Role of DNA methylation transferase in urinary system diseases: From basic to clinical perspectives (Review)
- Authors:
- Yipin Yang
- Yafen Wang
- Xiufang Fan
- Xinwei Xu
- Huijuan Wang
- Xinyi Wang
- Taiyu Shi
- Jialu Tang
- Yanmeng Guan
- Song Li
- Aimei Wang
-
Affiliations: Renal Disease Medical Centre, Weifang People's Hospital, Shandong Second Medical University, Weifang, Shandong 261000, P.R. China, Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China, Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China, First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230032, P.R. China - Published online on: November 19, 2024 https://doi.org/10.3892/ijmm.2024.5460
- Article Number: 19
-
Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Giaquinto AN and Jemal A: Cancer statistics, 2024. CA Cancer J Clin. 74:12–49. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zi H, Liu MY, Luo LS, Huang Q, Luo PC, Luan HH, Huang J, Wang DQ, Wang YB, Zhang YY, et al: Global burden of benign prostatic hyperplasia, urinary tract infections, urolithiasis, bladder cancer, kidney cancer, and prostate cancer from 1990 to 2021. Mil Med Res. 11:642024.PubMed/NCBI | |
Tian YQ, Yang JC, Hu JJ, Ding R, Ye DW and Shang JW: Trends and risk factors of global incidence, mortality, and disability of genitourinary cancers from 1990 to 2019: Systematic analysis for the global burden of disease study 2019. Front Public Health. 11:11193742023. View Article : Google Scholar : PubMed/NCBI | |
Chen JQ, Salas LA, Wiencke JK, Koestler DC, Molinaro AM, Andrew AS, Seigne JD, Karagas MR, Kelsey KT and Christensen BC: Immune profiles and DNA methylation alterations related with non-muscle-invasive bladder cancer outcomes. Clin Epigenetics. 14:142022. View Article : Google Scholar : PubMed/NCBI | |
Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H and Richardson A: The role of DNA methylation in epigenetics of aging. Pharmacol Ther. 195:172–185. 2019. View Article : Google Scholar : | |
Singh NP and Vinod PK: Integrative analysis of DNA methylation and gene expression in papillary renal cell carcinoma. Mol Genet Genomics. 295:807–824. 2020. View Article : Google Scholar : PubMed/NCBI | |
Deng Q, Du Y, Wang Z, Chen Y, Wang J, Liang H and Zhang D: Identification and validation of a DNA methylation-driven gene-based prognostic model for clear cell renal cell carcinoma. BMC Genomics. 24:3072023. View Article : Google Scholar : PubMed/NCBI | |
Lyko F: The DNA methyltransferase family: A versatile toolkit for epigenetic regulation. Nat Rev Genet. 19:81–92. 2018. View Article : Google Scholar | |
Castillo-Aguilera O, Depreux P, Halby L, Arimondo PB and Goossens L: DNA methylation targeting: The DNMT/HMT crosstalk challenge. Biomolecules. 7:32017. View Article : Google Scholar : PubMed/NCBI | |
Ferreira HJ and Esteller M: CpG islands in cancer: Heads, tails, and sides. Methods Mol Biol. 1766:49–80. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Caffo B, Jaffee HA, Irizarry RA and Feinberg AP: Redefining CpG islands using hidden Markov models. Biostatistics. 11:499–514. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez-Paredes M and Esteller M: Cancer epigenetics reaches mainstream oncology. Nat Med. 17:330–339. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li J, Liang Y, Fan J, Xu C, Guan B, Zhang J, Guo B, Shi Y, Wang P, Tan Y, et al: DNA methylation subtypes guiding prognostic assessment and linking to responses the DNA methyltransferase inhibitor SGI-110 in urothelial carcinoma. BMC Med. 20:2222022. View Article : Google Scholar : PubMed/NCBI | |
Yu JT, Hu XW, Chen HY, Yang Q, Li HD, Dong YH, Zhang Y, Wang JN, Jin J, Wu YG, et al: DNA methylation of FTO promotes renal inflammation by enhancing m6A of PPAR-α in alcohol-induced kidney injury. Pharmacol Res. 163:1052862021. View Article : Google Scholar | |
Gu Y, Niu S, Wang Y, Duan L, Pan Y, Tong Z, Zhang X, Yang Z, Peng B, Wang X, et al: DMDRMR-mediated regulation of m6A-Modified CDK4 by m6A reader IGF2BP3 drives ccRCC progression. Cancer Res. 81:923–934. 2021. View Article : Google Scholar | |
Sandholm N, Cole JB, Nair V, Sheng X, Liu H, Ahlqvist E, van Zuydam N, Dahlström EH, Fermin D, Smyth LJ, et al: Genome-wide meta-analysis and omics integration identifies novel genes associated with diabetic kidney disease. Diabetologia. 65:1495–1509. 2022. View Article : Google Scholar : PubMed/NCBI | |
Johnston WWS: Diseases of the kidneys and urinary system. Med J Aust. 2:57–59. 1947.PubMed/NCBI | |
Correa-Forero V, Pinilla-Monsalve GD, Valderrama-Chaparro JA and Amaya-Gonzalez P: Cryptococcal meningitis presenting as acute flaccid paralysis: A case report. J Infect Public Health. 13:143–148. 2020. View Article : Google Scholar | |
Sampaolo S, Esposito T, Gianfrancesco F, Napolitano F, Lombardi L, Lucà R, Roperto F and Di Iorio G: A novel GBE1 mutation and features of polyglucosan bodies autophagy in adult polyglucosan body disease. Neuromuscul Disord. 25:247–252. 2015. View Article : Google Scholar | |
Roberts NA, Hilton EN, Lopes FM, Singh S, Randles MJ, Gardiner NJ, Chopra K, Coletta R, Bajwa Z, Hall RJ, et al: Lrig2 and Hpse2, mutated in urofacial syndrome, pattern nerves in the urinary bladder. Kidney Int. 95:1138–1152. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liao L: Evaluation and management of neurogenic bladder: What is new in China? Int J Mol Sci. 16:18580–18600. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yoshimura N, Ogawa T, Miyazato M, Kitta T, Furuta A, Chancellor MB and Tyagi P: Neural mechanisms underlying lower urinary tract dysfunction. Korean J Urol. 55:81–90. 2014. View Article : Google Scholar : PubMed/NCBI | |
