Protein biomarkers in assessing kidney quality before transplantation‑current status and future perspectives (Review)
- Authors:
- Maksymilian Baryła
- Michał Skrzycki
- Roman Danielewicz
- Maciej Kosieradzki
- Marta Struga
-
Affiliations: Chair and Department of Biochemistry, Medical University of Warsaw, 02‑097 Warsaw, Poland, Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02‑006 Warsaw, Poland - Published online on: September 25, 2024 https://doi.org/10.3892/ijmm.2024.5431
- Article Number: 107
-
Copyright: © Baryła et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Querard AH, Le Borgne F, Dion A, Giral M, Mourad G, Garrigue V, Rostaing L, Kamar N, Loupy A, Legendre C, et al: Propensity score-based comparison of the graft failure risk between kidney transplant recipients of standard and expanded criteria donor grafts: Toward increasing the pool of marginal donors. Am J Transplant. 18:1151–1157. 2018. View Article : Google Scholar : PubMed/NCBI | |
Querard AH, Foucher Y, Combescure C, Dantan E, Larmet D, Lorent M, Pouteau LM, Giral M and Gillaizeau F: Comparison of survival outcomes between expanded criteria donor and standard criteria donor kidney transplant recipients: A systematic review and meta-analysis. Transpl Int. 29:403–415. 2016. View Article : Google Scholar : PubMed/NCBI | |
Barba J, Zudaire JJ, Robles JE, Rosell D, Berian JM and Pascual I: Complications of kidney transplantation with grafts from expanded criteria donors. World J Urol. 31:893–900. 2013. View Article : Google Scholar | |
Coupel S, Giral-Classe M, Karam G, Morcet JF, Dantal J, Cantarovich D, Blancho G, Bignon JD, Daguin P, Soulillou JP and Hourmant M: Ten-year survival of second kidney transplants: Impact of immunologic factors and renal function at 12 months. Kidney Int. 64:674–680. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kousoulas L, Vondran FWR, Syryca P, Klempnauer J, Schrem H and Lehner F: Risk-adjusted analysis of relevant outcome drivers for patients after more than two kidney transplants. J Transplant. 2015:7120492015. View Article : Google Scholar : PubMed/NCBI | |
Zádori G, Kovács DÁ, Fedor R, Kanyári Z, Zsom L, Asztalos L and Nemes B: Results of expanded-criteria donor kidneys: A single-center experience in hungary. Transplant Proc. 47:2189–2191. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hwang JK, Park SC, Kwon KH, Choi BS, Kim JI, Yang CW, Kim YS and Moon IS: Long-term outcomes of kidney transplantation from expanded criteria deceased donors at a single center: Comparison with standard criteria deceased donors. Transplant Proc. 46:431–436. 2014. View Article : Google Scholar : PubMed/NCBI | |
De Beule J and Jochmans I: Kidney perfusion as an organ quality assessment tool-are we counting our chickens before they have hatched? J Clin Med. 9:8792020. View Article : Google Scholar : PubMed/NCBI | |
Mourão TB, Mine KL, Campos EF, Medina-Pestana JO, Tedesco-Silva H and Gerbase-DeLima M: Predicting delayed kidney graft function with gene expression in preimplantation biopsies and first-day posttransplant blood. Hum Immunol. 77:353–357. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hall IE, Reese PP, Weng FL, Schröppel B, Doshi MD, Hasz RD, Reitsma W, Goldstein MJ, Hong K and Parikh CR: Preimplant histologic acute tubular necrosis and allograft outcomes. Clin J Am Soc Nephrol. 9:573–582. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bachmann Q, Haberfellner F, Büttner-Herold M, Torrez C, Haller B, Assfalg V, Renders L, Amann K, Heemann U, Schmaderer C and Kemmner S: The kidney donor profile index (KDPI) correlates with histopathologic findings in post-reperfusion baseline biopsies and predicts kidney transplant outcome. Front Med (Lausanne). 9:8752062022. View Article : Google Scholar : PubMed/NCBI | |
Rege A, Irish B, Castleberry A, Vikraman D, Sanoff S, Ravindra K, Collins B and Sudan D: Trends in usage and outcomes for expanded criteria donor kidney transplantation in the United States characterized by kidney donor profile index. Cureus. 8:e8872016.PubMed/NCBI | |
Rao PS, Schaubel DE, Guidinger MK, Andreoni KA, Wolfe RA, Merion RM, Port FK and Sung RS: A comprehensive risk quantification score for deceased donor kidneys: The kidney donor risk index. Transplantation. 88:231–236. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nyberg SL, Baskin-Bey ES, Kremers W, Prieto M, Henry ML and Stegall MD: Improving the prediction of donor kidney quality: Deceased donor score and resistive indices. Transplantation. 80:925–929. 2005. View Article : Google Scholar : PubMed/NCBI | |
Guzzi F, Knight SR, Ploeg RJ and Hunter JP: A systematic review to identify whether perfusate biomarkers produced during hypothermic machine perfusion can predict graft outcomes in kidney transplantation. Transpl Int. 33:590–602. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bhangoo RS, Hall IE, Reese PP and Parikh CR: Deceased-donor kidney perfusate and urine biomarkers for kidney allograft outcomes: A systematic review. Nephrol Dial Transplant. 27:3305–3314. 2012. View Article : Google Scholar : PubMed/NCBI | |
