivery. Pharmaceutics. 14:5692022. View Article : Google Scholar : PubMed/NCBI | |
Rajes K, Walker KA, Hadam S, Zabihi F, Rancan F, Vogt A and Haag R: Redox-responsive nanocarrier for controlled release of drugs in inflammatory skin diseases. Pharmaceutics. 13:372020. View Article : Google Scholar |