Archer M, Dogra N, Dovey Z, Ganta T, Jang HS, Khusid JA, Lantz A, Mihalopoulos M, Stockert JA, Zahalka A, et al: Role of α- and β-adrenergic signaling in phenotypic targeting: Significance in benign and malignant urologic disease. Cell Commun Signal. 19:782021. View Article : Google Scholar | |
Chen N, Li G, Si Y, Ye Y, Zhang T, Chi D, Zhang W, Pan L, Qu G, Lu Y, et al: Development and evaluation of a centrifugal disk system for the rapid detection of multiple pathogens and their antibiotic resistance genes in urinary tract infection. Front Microbiol. 14:11574032023. View Article : Google Scholar : PubMed/NCBI | |
Simões E Silva AC, Oliveira EA and Mak RH: Urinary tract infection in pediatrics: An overview. J Pediatr (Rio J). 96(Suppl 1): S65–S79. 2020. View Article : Google Scholar | |
Zulfiqar M, Ubilla CV, Nicola R and Menias CO: Imaging of renal infections and inflammatory disease. Radiol Clin North Am. 58:909–923. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bachar A, Itzhaki E, Gleizer S, Shamshoom M, Milo R and Antonovsky N: Point mutations in topoisomerase I alter the mutation spectrum in E. coli and impact the emergence of drug resistance genotypes. Nucleic Acids Res. 48:761–769. 2020. View Article : Google Scholar : | |
Price LB, Johnson JR, Aziz M, Clabots C, Johnston B, Tchesnokova V, Nordstrom L, Billig M, Chattopadhyay S, Stegger M, et al: The epidemic of extended-spectrum-β-lactama se-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx. mBio. 4:e00377–13. 2013. View Article : Google Scholar : PubMed/NCBI | |
Beebout CJ, Robertson GL, Reinfeld BI, Blee AM, Morales GH, Brannon JR, Chazin WJ, Rathmell WK, Rathmell JC, Gama V and Hadjifrangiskou M: Uropathogenic Escherichia coli subverts mitochondrial metabolism to enable intracellular bacterial pathogenesis in urinary tract infection. Nat Microbiol. 7:1348–1360. 2022. View Article : Google Scholar : PubMed/NCBI | |
Spradling K, Ganesan C and Conti S: Medical treatment and prevention of urinary stone disease. Urol Clin North Am. 49:335–344. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hong SY, Xia QD, Yang YY, Li C, Zhang JQ, Xu JZ, Qin BL, Xun Y and Wang SG: The role of microbiome: A novel insight into urolithiasis. Crit Rev Microbiol. 49:177–196. 2023. View Article : Google Scholar | |
Hobbs T, Schultz LN, Lauchnor EG, Gerlach R and Lange D: Evaluation of biofilm induced urinary infection stone formation in a novel laboratory model system. J Urol. 199:178–185. 2018. View Article : Google Scholar | |
Sen H, Seckiner I, Bayrak O, Erturhan S and Demirbağ A: Treatment alternatives for urinary system stone disease in preschool aged children: Results of 616 cases. J Pediatr Urol. 11:34.e1–e5. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Zhang Y, Bossé D, Lalani AA, Hakimi AA, Hsieh JJ, Choueiri TK, Gibbons DL, Ittmann M and Creighton CJ: Pan-urologic cancer genomic subtypes that transcend tissue of origin. Nat Commun. 8:1992017. View Article : Google Scholar : PubMed/NCBI | |
Markowski MC, Boorjian SA, Burton JP, Hahn NM, Ingersoll MA, Maleki Vareki S, Pal SK and Sfanos KS: The microbiome and genitourinary cancer: A collaborative review. Eur Urol. 75:637–646. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rouprêt M, Babjuk M, Compérat E, Zigeuner R, Sylvester RJ, Burger M, Cowan NC, Gontero P, Van Rhijn BWG, Mostafid AH, et al: European association of urology guidelines on upper urinary tract urothelial carcinoma: 2017 Update. Eur Urol. 73:111–122. 2018. View Article : Google Scholar | |
Li Z, Xu H, Gong Y, Chen W, Zhan Y, Yu L, Sun Y, Li A, He S, Guan B, et al: Patient-derived upper tract urothelial carcinoma organoids as a platform for drug screening. Adv Sci (Weinh). 9:e21039992022. View Article : Google Scholar | |
Zhang ML, Miki Y, Hang JF, Vohra M, Peyton S, McIntire PJ, VandenBussche CJ and Vohra P: A review of upper urinary tract cytology performance before and after the implementation of The Paris system. Cancer Cytopathol. 129:264–274. 2021. View Article : Google Scholar | |
Bus MTJ, de Bruin DM, Faber DJ, Kamphuis GM, Zondervan PJ, Laguna Pes MP, de Reijke TM, Traxer O, van Leeuwen TG and de la Rosette JJ: Optical diagnostics for upper urinary tract urothelial cancer: Technology, thresholds, and clinical applications. J Endourol. 29:113–123. 2015. View Article : Google Scholar | |
He Y, Xu W, Xiao YT, Huang H, Gu D and Ren S: Targeting signaling pathways in prostate cancer: Mechanisms and clinical trials. Signal Transduct Target Ther. 7:1982022. View Article : Google Scholar : PubMed/NCBI | |
Kausar S, Abbas MN and Cui H: A review on the DNA methyltransferase family of insects: Aspect and prospects. Int J Biol Macromol. 186:289–302. 2021. View Article : Google Scholar : PubMed/NCBI | |
Uysal F and Ozturk S: DNA methyltransferases in mammalian oocytes. Results Probl Cell Differ. 63:211–222. 2017. View Article : Google Scholar : PubMed/NCBI | |
Okano M, Bell DW, Haber DA and Li E: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 99:247–257. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ren W, Gao L and Song J: Structural basis of DNMT1 and DNMT3A-mediated DNA methylation. Genes (Basel). 9:6202018. View Article : Google Scholar : PubMed/NCBI | |
Chen Z and Zhang Y: Role of mammalian DNA methyltransferases in development. Annu Rev Biochem. 89:135–158. 2020. View Article : Google Scholar | |
Poh WJ, Wee CP and Gao Z: DNA methyltransferase activity assays: Advances and challenges. Theranostics. 6:369–391. 2016. View Article : Google Scholar : PubMed/NCBI | |