Snoeijs MG, Pulinx B, van Dieijen-Visser MP, Buurman WA, van Heurn LW and Wodzig WK: Characterization of the perfusate proteome of human donor kidneys. Ann Clin Biochem. 50:140–146. 2013. View Article : Google Scholar : PubMed/NCBI | |
Khan AA, Allemailem KS, Alhumaydhi FA, Gowder SJT and Rahmani AH: The biochemical and clinical perspectives of lactate dehydrogenase: An enzyme of active metabolism. Endocr Metab Immune Disord Drug Targets. 20:855–868. 2020. View Article : Google Scholar | |
Mårtensson J and Bellomo R: The rise and fall of NGAL in acute kidney injury. Blood Purif. 37:304–310. 2014. View Article : Google Scholar : PubMed/NCBI | |
Markert CL: Lactate dehydrogenase. Biochemistry and function of lactate dehydrogenase. Cell Biochem Funct. 2:131–134. 1984. View Article : Google Scholar : PubMed/NCBI | |
Holmes RS and Goldberg E: Computational analyses of mammalian lactate dehydrogenases: Human, mouse, opossum and platypus LDHs. Comput Biol Chem. 33:379–385. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dubach UC: On the origin of lactic dehydrogenase isoenzymes in urine. Helv Med Acta. 33:139–150. 1966.PubMed/NCBI | |
Osis G, Traylor AM, Black LM, Spangler D, George JF, Zarjou A, Verlander JW and Agarwal A: Expression of lactate dehydrogenase A and B isoforms in the mouse kidney. Am J Physiol Renal Physiol. 320:F706–F718. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kootstra G and Daemen JH: The non-heart-beating donor. Transplant Proc. 28:161996.PubMed/NCBI | |
Daemen JW, Oomen AP, Janssen MA, van de Schoot L, van Kreel BK, Heineman E and Kootstra G: Glutathione S-transferase as predictor of functional outcome in transplantation of machine-preserved non-heart-beating donor kidneys. Transplantation. 63:89–93. 1997. View Article : Google Scholar : PubMed/NCBI | |
Modgill VK, Wiggins PA, Rosenberg IL, Humphrey CS and Giles GR: An evaluation of viability tests of human cadaveric kidneys. Br J Surg. 64:548–553. 1977. View Article : Google Scholar : PubMed/NCBI | |
Skillen AW: Clinical biochemistry of lactate dehydrogenase. Cell Biochem Funct. 2:140–144. 1984. View Article : Google Scholar : PubMed/NCBI | |
Huijgen HJ, Sanders GT, Koster RW, Vreeken J and Bossuyt PM: The clinical value of lactate dehydrogenase in serum: A quantitative review. Eur J Clin Chem Clin Biochem. 35:569–579. 1997.PubMed/NCBI | |
Moser MA, Arcand S, Lin HB, Wojnarowicz C, Sawicka J, Banerjee T, Luo Y, Beck GR, Luke PP and Sawicki G: Protection of the transplant kidney from preservation injury by inhibition of matrix metalloproteinases. PLoS One. 11:e01575082016. View Article : Google Scholar : PubMed/NCBI | |
Nagelschmidt M, Minor T, Gallinat A, Moers C, Jochmans I, Pirenne J, Ploeg RJ, Paul A and Treckmann J: Lipid peroxidation products in machine perfusion of older donor kidneys. J Surg Res. 180:337–342. 2013. View Article : Google Scholar | |
de Vries B, Snoeijs MGJ, von Bonsdorff L, Ernest van Heurn LW, Parkkinen J and Buurman WA: Redox-active iron released during machine perfusion predicts viability of ischemically injured deceased donor kidneys. Am J Transplant. 6:2686–2693. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hoogland ER, de Vries EE, Christiaans MH, Winkens B, Snoeijs MG and van Heurn LW: The value of machine perfusion biomarker concentration in DCD kidney transplantations. Transplantation. 95:603–610. 2013. View Article : Google Scholar : PubMed/NCBI | |
Moers C, Varnav OC, van Heurn E, Jochmans I, Kirste GR, Rahmel A, Leuvenink HG, Squifflet JP, Paul A, Pirenne J, et al: The value of machine perfusion perfusate biomarkers for predicting kidney transplant outcome. Transplantation. 90:966–973. 2010. View Article : Google Scholar : PubMed/NCBI | |
Moser MAJ, Sawicka K, Arcand S, O'Brien P, Luke P, Beck G, Sawicka J, Cohen A and Sawicki G: Proteomic analysis of perfusate from machine cold perfusion of transplant kidneys: Insights into protection from injury. Ann Transplant. 22:730–739. 2017. View Article : Google Scholar : PubMed/NCBI | |
Udomsinprasert R, Pongjaroenkit S, Wongsantichon J, Oakley AJ, Prapanthadara LA, Wilce MC and Ketterman AJ: Identification, characterization and structure of a new Delta class glutathione transferase isoenzyme. Biochem J. 388:763–771. 2005. View Article : Google Scholar : PubMed/NCBI | |
Di Ilio C, Aceto A, Bucciarelli T, Angelucci S, Felaco M, Grilli A, Zezza A, Tenaglia R and Federici G: Glutathione transferase isoenzymes in normal and neoplastic human kidney tissue. Carcinogenesis. 12:1471–1475. 1991. View Article : Google Scholar : PubMed/NCBI | |
Harrison DJ, Kharbanda R, Cunningham DS, McLellan LI and Hayes JD: Distribution of glutathione S-transferase isoenzymes in human kidney: Basis for possible markers of renal injury. J Clin Pathol. 42:624–628. 1989. View Article : Google Scholar : PubMed/NCBI | |