Takeshima H, Niwa T, Yamashita S, Takamura-Enya T, Iida N, Wakabayashi M, Nanjo S, Abe M, Sugiyama T, Kim YJ and Ushijima T: TET repression and increased DNMT activity synergistically induce aberrant DNA methylation. J Clin Invest. 130:5370–5379. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Fan T, Yan Q, Zhu H, Fox S, Issaq HJ, Best L, Gangi L, Munroe D and Muegge K: Lsh, an epigenetic guardian of repetitive elements. Nucleic Acids Res. 32:5019–5028. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tao Y, Xi S, Shan J, Maunakea A, Che A, Briones V, Lee EY, Geiman T, Huang J, Stephens R, et al: Lsh, chromatin remodeling family member, modulates genome-wide cytosine methylation patterns at nonrepeat sequences. Proc Natl Acad Sci USA. 108:5626–5631. 2011. View Article : Google Scholar : PubMed/NCBI | |
Han M, Li J, Cao Y, Huang Y, Li W, Zhu H, Zhao Q, Han JJ, Wu Q, Li J, et al: A role for LSH in facilitating DNA methylation by DNMT1 through enhancing UHRF1 chromatin association. Nucleic Acids Res. 48:12116–12134. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xing H, Wang C, Wu H, Chen D, Li S and Xu S: Effects of atrazine and chlorpyrifos on DNA methylation in the brain and gonad of the common carp. Comp Biochem Physiol C Toxicol Pharmacol. 168:11–19. 2015. View Article : Google Scholar | |
Wang C, Zhang Z, Yao H, Zhao F, Wang L, Wang X, Xing H and Xu S: Effects of atrazine and chlorpyrifos on DNA methylation in the liver, kidney and gill of the common carp (Cyprinus carpio L.). Ecotoxicol Environ Saf. 108:142–151. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wirbisky-Hershberger SE, Sanchez OF, Horzmann KA, Thanki D, Yuan C and Freeman JL: Atrazine exposure decreases the activity of DNMTs, global DNA methylation levels, and dnmt expression. Food Chem Toxicol. 109:727–734. 2017. View Article : Google Scholar : PubMed/NCBI | |
Svedružić ŽM: Dnmt1 structure and function. Prog Mol Biol Transl Sci. 101:221–254. 2011. View Article : Google Scholar | |
Duraisamy AJ, Mishra M, Kowluru A and Kowluru RA: Epigenetics and Regulation of oxidative stress in diabetic retinopathy. Invest Ophthalmol Vis Sci. 59:4831–4840. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Sun MA, Li Z, Bai X, Yu M, Wang M, Liang L, Shao X, Arnovitz S, Wang Q, et al: The dynamics of DNA methylation fidelity during mouse embryonic stem cell self-renewal and differentiation. Genome Res. 24:1296–1307. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mohan KN: DNMT1: Catalytic and non-catalytic roles in different biological processes. Epigenomics. 14:629–643. 2022. View Article : Google Scholar : PubMed/NCBI | |
Arand J, Spieler D, Karius T, Branco MR, Meilinger D, Meissner A, Jenuwein T, Xu G, Leonhardt H, Wolf V and Walter J: In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet. 8:e10027502012. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Yu G, Ming X, Xia W, Xu X, Zhang Y, Zhang W, Li Y, Huang C, Xie H, et al: Imprecise DNMT1 activity coupled with neighbor-guided correction enables robust yet flexible epigenetic inheritance. Nat Genet. 52:828–839. 2020. View Article : Google Scholar : PubMed/NCBI | |
Echeverria F, Ortiz M, Valenzuela R and Videla LA: Long-chain polyunsaturated fatty acids regulation of PPARs, signaling: Relationship to tissue development and aging. Prostaglandins Leukot Essent Fatty Acids. 114:28–34. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ceccarelli V, Ronchetti S, Marchetti MC, Calvitti M, Riccardi C, Grignani F and Vecchini A: Molecular mechanisms underlying eicosapentaenoic acid inhibition of HDAC1 and DNMT expression and activity in carcinoma cells. Biochim Biophys Acta Gene Regul Mech. 1863:1944812020. View Article : Google Scholar : PubMed/NCBI | |
Zhao D, Gao Y, Su Y, Zhou Y, Yang T, Li Y, Wang Y, Sun Y, Chen L, Zhang F, et al: Oroxylin A regulates cGAS DNA hypermethylation induced by methionine metabolism to promote HSC senescence. Pharmacol Res. 187:1065902023. View Article : Google Scholar | |
van der Wijst MG, Venkiteswaran M, Chen H, Xu GL, Plösch T and Rots MG: Local chromatin microenvironment determines DNMT activity: From DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase. Epigenetics. 10:671–676. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wolffgramm J, Buchmuller B, Palei S, Muñoz-López Á, Kanne J, Janning P, Schweiger MR and Summerer D: Light-activation of DNA-methyltransferases. Angew Chem Int Ed Engl. 60:13507–13512. 2021. View Article : Google Scholar : PubMed/NCBI | |
Correa LO, Jordan MS and Carty SA: DNA methylation in T-cell development and differentiation. Crit Rev Immunol. 40:135–156. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S, Makar KW, Pérez-Melgosa M, Sweetser MT, Schlissel MS, Nguyen S, et al: A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity. 15:763–774. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ktena YP, Koldobskiy MA, Barbato MI, Fu HH, Luznik L, Llosa NJ, Haile A, Klein OR, Liu C, Gamper CJ and Cooke KR: Donor T cell DNMT3a regulates alloreactivity in mouse models of hematopoietic stem cell transplantation. J Clin Invest. 132:e1580472022. View Article : Google Scholar : PubMed/NCBI | |
Lu CH, Wu CJ, Chan CC, Nguyen DT, Lin KR, Lin SJ, Chen LC, Yen JJ and Kuo ML: DNA methyltransferase inhibitor promotes human CD4+CD25hFOXP3+ regulatory T lymphocyte induction under suboptimal TCR stimulation. Front Immunol. 7:4882016. | |
Lv Q, Shi C, Qiao S, Cao N, Guan C, Dai Y and Wei Z: Alpinetin exerts anti-colitis efficacy by activating AhR, regulating miR-302/DNMT-1/CREB signals, and therefore promoting Treg differentiation. Cell Death Dis. 9:8902018. View Article : Google Scholar : PubMed/NCBI | |
Ehrlich M: DNA hypermethylation in disease: Mechanisms and clinical relevance. Epigenetics. 14:1141–1163. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ellinger J, El Kassem N, Heukamp LC, Matthews S, Cubukluoz F, Kahl P, Perabo FG, Müller SC, von Ruecker A and Bastian PJ: Hypermethylation of cell-free serum DNA indicates worse outcome in patients with bladder cancer. J Urol. 179:346–352. 2008. View Article : Google Scholar | |
Marsit CJ, Karagas MR, Danaee H, Liu M, Andrew A, Schned A, Nelson HH and Kelsey KT: Carcinogen exposure and gene promoter hypermethylation in bladder cancer. Carcinogenesis. 27:112–116. 2006. View Article : Google Scholar | |
Yates DR, Rehman I, Abbod MF, Meuth M, Cross SS, Linkens DA, Hamdy FC and Catto JW: Promoter hypermethylation identifies progression risk in bladder cancer. Clin Cancer Res. 13:2046–2053. 2007. View Article : Google Scholar : PubMed/NCBI | |
Thompson D, Lawrentschuk N and Bolton D: New approaches to targeting epigenetic regulation in bladder cancer. Cancers (Basel). 15:18562023. View Article : Google Scholar : PubMed/NCBI | |
Nunes SP, Henrique R, Jerónimo C and Paramio JM: DNA methylation as a therapeutic target for bladder cancer. Cells. 9:18502020. View Article : Google Scholar : PubMed/NCBI | |
Wang R and Liu X: Epigenetic regulation of prostate cancer. Genes Dis. 7:606–613. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Chu B, Tu Y, Li L, Chen D, Huang S, Huang W, Fan W, Li Q, Zhang C, et al: Dual inhibitors of DNMT and HDAC remodels the immune microenvironment of colorectal cancer and enhances the efficacy of anti-PD-L1 therapy. Pharmacol Res. 206:1072712024. View Article : Google Scholar : PubMed/NCBI | |
Wang JH, Zeng Z, Sun J, Chen Y and Gao X: A novel small-molecule antagonist enhances the sensitivity of osteosarcoma to cabozantinib in vitro and in vivo by targeting DNMT-1 correlated with disease severity in human patients. Pharmacol Res. 173:1058692021. View Article : Google Scholar : PubMed/NCBI | |
Li KK, Li F, Li QS, Yang K and Jin B: DNA methylation as a target of epigenetic therapeutics in cancer. Anticancer Agents Med Chem. 13:242–247. 2013. View Article : Google Scholar | |
Nagaraju GP, Wu C, Merchant N, Chen Z, Lesinski GB and El-Rayes BF: Epigenetic effects of inhibition of heat shock protein 90 (HSP90) in human pancreatic and colon cancer. Cancer Lett. 402:110–116. 2017. View Article : Google Scholar : PubMed/NCBI | |
Manara MC, Valente S, Cristalli C, Nicoletti G, Landuzzi L, Zwergel C, Mazzone R, Stazi G, Arimondo PB, Pasello M, et al: A quinoline-based DNA methyltransferase inhibitor as a possible adjuvant in osteosarcoma therapy. Mol Cancer Ther. 17:1881–1892. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jin T, Hao J and Fan D: Nicotine induces aberrant hypermethylation of tumor suppressor genes in pancreatic epithelial ductal cells. Biochem Biophys Res Commun. 499:934–940. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bazzichetto C, Conciatori F, Pallocca M, Falcone I, Fanciulli M, Cognetti F, Milella M and Ciuffreda L: PTEN as a prognostic/predictive biomarker in cancer: An unfulfilled promise? Cancers (Basel). 11:4352019. View Article : Google Scholar : PubMed/NCBI | |
Carbajo-Garcia MC, Corachán A, Segura-Benitez M, Monleón J, Escrig J, Faus A, Pellicer A, Cervelló I and Ferrero H: 5-aza-2′-deoxycitidine inhibits cell proliferation, extracellular matrix formation and Wnt/β-catenin pathway in human uterine leiomyomas. Reprod Biol Endocrinol. 19:1062021. View Article : Google Scholar | |
Bechtel W, McGoohan S, Zeisberg EM, Müller GA, Kalbacher H, Salant DJ, Müller CA, Kalluri R and Zeisberg M: Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med. 16:544–550. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kato M and Natarajan R: Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol. 15:327–345. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bowden SA, Rodger EJ, Chatterjee A, Eccles MR and Stayner C: Recent discoveries in epigenetic modifications of polycystic kidney disease. Int J Mol Sci. 22:133272021. View Article : Google Scholar : PubMed/NCBI | |
Marumo T, Yagi S, Kawarazaki W, Nishimoto M, Ayuzawa N, Watanabe A, Ueda K, Hirahashi J, Hishikawa K, Sakurai H, et al: Diabetes induces aberrant DNA methylation in the proximal tubules of the kidney. J Am Soc Nephrol. 26:2388–2397. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sidler M, Aitken KJ, Jiang JX, Yadav P, Lloyd E, Ibrahim M, Choufani S, Weksberg R and Bägli D: Inhibition of DNA methylation during chronic obstructive bladder disease (COBD) improves function, pathology and expression. Sci Rep. 11:173072021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Luo Q, Li Z, Wang Y, Zhu C, Li T and Li X: Long non-coding RNA IRAIN inhibits VEGFA expression via enhancing its DNA methylation leading to tumor suppression in renal carcinoma. Front Oncol. 10:10822020. View Article : Google Scholar : PubMed/NCBI | |
Huang YQ, Guan H, Liu CH, Liu DC, Xu B, Jiang L, Lin ZX and Chen M: Association between RASSF1A promoter methylation and renal cell cancer susceptibility: A meta-analysis. Genet Mol Res. 15:gmr.150269942016. | |
Bayarsaihan D: Epigenetic mechanisms in inflammation. J Dent Res. 90:9–17. 2011. View Article : Google Scholar : | |
Bradley MS, Burke EE, Grenier C, Amundsen CL, Murphy SK and Siddiqui NY: A genome-scale DNA methylation study in women with interstitial cystitis/bladder pain syndrome. Neurourol Urodyn. 37:1485–1493. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tolg C and Bägli DJ: Uropathogenic Escherichia coli infection: Potential importance of epigenetics. Epigenomics. 4:229–235. 2012. View Article : Google Scholar : PubMed/NCBI | |
Emam M, Cánovas A, Islas-Trejo AD, Fonseca PAS, Medrano JF and Mallard B: Transcriptomic profiles of monocyte-derived macrophages in response to Escherichia coli is associated with the host genetics. Sci Rep. 10:2712020. View Article : Google Scholar : PubMed/NCBI | |