Laborde E: Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death. Cell Death Differ. 17:1373–1380. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hall IE, Bhangoo RS, Reese PP, Doshi MD, Weng FL, Hong K, Lin H, Han G, Hasz RD, Goldstein MJ, et al: Glutathione S-transferase iso-enzymes in perfusate from pumped kidneys are associated with delayed graft function. Am J Transplant. 14:886–896. 2014. View Article : Google Scholar : PubMed/NCBI | |
Qiao Y, Ding C, Li Y, Tian X, Tian P, Ding X, Xiang H, Zheng J and Xue W: Predictive value of hypothermic machine perfusion parameters combined perfusate biomarkers in deceased donor kidney transplantation. Chin Med J (Engl). 135:181–186. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gok MA, Pelsers M, Glatz JFC, Bhatti AA, Shenton BK, Peaston R, Cornell C, Mantle D and Talbot D: Comparison of perfusate activities of glutathione S-transferase, alanine aminopeptidase and fatty acid binding protein in the assessment of non-heart-beating donor kidneys. Ann Clin Biochem. 40:252–258. 2003. View Article : Google Scholar : PubMed/NCBI | |
van Smaalen TC, Beurskens DMH, Hoogland ERP, Winkens B, Christiaans MHL, Reutelingsperger CP, van Heurn LWE and Nicolaes GAF: Presence of cytotoxic extracellular histones in machine perfusate of donation after circulatory death kidneys. Transplantation. 101:e93–e101. 2017. View Article : Google Scholar | |
Felsenfeld G and Groudine M: Controlling the double helix. Nature. 421:448–453. 2003. View Article : Google Scholar : PubMed/NCBI | |
Silk E, Zhao H, Weng H and Ma D: The role of extracellular histone in organ injury. Cell Death Dis. 8:e28122017. View Article : Google Scholar : PubMed/NCBI | |
Wickman GR, Julian L, Mardilovich K, Schumacher S, Munro J, Rath N, Zander SA, Mleczak A, Sumpton D, Morrice N, et al: Blebs produced by actin-myosin contraction during apoptosis release damage-associated molecular pattern proteins before secondary necrosis occurs. Cell Death Differ. 20:1293–1305. 2013. View Article : Google Scholar : PubMed/NCBI | |
van Smaalen TC, Beurskens DMH, Kox JJHFM, Polonia R, Vos R, Duimel H, van de Wetering WJ, López-Iglesias C, Reutelingsperger CP, Ernest van Heurn LW, et al: Extracellular histone release by renal cells after warm and cold ischemic kidney injury: Studies in an ex-vivo porcine kidney perfusion model. PLoS One. 18:e02799442023. View Article : Google Scholar : PubMed/NCBI | |
Campos EI and Reinberg D: Histones: Annotating chromatin. Annu Rev Genet. 43:559–599. 2009. View Article : Google Scholar : PubMed/NCBI | |
Strahl BD and Allis CD: The language of covalent histone modifications. Nature. 403:41–45. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kono H and Rock KL: How dying cells alert the immune system to danger. Nat Rev Immunol. 8:279–289. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li B, Hao J, Zeng J and Sauter ER: SnapShot: FABP functions. Cell. 182:1066–1066.e1. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zager RA, Johnson ACM and Hanson SY: Renal tubular triglyercide accumulation following endotoxic, toxic, and ischemic injury. Kidney Int. 67:111–121. 2005. View Article : Google Scholar | |
Bobulescu IA: Renal lipid metabolism and lipotoxicity. Curr Opin Nephrol Hypertens. 19:393–402. 2010. View Article : Google Scholar : PubMed/NCBI | |
Storch J and Thumser AE: The fatty acid transport function of fatty acid-binding proteins. Biochim Biophys Acta. 1486:28–44. 2000. View Article : Google Scholar : PubMed/NCBI | |
Pelsers MMAL: Fatty acid-binding protein as marker for renal injury. Scand J Clin Lab Invest Suppl. 241:73–77. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto T, Noiri E, Ono Y, Doi K, Negishi K, Kamijo A, Kimura K, Fujita T, Kinukawa T, Taniguchi H, et al: Renal L-type fatty acid-binding protein in acute ischemic injury. J Am Soc Nephrol. 18:2894–2902. 2007. View Article : Google Scholar : PubMed/NCBI | |
Parikh CR, Hall IE, Bhangoo RS, Ficek J, Abt PL, Thiessen-Philbrook H, Lin H, Bimali M, Murray PT, Rao V, et al: Associations of perfusate biomarkers and pump parameters with delayed graft function and deceased donor kidney allograft function. Am J Transplant. 16:1526–1539. 2016. View Article : Google Scholar : | |
Sun Z, Gao Z, Li X, Zheng X, Wang W and Qiao P: Perfusate neutrophil gelatinase-associated lipocalin, kidney injury molecular-1, liver-type fatty acid binding protein, and interleukin-18 as potential biomarkers to predict delayed graft function and long-term prognosis in kidney transplant recipients: A single-center retrospective study. Med Sci Monit. 29:e9387582023. View Article : Google Scholar | |
Borregaard N and Cowland JB: Granules of the human neutrophilic polymorphonuclear leukocyte. Blood. 89:3503–3521. 1997. View Article : Google Scholar : PubMed/NCBI | |
Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S and Aderem A: Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 432:917–921. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Goetz D, Li JY, Wang W, Mori K, Setlik D, Du T, Erdjument-Bromage H, Tempst P, Strong R and Barasch J: An iron delivery pathway mediated by a lipocalin. Mol Cell. 10:1045–1056. 2002. View Article : Google Scholar : PubMed/NCBI | |