Tolg C, Sabha N, Cortese R, Panchal T, Ahsan A, Soliman A, Aitken KJ, Petronis A and Bägli DJ: Uropathogenic E. coli infection provokes epigenetic downregulation of CDKN2A (p16INK4A) in uroepithelial cells. Lab Invest. 91:825–836. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tatemichi M, Hata H, Tazawa H and Nakadate T: Lipopolysaccharide induces aberrant hypermethylation of Hic-1 in mouse embryonic fibroblasts lacking p53 gene. Anticancer Res. 28:2101–2108. 2008.PubMed/NCBI | |
Yang RB, Mark MR, Gray A, Huang A, Xie MH, Zhang M, Goddard A, Wood WI, Gurney AL and Godowski PJ: Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature. 395:284–288. 1998. View Article : Google Scholar : PubMed/NCBI | |
Valinluck V and Sowers LC: Inflammation-mediated cytosine damage: A mechanistic link between inflammation and the epigenetic alterations in human cancers. Cancer Res. 67:5583–5586. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ding H, Chen J, Su M, Lin Z, Zhan H, Yang F, Li W, Xie J, Huang Y, Liu X, et al: BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. J Neuroinflammation. 17:192020. View Article : Google Scholar : PubMed/NCBI | |
Haldar S, Dru C, Mishra R, Tripathi M, Duong F, Angara B, Fernandez A, Arditi M and Bhowmick NA: Histone deacetylase inhibitors mediate DNA damage repair in ameliorating hemorrhagic cystitis. Sci Rep. 6:392572016. View Article : Google Scholar : PubMed/NCBI | |
Choi IS, Yu K, Kim J, De Guzman E, Weisenberger DJ, Oghamian S, Kim HJ, Lee KH, Carroll C, Trinh BN, et al: Alterations in deoxyribonucleic acid (DNA) methylation patterns of Calca, Timp3, Mmp2, and Igf2r are associated with chronic cystitis in a cyclophosphamide-induced mouse model. Urology. 82:253.e9–e15. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mennuni S, Rubattu S, Pierelli G, Tocci G, Fofi C and Volpe M: Hypertension and kidneys: Unraveling complex molecular mechanisms underlying hypertensive renal damage. J Hum Hypertens. 28:74–79. 2014. View Article : Google Scholar | |
Tomaszewski M and Itoh H: ISH2022KYOTO hypertension zero declaration. Cardiovasc Res. 119:e1362023. View Article : Google Scholar | |
NCD Risk Factor Collaboration (NCD-RisC): Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 398:957–980. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pinheiro LC and Oliveira-Paula GH: Sources and effects of oxidative stress in hypertension. Curr Hypertens Rev. 16:166–180. 2020. View Article : Google Scholar | |
Rodriguez-Iturbe B, Sepassi L, Quiroz Y, Ni Z, Wallace DC and Vaziri ND: Association of mitochondrial SOD deficiency with salt-sensitive hypertension and accelerated renal senescence. J Appl Physiol (1985). 102:255–260. 2007. View Article : Google Scholar | |
Godin N, Liu F, Lau GJ, Brezniceanu ML, Chénier I, Filep JG, Ingelfinger JR, Zhang SL and Chan JS: Catalase overexpression prevents hypertension and tubular apoptosis in angiotensinogen transgenic mice. Kidney Int. 77:1086–1097. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Li X, Wang S, Miao R and Zhong J: Targeting iron metabolism and ferroptosis as novel therapeutic approaches in cardiovascular diseases. Nutrients. 15:5912023. View Article : Google Scholar : PubMed/NCBI | |
Vaziri ND, Lin CY, Farmand F and Sindhu RK: Superoxide dismutase, catalase, glutathione peroxidase and NADPH oxidase in lead-induced hypertension. Kidney Int. 63:186–194. 2003. View Article : Google Scholar | |
Pushpakumar S, Ren L, Juin SK, Majumder S, Kulkarni R and Sen U: Methylation-dependent antioxidant-redox imbalance regulates hypertensive kidney injury in aging. Redox Biol. 37:1017542020. View Article : Google Scholar : PubMed/NCBI | |
Cencioni C, Spallotta F, Martelli F, Valente S, Mai A, Zeiher AM and Gaetano C: Oxidative stress and epigenetic regulation in ageing and age-related diseases. Int J Mol Sci. 14:17643–17663. 2013. View Article : Google Scholar : PubMed/NCBI | |
Miyoshi M, Sato M, Saito K, Otani L, Shirahige K, Miura F, Ito T, Jia H and Kato H: Maternal protein restriction alters the renal ptger1 DNA methylation state in SHRSP offspring. Nutrients. 10:14362018. View Article : Google Scholar : PubMed/NCBI | |
Jia H, Miyoshi M, Li X, Furukawa K, Otani L, Shirahige K, Miura F, Ito T and Kato H: The epigenetic legacy of maternal protein restriction: Renal ptger1 DNA methylation changes in hypertensive rat offspring. Nutrients. 15:39572023. View Article : Google Scholar : PubMed/NCBI | |
Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, et al: Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International diabetes federation diabetes atlas, 9th edition. Diabetes Res Clin Pract. 157:1078432019. View Article : Google Scholar | |
Lin E and Erickson KF: Payer mix among patients receiving dialysis. JAMA. 324:900–901. 2020. View Article : Google Scholar : PubMed/NCBI | |
Thomas MC, Brownlee M, Susztak K, Sharma K, Jandeleit-Dahm KA, Zoungas S, Rossing P, Groop PH and Cooper ME: Diabetic kidney disease. Nat Rev Dis Primers. 1:150182015. View Article : Google Scholar : PubMed/NCBI | |
Sun G, Reddy MA, Yuan H, Lanting L, Kato M and Natarajan R: Epigenetic histone methylation modulates fibrotic gene expression. J Am Soc Nephrol. 21:2069–2080. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schlosser P, Tin A, Matias-Garcia PR, Thio CHL, Joehanes R, Liu H, Weihs A, Yu Z, Hoppmann A, Grundner-Culemann F, et al: Meta-analyses identify DNA methylation associated with kidney function and damage. Nat Commun. 12:71742021. View Article : Google Scholar : PubMed/NCBI | |
Smyth LJ, Dahlström EH, Syreeni A, Kerr K, Kilner J, Doyle R, Brennan E, Nair V, Fermin D, Nelson RG, et al: Epigenome-wide meta-analysis identifies DNA methylation biomarkers associated with diabetic kidney disease. Nat Commun. 13:78912022. View Article : Google Scholar : PubMed/NCBI | |