Cowland JB, Sørensen OE, Sehested M and Borregaard N: Neutrophil gelatinase-associated lipocalin is up-regulated in human epithelial cells by IL-1 beta, but not by TNF-alpha. J Immunol. 171:6630–6639. 2003. View Article : Google Scholar : PubMed/NCBI | |
Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, Barasch J and Devarajan P: Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 14:2534–2543. 2003. View Article : Google Scholar : PubMed/NCBI | |
Mishra J, Mori K, Ma Q, Kelly C, Barasch J and Devarajan P: Neutrophil gelatinase-associated lipocalin: A novel early urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol. 24:307–315. 2004. View Article : Google Scholar : PubMed/NCBI | |
Weissenbacher A, Stone JP, Lo Faro ML, Hunter JP, Ploeg RJ, Coussios CC, Fildes JE and Friend PJ: Hemodynamics and metabolic parameters in normothermic kidney preservation are linked with donor factors, perfusate cells, and cytokines. Front Med (Lausanne). 8:8010982022. View Article : Google Scholar : PubMed/NCBI | |
Cai L, Rubin J, Han W, Venge P and Xu S: The origin of multiple molecular forms in urine of HNL/NGAL. Clin J Am Soc Nephrol. 5:2229–2235. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rosell A and Lo EH: Multiphasic roles for matrix metalloproteinases after stroke. Curr Opin Pharmacol. 8:82–89. 2008. View Article : Google Scholar : PubMed/NCBI | |
Soccal PM, Gasche Y, Miniati DN, Hoyt G, Berry GJ, Doyle RL, Theodore J and Robbins RC: Matrix metalloproteinase inhibition decreases ischemia-reperfusion injury after lung transplantation. Am J Transplant. 4:41–50. 2004. View Article : Google Scholar | |
Viappiani S, Sariahmetoglu M and Schulz R: The role of matrix metalloproteinase inhibitors in ischemia-reperfusion injury in the liver. Curr Pharm Des. 12:2923–2934. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nagase H, Visse R and Murphy G: Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 69:562–573. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chow AK, Cena J and Schulz R: Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature. Br J Pharmacol. 152:189–205. 2007. View Article : Google Scholar : PubMed/NCBI | |
Roach DM, Fitridge RA, Laws PE, Millard SH, Varelias A and Cowled PA: Up-regulation of MMP-2 and MMP-9 leads to degradation of type IV collagen during skeletal muscle reperfusion injury; protection by the MMP inhibitor, doxycycline. Eur J Vasc Endovasc Surg. 23:260–269. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mathalone N, Lahat N, Rahat MA, Bahar-Shany K, Oron Y and Geyer O: The involvement of matrix metalloproteinases 2 and 9 in rat retinal ischemia. Graefes Arch Clin Exp Ophthalmol. 245:725–732. 2007. View Article : Google Scholar | |
Cavdar Z, Ural C, Celik A, Arslan S, Terzioglu G, Ozbal S, Yildiz S, Ergur UB, Guneli E, Camsari T, et al: Protective effects of taurine against renal ischemia/reperfusion injury in rats by inhibition of gelatinases, MMP-2 and MMP-9, and p38 mitogen-activated protein kinase signaling. Biotech Histochem. 92:524–535. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Dong Y, Tian X, Tan TK, Liu Z, Zhao Y, Zhang Y, Harris DCh and Zheng G: Matrix metalloproteinases contribute to kidney fibrosis in chronic kidney diseases. World J Nephrol. 2:84–89. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cavdar Z, Ozbal S, Celik A, Ergur BU, Guneli E, Ural C, Camsari T and Guner GA: The effects of alpha-lipoic acid on MMP-2 and MMP-9 activities in a rat renal ischemia and re-perfusion model. Biotech Histochem. 89:304–314. 2014. View Article : Google Scholar | |
Kunugi S, Shimizu A, Kuwahara N, Du X, Takahashi M, Terasaki Y, Fujita E, Mii A, Nagasaka S, Akimoto T, et al: Inhibition of matrix metalloproteinases reduces ischemia-reperfusion acute kidney injury. Lab Invest. 91:170–180. 2011. View Article : Google Scholar | |
Han WK, Waikar SS, Johnson A, Betensky RA, Dent CL, Devarajan P and Bonventre JV: Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int. 73:863–869. 2008. View Article : Google Scholar | |
Nagase H: Activation mechanisms of matrix metalloproteinases. Biol Chem. 378:151–160. 1997.PubMed/NCBI | |
Visse R and Nagase H: Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ Res. 92:827–839. 2003. View Article : Google Scholar : PubMed/NCBI | |
Nagase H and Woessner JF Jr: Matrix metalloproteinases. J Biol Chem. 274:21491–21494. 1999. View Article : Google Scholar : PubMed/NCBI | |
Carmeliet P, Moons L, Lijnen R, Baes M, Lemaître V, Tipping P, Drew A, Eeckhout Y, Shapiro S, Lupu F and Collen D: Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet. 17:439–444. 1997. View Article : Google Scholar : PubMed/NCBI | |
Mazzieri R, Masiero L, Zanetta L, Monea S, Onisto M, Garbisa S and Mignatti P: Control of type IV collagenase activity by components of the urokinase-plasmin system: A regulatory mechanism with cell-bound reactants. EMBO J. 16:2319–2332. 1997. View Article : Google Scholar : PubMed/NCBI | |
Emonard HP, Remacle AG, Noël AC, Grimaud JA, Stetler-Stevenson WG and Foidart JM: Tumor cell surface-associated binding site for the M(r) 72,000 type IV collagenase. Cancer Res. 52:5845–5848. 1992.PubMed/NCBI | |
Monsky WL, Kelly T, Lin CY, Yeh Y, Stetler-Stevenson WG, Mueller SC and Chen WT: Binding and localization of M(r) 72,000 matrix metalloproteinase at cell surface invadopodia. Cancer Res. 53:3159–3164. 1993.PubMed/NCBI | |
Aimes RT and Quigley JP: Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. J Biol Chem. 270:5872–5876. 1995. View Article : Google Scholar : PubMed/NCBI | |
Yabluchanskiy A, Ma Y, Iyer RP, Hall ME and Lindsey ML: Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology (Bethesda). 28:391–403. 2013.PubMed/NCBI | |
Fu Z, Ye Q, Zhang Y, Zhong Z, Xiong Y, Wang Y, Hu L, Wang W, Huang W and Ko DS: Hypothermic machine perfusion reduced inflammatory reaction by downregulating the expression of matrix metalloproteinase 9 in a reperfusion model of donation after cardiac death. Artif Organs. 40:E102–E111. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sulikowski T, Domanski L, Zietek Z, Adler G, Pawlik A, Ciechanowicz A, Ciechanowski K and Ostrowski M: Effect of preservation solutions UW and EC on the expression of matrix metalloproteinase II and tissue inhibitor of metalloproteinase II genes in rat kidney. Postepy Hig Med Dosw (Online). 66:45–50. 2012.PubMed/NCBI | |
Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL and Sanicola M: Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem. 273:4135–4142. 1998. View Article : Google Scholar : PubMed/NCBI | |
Khan KNM, Hard GC and Alden CL: Chapter 47-Kidney. Haschek and Rousseaux's Handbook of Toxicologic Pathology. 3rd. Haschek WM, Rousseaux CG and Wallig MA: Academic Press; Boston: pp. 1667–1773. 2013, View Article : Google Scholar | |
van Timmeren MM, van den Heuvel MC, Bailly V, Bakker SJL, van Goor H and Stegeman CA: Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J Pathol. 212:209–217. 2007. View Article : Google Scholar : PubMed/NCBI | |
Amin RP, Vickers AE, Sistare F, Thompson KL, Roman RJ, Lawton M, Kramer J, Hamadeh HK, Collins J, Grissom S, et al: Identification of putative gene based markers of renal toxicity. Environ Health Perspect. 112:465–479. 2004. View Article : Google Scholar : PubMed/NCBI | |
Griffin BR, You Z, Noureddine L, Gitomer B, Perrenoud L, Wang W, Chonchol M and Jalal D; HALT Investigators: KIM-1 and kidney disease progression in autosomal dominant polycystic kidney disease: HALT-PKD results. Am J Nephrol. 51:473–479. 2020. View Article : Google Scholar : PubMed/NCBI | |
Han WK, Alinani A, Wu CL, Michaelson D, Loda M, McGovern FJ, Thadhani R and Bonventre JV: Human kidney injury molecule-1 is a tissue and urinary tumor marker of renal cell carcinoma. J Am Soc Nephrol. 16:1126–1134. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bonventre JV: Kidney injury molecule-1 (KIM-1): A urinary biomarker and much more. Nephrol Dial Transplant. 24:3265–3268. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ichimura T, Asseldonk EJPV, Humphreys BD, Gunaratnam L, Duffield JS and Bonventre JV: Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest. 118:1657–1668. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kaplanski G: Interleukin-18: Biological properties and role in disease pathogenesis. Immunol Rev. 281:138–153. 2018. View Article : Google Scholar | |
Ghayur T, Banerjee S, Hugunin M, Butler D, Herzog L, Carter A, Quintal L, Sekut L, Talanian R, Paskind M, et al: Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature. 386:619–623. 1997. View Article : Google Scholar : PubMed/NCBI | |
Sugawara S, Uehara A, Nochi T, Yamaguchi T, Ueda H, Sugiyama A, Hanzawa K, Kumagai K, Okamura H and Takada H: Neutrophil proteinase 3-mediated induction of bioactive IL-18 secretion by human oral epithelial cells. J Immunol. 167:6568–6575. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ihim SA, Abubakar SD, Zian Z, Sasaki T, Saffarioun M, Maleknia S and Azizi G: Interleukin-18 cytokine in immunity, inflammation, and autoimmunity: Biological role in induction, regulation, and treatment. Front Immunol. 13:9199732022. View Article : Google Scholar : PubMed/NCBI | |
Banerjee S and Bond JS: Prointerleukin-18 is activated by meprin beta in vitro and in vivo in intestinal inflammation. J Biol Chem. 283:31371–31377. 2008. View Article : Google Scholar : PubMed/NCBI | |
Okamura H, Tsutsui H, Kashiwamura S, Yoshimoto T and Nakanishi K: Interleukin-18: A novel cytokine that augments both innate and acquired immunity. Adv Immunol. 70:281–312. 1998. View Article : Google Scholar : PubMed/NCBI | |
Tsutsui H, Nakanishi K, Matsui K, Higashino K, Okamura H, Miyazawa Y and Kaneda K: IFN-gamma-inducing factor up-regulates Fas ligand-mediated cytotoxic activity of murine natural killer cell clones. J Immunol. 157:3967–3973. 1996. View Article : Google Scholar : PubMed/NCBI | |