He C, Wang D, Wang R, Huang Y, Huang X, Shen S, Lv J and Wu M: Epigallocatechin gallate induces the demethylation of actinin alpha 4 to inhibit diabetic nephropathy renal fibrosis via the NF-KB signaling pathway in vitro. Dose Response. 20:155932582211057042022. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zhang Q, Liu S, Chen Y, Li R, Lin T, Yu C, Zhang H, Huang Z, Zhao X, et al: DNA methyltransferase 1 may be a therapy target for attenuating diabetic nephropathy and podocyte injury. Kidney Int. 92:140–153. 2017. View Article : Google Scholar : PubMed/NCBI | |
Peng R, Liu H, Peng H, Zhou J, Zha H, Chen X, Zhang L, Sun Y, Yin P, Wen L, et al: Promoter hypermethylation of let-7a-3 is relevant to its down-expression in diabetic nephropathy by targeting UHRF1. Gene. 570:57–63. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Peng R, Li T, Luo X, Peng H, Zha H, Yin P, Wen L and Zhang Z: A potentially functional polymorphism in the regulatory region of let-7a-2 is associated with an increased risk for diabetic nephropathy. Gene. 527:456–461. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lane BM, Murray S, Benson K, Bierzynska A, Chryst-Stangl M, Wang L, Wu G, Cavalleri G, Doyle B, Fennelly N, et al: A rare autosomal dominant variant in regulator of calcineurin type 1 (RCAN1) gene confers enhanced calcineurin activity and may cause FSGS. J Am Soc Nephrol. 32:1682–1695. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zhang W, Zhong F, Das GC, Xie Y, Li Z, Cai W, Jiang G, Choi J, Sidani M, et al: Epigenetic regulation of RCAN1 expression in kidney disease and its role in podocyte injury. Kidney Int. 94:1160–1176. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hasan NS, Gamal El Dine H, Kamel SA, Hamed M, Youssef RN, Mahmoud Hassan E, Abdelrahman AH, Musa NI, Ali A and Awadallah E: Association of genetic and epigenetic changes of insulin like growth factor binding protein-1 in Egyptian patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 200:1106772023. View Article : Google Scholar : PubMed/NCBI | |
Yang XH, Cao RF, Yu Y, Sui M, Zhang T, Xu JY and Wang XM: A study on the correlation between MTHFR promoter methylation and diabetic nephropathy. Am J Transl Res. 8:4960–4967. 2016.PubMed/NCBI | |
Yang XH, Zhang BL, Zhang XM, Tong JD, Gu YH, Guo LL and Jin HM: EGCG attenuates renal damage via reversing Klotho hypermethylation in diabetic db/db mice and HK-2 cells. Oxid Med Cell Longev. 2020:60927152020. View Article : Google Scholar : PubMed/NCBI | |
Tomson CRV, Cheung AK, Mann JFE, Chang TI, Cushman WC, Furth SL, Hou FF, Knoll GA, Muntner P, Pecoits-Filho R, et al: Management of blood pressure in patients with chronic kidney disease not receiving dialysis: Synopsis of the 2021 KDIGO clinical practice guideline. Ann Intern Med. 174:1270–1281. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ying M, Shao X, Qin H, Yin P, Lin Y, Wu J, Ren J and Zheng Y: Disease burden and epidemiological trends of chronic kidney disease at the global, regional, national levels from 1990 to 2019. Nephron. 148:113–123. 2024. View Article : Google Scholar | |
Ko YA, Mohtat D, Suzuki M, Park AS, Izquierdo MC, Han SY, Kang HM, Si H, Hostetter T, Pullman JM, et al: Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. Genome Biol. 14:R1082013. View Article : Google Scholar : PubMed/NCBI | |
Morgado-Pascual JL, Marchant V, Rodrigues-Diez R, Dolade N, Suarez-Alvarez B, Kerr B, Valdivielso JM, Ruiz-Ortega M and Rayego-Mateos S: Epigenetic modification mechanisms involved in inflammation and fibrosis in renal pathology. Mediators Inflamm. 2018:29310492018. View Article : Google Scholar | |
Panizo S, Martinez-Arias L, Alonso-Montes C, Cannata P, Martín-Carro B, Fernández-Martín JL, Naves-Díaz M, Carrillo-López N and Cannata-Andía JB: Fibrosis in chronic kidney disease: Pathogenesis and consequences. Int J Mol Sci. 22:4082021. View Article : Google Scholar : PubMed/NCBI | |
Yin S, Zhang Q, Yang J, Lin W, Li Y, Chen F and Cao W: TGFβ-incurred epigenetic aberrations of miRNA and DNA methyltransferase suppress Klotho and potentiate renal fibrosis. Biochim Biophys Acta Mol Cell Res. 1864:1207–1216. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xiao X, Wang W, Guo C, Wu J, Zhang S, Shi H, Kwon S, Chen J and Dong Z: Hypermethylation leads to the loss of HOXA5, resulting in JAG1 expression and NOTCH signaling contributing to kidney fibrosis. Kidney Int. 106:98–114. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Chen F, Wei A, Bi F, Zhu X, Yin S, Lin W and Cao W: Klotho recovery by genistein via promoter histone acetylation and DNA demethylation mitigates renal fibrosis in mice. J Mol Med (Berl). 97:541–552. 2019. View Article : Google Scholar : PubMed/NCBI | |
Takiguchi M, Achanzar WE, Qu W, Li G and Waalkes MP: Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res. 286:355–365. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Liang Y, Lei L, Zhu G, Chen X, Jin T and Wu Q: Hypermethylations of RASAL1 and KLOTHO is associated with renal dysfunction in a Chinese population environmentally exposed to cadmium. Toxicol Appl Pharmacol. 271:78–85. 2013. View Article : Google Scholar : PubMed/NCBI | |
Azuma M, Koyama D, Kikuchi J, Yoshizawa H, Thasinas D, Shiizaki K, Kuro-o M, Furukawa Y and Kusano E: Promoter methylation confers kidney-specific expression of the Klotho gene. FASEB J. 26:4264–4274. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Li G and Liu J: Autonomic dysfunction in Parkinson's disease: Implications for pathophysiology, diagnosis, and treatment. Neurobiol Dis. 134:1047002020. View Article : Google Scholar | |
Wang W, Zhao X, Shao Y, Duan X, Wang Y, Li J, Li J, Li D, Li X and Wong J: Mutation-induced DNMT1 cleavage drives neurodegenerative disease. Sci Adv. 7:eabe85112021. View Article : Google Scholar : PubMed/NCBI | |
Ye S, Zhong J, Huang J, Chen L, Yi L, Li X, Lv J, Miao J, Li H, Chen D and Li C: Protective effect of plastrum testudinis extract on dopaminergic neurons in a Parkinson's disease model through DNMT1 nuclear translocation and SNCA's methylation. Biomed Pharmacother. 141:1118322021. View Article : Google Scholar : PubMed/NCBI | |
Patel HD, Gupta M, Joice GA, Srivastava A, Alam R, Allaf ME and Pierorazio PM: Clinical stage migration and survival for renal cell carcinoma in the United States. Eur Urol Oncol. 2:343–348. 2019. View Article : Google Scholar : PubMed/NCBI | |
Turajlic S, Swanton C and Boshoff C: Kidney cancer: The next decade. J Exp Med. 215:2477–2479. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lin RK and Wang YC: Dysregulated transcriptional and post-translational control of DNA methyltransferases in cancer. Cell Biosci. 4:462014. View Article : Google Scholar : PubMed/NCBI | |
Arai E and Kanai Y: Genetic and epigenetic alterations during renal carcinogenesis. Int J Clin Exp Pathol. 4:58–73. 2010. | |
Bahadoram S, Davoodi M, Hassanzadeh S, Bahadoram M, Barahman M and Mafakher L: Renal cell carcinoma: An overview of the epidemiology, diagnosis, and treatment. G Ital Nefrol. 39:2022–vol3. 2022.PubMed/NCBI | |
Christoph F, Kempkensteffen C, Weikert S, Köllermann J, Krause H, Miller K, Schostak M and Schrader M: Methylation of tumour suppressor genes APAF-1 and DAPK-1 and in vitro effects of demethylating agents in bladder and kidney cancer. Br J Cancer. 95:1701–1707. 2006. View Article : Google Scholar : PubMed/NCBI | |
Christoph F, Weikert S, Kempkensteffen C, Krause H, Schostak M, Köllermann J, Miller K and Schrader M: Promoter hypermethylation profile of kidney cancer with new proapoptotic p53 target genes and clinical implications. Clin Cancer Res. 12:5040–5046. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Jin J, Ying J, Cui Y, Sun M, Zhang L, Fan Y, Xu B and Zhang Q: Epigenetic inactivation of the candidate tumor suppressor gene ASC/TMS1 in human renal cell carcinoma and its role as a potential therapeutic target. Oncotarget. 6:22706–22723. 2015. View Article : Google Scholar : PubMed/NCBI | |
Joosten SC, Deckers IA, Aarts MJ, Hoeben A, van Roermund JG, Smits KM, Melotte V, van Engeland M and Tjan-Heijnen VC: Prognostic DNA methylation markers for renal cell carcinoma: A systematic review. Epigenomics. 9:1243–1257. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mo S, Su Z, Heng B, Chen W, Shi L, Du X and Lai C: SFRP1 promoter methylation and renal carcinoma risk: A systematic review and meta-analysis. J Nippon Med Sch. 85:78–86. 2018. View Article : Google Scholar : PubMed/NCBI | |
Morris MR, Ricketts CJ, Gentle D, McRonald F, Carli N, Khalili H, Brown M, Kishida T, Yao M, Banks RE, et al: Genome-wide methylation analysis identifies epigenetically inactivated candidate tumour suppressor genes in renal cell carcinoma. Oncogene. 30:1390–1401. 2011. View Article : Google Scholar | |
Peters I, Eggers H, Atschekzei F, Hennenlotter J, Waalkes S, Tränkenschuh W, Grosshennig A, Merseburger AS, Stenzl A, Kuczyk MA and Serth J: GATA5 CpG island methylation in renal cell cancer: A potential biomarker for metastasis and disease progression. BJU Int. 110:E144–E152. 2012. View Article : Google Scholar : PubMed/NCBI | |
Peters I, Gebauer K, Dubrowinskaja N, Atschekzei F, Kramer MW, Hennenlotter J, Tezval H, Abbas M, Scherer R, Merseburger AS, et al: GATA5 CpG island hypermethylation is an independent predictor for poor clinical outcome in renal cell carcinoma. Oncol Rep. 31:1523–1530. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rohilla S, Singh M, Priya S, Almalki WH, Haniffa SM, Subramaniyan V, Fuloria S, Fuloria NK, Sekar M, Singh SK, et al: Exploring the mechanical perspective of a new anti-tumor agent: Melatonin. J Environ Pathol Toxicol Oncol. 42:1–16. 2023. View Article : Google Scholar : PubMed/NCBI | |
Majid S, Dar AA, Ahmad AE, Hirata H, Kawakami K, Shahryari V, Saini S, Tanaka Y, Dahiya AV, Khatri G and Dahiya R: BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis. 30:662–670. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Lu B, He M, Wang Y, Wang Z and Du L: Prostate cancer incidence and mortality: Global status and temporal trends in 89 countries from 2000 to 2019. Front Public Health. 10:8110442022. View Article : Google Scholar : PubMed/NCBI | |
Chang AJ, Autio KA, Roach M III and Scher HI: High-risk prostate cancer-classification and therapy. Nat Rev Clin Oncol. 11:308–323. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jemal A, Culp MB, Ma J, Islami F and Fedewa SA: Prostate cancer incidence 5 years after US preventive services task force recommendations against screening. J Natl Cancer Inst. 113:64–71. 2021. View Article : Google Scholar : | |
Zargar H, van den Bergh R, Moon D, Lawrentschuk N, Costello A and Murphy D: The impact of the United States preventive services task force (USPTSTF) recommendations against prostate-specific antigen (PSA) testing on PSA testing in Australia. BJU Int. 119:110–115. 2017. View Article : Google Scholar | |
Curry SJ, Krist AH and Owens DK: Annual report to the nation on the status of cancer, part II: Recent changes in prostate cancer trends and disease characteristics. Cancer. 125:317–318. 2019. View Article : Google Scholar | |
Hatakeyama S, Yoneyama T, Tobisawa Y and Ohyama C: Recent progress and perspectives on prostate cancer biomarkers. Int J Clin Oncol. 22:214–221. 2017. View Article : Google Scholar : | |
Jerónimo C, Bastian PJ, Bjartell A, Carbone GM, Catto JW, Clark SJ, Henrique R, Nelson WG and Shariat SF: Epigenetics in prostate cancer: Biologic and clinical relevance. Eur Urol. 60:753–766. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhao SG, Chen WS, Li H, Foye A, Zhang M, Sjöström M, Aggarwal R, Playdle D, Liao A, Alumkal JJ, et al: The DNA methylation landscape of advanced prostate cancer. Nat Genet. 52:778–789. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Hu X, Yu H, Liu X, Sun H and Shao C: Alternations of gene expression in PI3K and AR pathways and DNA methylation features contribute to metastasis of prostate cancer. Cell Mol Life Sci. 79:4362022. View Article : Google Scholar : PubMed/NCBI | |