Li P, Li YL, Li ZY, Wu YN, Zhang CC, A X, Wang CX, Shi HT, Hui MZ, Xie B, et al: Cross talk between vascular smooth muscle cells and monocytes through interleukin-1β/interleukin-18 signaling promotes vein graft thickening. Arterioscler Thromb Vasc Biol. 34:2001–2011. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hoshino T, Wiltrout RH and Young HA: IL-18 is a potent coinducer of IL-13 in NK and T cells: A new potential role for IL-18 in modulating the immune response. J Immunol. 162:5070–5077. 1999. View Article : Google Scholar : PubMed/NCBI | |
Yoshimoto T, Mizutani H, Tsutsui H, Noben-Trauth N, Yamanaka K, Tanaka M, Izumi S, Okamura H, Paul WE and Nakanishi K: IL-18 induction of IgE: Dependence on CD4+ T cells, IL-4 and STAT6. Nat Immunol. 1:132–137. 2000. View Article : Google Scholar | |
Yoshimoto T, Tsutsui H, Tominaga K, Hoshino K, Okamura H, Akira S, Paul WE and Nakanishi K: IL-18, although antiallergic when administered with IL-12, stimulates IL-4 and histamine release by basophils. Proc Natl Acad Sci USA. 96:13962–13966. 1999. View Article : Google Scholar : PubMed/NCBI | |
Doshi MD, Reese PP, Hall IE, Schröppel B, Ficek J, Formica RN, Weng FL, Hasz RD, Thiessen-Philbrook H and Parikh CR: Utility of applying quality assessment tools for kidneys with KDPI ≥80. Transplantation. 101:1125–1133. 2017. View Article : Google Scholar | |
Issaq H and Veenstra T: Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE): Advances and perspectives. Biotechniques. 44:697–698. 7002008. View Article : Google Scholar : PubMed/NCBI | |
Smith BJ: SDS polyacrylamide gel electrophoresis of proteins. Methods Mol Biol. 32:23–34. 1994.PubMed/NCBI | |
Kielkopf CL, Bauer W and Urbatsch IL: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins. Cold Spring Harb Protoc. 20212021. | |
Pitt JJ: Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin Biochem Rev. 30:19–34. 2009.PubMed/NCBI | |
Aslam B, Basit M, Nisar MA, Khurshid M and Rasool MH: Proteomics: Technologies and their applications. J Chromatogr Sci. 55:182–196. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li C, Chu S, Tan S, Yin X, Jiang Y, Dai X, Gong X, Fang X and Tian D: Towards higher sensitivity of mass spectrometry: A perspective from the mass analyzers. Front Chem. 9:8133592021. View Article : Google Scholar | |
Wieser A, Schneider L, Jung J and Schubert S: MALDI-TOF MS in microbiological diagnostics-identification of microorganisms and beyond (mini review). Appl Microbiol Biotechnol. 93:965–974. 2012. View Article : Google Scholar | |
van Leeuwen LL, Spraakman NA, Brat A, Huang H, Thorne AM, Bonham S, van Balkom BWM, Ploeg RJ, Kessler BM and Leuvenink HGD: Proteomic analysis of machine perfusion solution from brain dead donor kidneys reveals that elevated complement, cytoskeleton and lipid metabolism proteins are associated with 1-year outcome. Transpl Int. 34:1618–1629. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mulvey JF, Ul Shaheed S, Charles PD, Snashall C, Lo Faro ML, Sutton CW, Jochmans I, Pirenne J, van Kooten C, Leuvenink HGD, et al: Perfusate proteomes provide biological insight into oxygenated versus standard hypothermic machine perfusion in kidney transplantation. Ann Surg. 278:676–682. 2023.PubMed/NCBI | |
Karpman D, Bekassy Z, Grunenwald A and Roumenina LT: A role for complement blockade in kidney transplantation. Cell Mol Immunol. 19:755–757. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yamanaka K, Kakuta Y, Miyagawa S, Nakazawa S, Kato T, Abe T, Imamura R, Okumi M, Maeda A, Okuyama H, et al: Depression of complement regulatory factors in rat and human renal grafts is associated with the progress of acute T-cell mediated rejection. PLoS One. 11:e01488812016. View Article : Google Scholar : PubMed/NCBI | |
De Vries B, Matthijsen RA, Wolfs TGAM, Van Bijnen AAJHM, Heeringa P and Buurman WA: Inhibition of complement factor C5 protects against renal ischemia-reperfusion injury: Inhibition of late apoptosis and inflammation. Transplantation. 75:375–382. 2003. View Article : Google Scholar : PubMed/NCBI | |
Biglarnia AR, Huber-Lang M, Mohlin C, Ekdahl KN and Nilsson B: The multifaceted role of complement in kidney transplantation. Nat Rev Nephrol. 14:767–781. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang R: Donor-specific antibodies in kidney transplant recipients. Clin J Am Soc Nephrol. 13:182–192. 2018. View Article : Google Scholar : | |
Nauser CL, Farrar CA and Sacks SH: Complement recognition pathways in renal transplantation. J Am Soc Nephrol. 28:2571–2578. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sato T, Van Dixhoorn MG, Prins FA, Mooney A, Verhagen N, Muizert Y, Savill J, Van Es LA and Daha MR: The terminal sequence of complement plays an essential role in antibody-mediated renal cell apoptosis. J Am Soc Nephrol. 10:1242–1252. 1999. View Article : Google Scholar : PubMed/NCBI | |
Shimizu A, Masuda Y, Kitamura H, Ishizaki M, Ohashi R, Sugisaki Y and Yamanaka N: Complement-mediated killing of mesangial cells in experimental glomerulonephritis: Cell death by a combination of apoptosis and necrosis. Nephron. 86:152–160. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Farrar CA, Abe K, Pratt JR, Marsh JE, Wang Y, Stahl GL and Sacks SH: Predominant role for C5b-9 in renal ischemia/reperfusion injury. J Clin Invest. 105:1363–1371. 2000. View Article : Google Scholar : PubMed/NCBI | |
Jane-wit D, Surovtseva YV, Qin L, Li G, Liu R, Clark P, Manes TD, Wang C, Kashgarian M, Kirkiles-Smith NC, et al: Complement membrane attack complexes activate noncanonical NF-κB by forming an Akt+ NIK+ signalosome on Rab5+ endosomes. Proc Natl Acad Sci USA. 112:9686–9691. 2015. View Article : Google Scholar | |
Jager NM, Venema LH, Arykbaeva AS, Meter-Arkema AH, Ottens PJ, van Kooten C, Mollnes TE, Alwayn IPJ, Leuvenink HGD and Pischke SE; PROPER study consortium: Complement is activated during normothermic machine perfusion of porcine and human discarded kidneys. Front Immunol. 13:8313712022. View Article : Google Scholar : PubMed/NCBI | |
Coskun A, Baykal AT, Kazan D, Akgoz M, Senal MO, Berber I, Titiz I, Bilsel G, Kilercik H, Karaosmanoglu K, et al: Proteomic analysis of kidney preservation solutions prior to renal transplantation. PLoS One. 11:e01687552016. View Article : Google Scholar : PubMed/NCBI | |
Nieuwenhuijs-Moeke GJ, Pischke SE, Berger SP, Sanders JSF, Pol RA, Struys MMRF, Ploeg RJ and Leuvenink HGD: Ischemia and reperfusion injury in kidney transplantation: Relevant mechanisms in injury and repair. J Clin Med. 9:2532020. View Article : Google Scholar : PubMed/NCBI | |
Kako K, Kato M, Matsuoka T and Mustapha A: Depression of membrane-bound Na+-K+-ATPase activity induced by free radicals and by ischemia of kidney. Am J Physiol. 254:C330–C337. 1988. View Article : Google Scholar : PubMed/NCBI | |
Salvadori M, Rosso G and Bertoni E: Update on ischemia-reperfusion injury in kidney transplantation: Pathogenesis and treatment. World J Transplant. 5:52–67. 2015. View Article : Google Scholar : PubMed/NCBI | |
Molitoris BA, Dahl R and Geerdes A: Cytoskeleton disruption and apical redistribution of proximal tubule Na(+)-K(+)-ATPase during ischemia. Am J Physiol. 263:F488–F495. 1992.PubMed/NCBI | |
Caron A, Desrosiers RR and Béliveau R: Kidney ischemia-reperfusion regulates expression and distribution of tubulin subunits, beta-actin and rho GTPases in proximal tubules. Arch Biochem Biophys. 431:31–46. 2004. View Article : Google Scholar : PubMed/NCBI | |
Genescà M, Sola A and Hotter G: Actin cytoskeleton derangement induces apoptosis in renal ischemia/reperfusion. Apoptosis. 11:563–571. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sanz AB, Sanchez-Niño MD, Ramos AM and Ortiz A: Regulated cell death pathways in kidney disease. Nat Rev Nephrol. 19:281–299. 2023. View Article : Google Scholar : PubMed/NCBI | |
Garrod D and Chidgey M: Desmosome structure, composition and function. Biochim Biophys Acta. 1778:572–587. 2008. View Article : Google Scholar | |
Chen CS and Zhu H: Protein microarrays. Biotechniques. 40:423–425, 427 passim. 2006. View Article : Google Scholar : PubMed/NCBI | |
Uttamchandani M, Neo JL, Ong BNZ and Moochhala S: Applications of microarrays in pathogen detection and biodefence. Trends Biotechnol. 27:53–61. 2009. View Article : Google Scholar | |
Shome M and Labaer J: Protein microarrays and their fabrication. Methods Mol Biol. 2597:131–142. 2023. View Article : Google Scholar | |
Baboudjian M, Gondran-Tellier B, Boissier R, Ancel P, Marjollet J, Lyonnet L, François P, Sabatier F, Lechevallier E, Dutour A and Paul P: An enhanced level of VCAM in transplant preservation fluid is an independent predictor of early kidney allograft dysfunction. Front Immunol. 13:9669512022. View Article : Google Scholar : PubMed/NCBI | |
Gok MA, Pelzers M, Glatz JFC, Shenton BK, Buckley PE, Peaston R, Cornell C, Mantle D, Soomro N, Jaques BC, et al: Do tissue damage biomarkers used to assess machine-perfused NHBD kidneys predict long-term renal function post-transplant? Clin Chim Acta. 338:33–43. 2003. View Article : Google Scholar : PubMed/NCBI | |
Balupuri S, Talbot D, El-Sheikh M, Snowden C, Manas DM, Kirby J and Mantle D: Comparison of proteolytic enzymes and glutathione S-transferase levels in non-heart-beating donors' (NHBD) kidney perfusates. Clin Chem Lab Med. 38:1099–1102. 2000. View Article : Google Scholar | |
Tejchman K, Sierocka A, Kotfis K, Kotowski M, Dolegowska B, Ostrowski M and Sienko J: Assessment of oxidative stress markers in hypothermic preservation of transplanted kidneys. Antioxidants (Basel). 10:12632021. View Article : Google Scholar : PubMed/NCBI | |
Cohen J, Ratigan E, Shigeoka A, Steiner R, Stocks L and McKay D: Inflammatory profiling of hypothermic machine pumped kidney allografts. Am J Transplant. 15(Suppl 3): C2732015. | |
Maritan E, Franchin M, Amico F, Ietto G, Villa F, Tozzi M, Ferraro S, Negri S, Alberio MG and Carcano G: Ischemia and reperfusion injury markers in kidney transplant: Mechanical perfusion vs cold storage. Preliminary experience: 536. Transplantation. 94(10S): S11592012. View Article : Google Scholar | |
Boenink R, Astley ME, Huijben JA, Stel VS, Kerschbaum J, Ots-Rosenberg M, Åsberg AA, Lopot F, Golan E, Castro de la Nuez P, et al: The ERA registry annual report 2019: Summary and age comparisons. Clin Kidney J. 15:452–472. 2021. View Article : Google Scholar | |
Aubert O, Kamar N, Vernerey D, Viglietti D, Martinez F, Duong-Van-Huyen JP, Eladari D, Empana JP, Rabant M, Verine J, et al: Long term outcomes of transplantation using kidneys from expanded criteria donors: Prospective, population based cohort study. BMJ. 351:h35572015. View Article : Google Scholar : PubMed/NCBI | |
Tomita Y, Tojimbara T, Iwadoh K, Nakajima I and Fuchinoue S: Long-term outcomes in kidney transplantation from expanded-criteria donors after circulatory death. Transplant Proc. 49:45–48. 2017. View Article : Google Scholar : PubMed/NCBI | |
Borda B, Németh T, Ottlakan A, Keresztes C, Kemény É and Lázár G: Post-transplantation morphological and functional changes in kidneys from expanded criteria donors. Physiol Int. 104:329–333. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tingle SJ, Figueiredo RS, Moir JA, Goodfellow M, Talbot D and Wilson CH: Machine perfusion preservation versus static cold storage for deceased donor kidney transplantation. Cochrane Database Syst Rev. 3:CD0116712019.PubMed/NCBI | |
Tingle SJ, Thompson ER, Figueiredo RS, Moir JA, Goodfellow M, Talbot D and Wilson CH: Normothermic and hypothermic machine perfusion preservation versus static cold storage for deceased donor kidney transplantation. Cochrane Database Syst Rev. 7:CD0116712024.PubMed/NCBI | |
Helanterä I, Ibrahim HN, Lempinen M and Finne P: Donor age, cold ischemia time, and delayed graft function. Clin J Am Soc Nephrol. 15:813–821. 2020. View Article : Google Scholar : PubMed/NCBI | |
Heilman RL, Mathur A, Smith ML, Kaplan B and Reddy KS: Increasing the use of kidneys from unconventional and high-risk deceased donors. Am J Transplant. 16:3086–3092. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tasaki M, Saito K, Nakagawa Y, Ikeda M, Imai N, Narita I and Takahashi K: Effect of donor-recipient age difference on long-term graft survival in living kidney transplantation. Int Urol Nephrol. 46:1441–1446. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lim K, Lee YJ, Gwon JG, Jung CW, Yang J, Oh SW, Jo SK, Cho WY and Kim MG: Impact of donor age on the outcomes of kidney transplantation from deceased donors with histologic acute kidney injury. Transplant Proc. 51:2593–2597. 2019. View Article : Google Scholar : PubMed/NCBI | |
Scurt FG, Ernst A, Hammoud B, Wassermann T, Mertens PR, Schwarz A, Becker JU and Chatzikyrkou C: Effect of creatinine metrics on outcome after transplantation of marginal donor kidneys. Nephrology (Carlton). 27:973–982. 2022. View Article : Google Scholar : PubMed/NCBI | |
Irish GL, Coates PT and Clayton PA: Association of admission, nadir, and terminal donor creatinine with kidney transplantation outcomes. Kidney Int Rep. 6:2075–2083. 2021. View Article : Google Scholar : PubMed/NCBI | |
Perico N, Cattaneo D, Sayegh MH and Remuzzi G: Delayed graft function in kidney transplantation. Lancet. 364:1814–1827. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lai C, Yee SY, Ying T and Chadban S: Biomarkers as diagnostic tests for delayed graft function in kidney transplantation. Transpl Int. 34:2431–2441. 2021. View Article : Google Scholar : PubMed/NCBI | |
Siedlecki A, Irish W and Brennan DC: Delayed graft function in the kidney transplant. Am J Transplant. 11:2279–2296. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schrezenmeier E, Müller M, Friedersdorff F, Khadzhynov D, Halleck F, Staeck O, Dürr M, Zhang K, Eckardt KU, Budde K and Lehner LJ: Evaluation of severity of delayed graft function in kidney transplant recipients. Nephrol Dial Transplant. 37:973–981. 2022. View Article : Google Scholar | |
Parsons FM: Haemodialysis; indications and results. Postgrad Med J. 35:625–630, passim. 1959. View Article : Google Scholar : PubMed/NCBI | |
Clark JE and Soricelli RR: Indications for dialysis. Med Clin North Am. 49:1213–1239. 1965. View Article : Google Scholar : PubMed/NCBI | |
Hosgood SA, Callaghan CJ, Wilson CH, Smith L, Mullings J, Mehew J, Oniscu GC, Phillips BL, Bates L and Nicholson ML: Normothermic machine perfusion versus static cold storage in donation after circulatory death kidney transplantation: A randomized controlled trial. Nat Med. 29:1511–1519. 2023. View Article : Google Scholar : PubMed/NCBI | |
Brat A, de Vries KM, van Heurn EWE, Huurman VAL, de Jongh W, Leuvenink HGD, van Zuilen AD, Haase-Kromwijk BJJM, de Jonge J, Berger SP and Hofker SH: Hypothermic machine perfusion as a national standard preservation method for deceased donor kidneys. Transplantation. 106:1043–1050. 2022. View Article : Google Scholar : | |
Rijkse E, Bouari S, Kimenai HJAN, de Jonge J, de Bruin RWF, Slagter JS, van den Hoogen MWF, Ijzermans JNM, Hoogduijn MJ and Minnee RC: Additional Normothermic machine perfusion versus hypothermic machine perfusion in suboptimal donor kidney transplantation: Protocol of a randomized, controlled, open-label trial. Int J Surg Protoc. 25:227–237. 2021. View Article : Google Scholar : PubMed/NCBI |