Ummanni R, Jost E, Braig M, Lohmann F, Mundt F, Barett C, Schlomm T, Sauter G, Senff T, Bokemeyer C, et al: Ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) is a potential tumour suppressor in prostate cancer and is frequently silenced by promoter methylation. Mol Cancer. 10:1292011. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Li J, Yu X, Li S, Zhang X, Mo Z and Hu Y: APC gene hypermethylation and prostate cancer: A systematic review and meta-analysis. Eur J Hum Genet. 21:929–935. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang SQ, Zhang GQ and Zhang L: Correlation between methylation of the E-cadherin gene and malignancy of prostate cancer. Genet Mol Res. 15:gmr.150280462016. | |
Miyauchi T, Takahashi M, Mitsuzuka K, Saiki Y, Okubo T, Vertino PM, Goto A, Arai Y, Horii A and Fukushige S: Aberrant hypermethylation-mediated suppression of PYCARD is extremely frequent in prostate cancer with gleason score ≥7. Dis Markers. 2021:88589052021. View Article : Google Scholar | |
Singal R, Ferdinand L, Reis IM and Schlesselman JJ: Methylation of multiple genes in prostate cancer and the relationship with clinicopathological features of disease. Oncol Rep. 12:631–637. 2004.PubMed/NCBI | |
Zhang W, Zeng S, Gong L, Zhang D and Hu X: Gene methylation status in focus of advanced prostate cancer diagnostics and improved individual outcomes. Transl Androl Urol. 12:1813–1826. 2023. View Article : Google Scholar | |
van der Pol Y, Moldovan N, Ramaker J, Bootsma S, Lenos KJ, Vermeulen L, Sandhu S, Bahce I, Pegtel DM, Wong SQ, et al: The landscape of cell-free mitochondrial DNA in liquid biopsy for cancer detection. Genome Biol. 24:2292023. View Article : Google Scholar : PubMed/NCBI | |
Woodson K, O'Reilly KJ, Ward DE, Walter J, Hanson J, Walk EL and Tangrea JA: CD44 and PTGS2 methylation are independent prognostic markers for biochemical recurrence among prostate cancer patients with clinically localized disease. Epigenetics. 1:183–186. 2006. View Article : Google Scholar | |
Boiron M: Genetics and cellular cellular biology of cancer. Pathol Biol (Paris). 38:765–767. 1990.In French. PubMed/NCBI | |
Zorn CS, Wojno KJ, McCabe MT, Kuefer R, Gschwend JE and Day ML: 5-aza-2′-deoxycytidine delays androgen-independent disease and improves survival in the transgenic adenocarcinoma of the mouse prostate mouse model of prostate cancer. Clin Cancer Res. 13:2136–2143. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shang D, Liu Y, Liu Q, Zhang F, Feng L, Lv W and Tian Y: Synergy of 5-aza-2′-deoxycytidine (DAC) and paclitaxel in both androgen-dependent and -independent prostate cancer cell lines. Cancer Lett. 278:82–87. 2009. View Article : Google Scholar : PubMed/NCBI | |
Thibault A, Figg WD, Bergan RC, Lush RM, Myers CE, Tompkins A, Reed E and Samid D: A phase II study of 5-aza-2′deoxycytidine (decitabine) in hormone independent metastatic (D2) prostate cancer. Tumori. 84:87–89. 1998. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Teoh JYC, Huang J, Ko WYK, Lok V, Choi P, Ng CF, Sengupta S, Mostafid H, Kamat AM, Black PC, et al: Global trends of bladder cancer incidence and mortality, and their associations with tobacco use and gross domestic product per capita. Eur Urol. 78:893–906. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sylvester RJ, van der Meijden AP, Oosterlinck W, Witjes JA, Bouffioux C, Denis L, Newling DW and Kurth K: Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: A combined analysis of 2596 patients from seven EORTC trials. Eur Urol. 49:466–477. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dobruch J and Oszczudlowski M: Bladder cancer: Current challenges and future directions. Medicina (Kaunas). 57:7492021. View Article : Google Scholar : PubMed/NCBI | |
Scher MB, Elbaum MB, Mogilevkin Y, Hilbert DW, Mydlo JH, Sidi AA, Adelson ME, Mordechai E and Trama JP: Detecting DNA methylation of the BCL2, CDKN2A and NID2 genes in urine using a nested methylation specific polymerase chain reaction assay to predict bladder cancer. J Urol. 188:2101–2107. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bai ZJ, Liu Q, Wang XS and Liu WY: APC promoter methylation is correlated with development and progression of bladder cancer, but not linked to overall survival: A meta-analysis. Neoplasma. 66:470–480. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kawamoto K, Enokida H, Gotanda T, Kubo H, Nishiyama K, Kawahara M and Nakagawa M: p16INK4a and p14ARF methylation as a potential biomarker for human bladder cancer. Biochem Biophys Res Commun. 339:790–796. 2006. View Article : Google Scholar | |
Jahed M, Ebadi N, Mivehchi M, Majidizadeh T, Shahshanipour M, Asgari M, Ghadakzadeh S and Hosseini SA: MGMT hypermethylation and BCL-2 overexpression associated with superficial bladder cancer and recurrence. Cancer Biomark. 16:627–632. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bayramov B, Gunes S, Buyukalpelli R, Aydin O and Henkel R: Promoter methylation analysis of CDH1 and p14ARF genes in patients with urothelial bladder cancer. Onco Targets Ther. 11:4189–4196. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Huang T, Ren Y, Wei J, Lou Z, Wang X, Fan X, Chen Y, Weng G and Yao X: Clinical significance of CDH13 promoter methylation as a biomarker for bladder cancer: A meta-analysis. BMC Urol. 16:522016. View Article : Google Scholar : PubMed/NCBI | |
Dai L, Ma C, Zhang Z, Zeng S, Liu A, Tang S, Ren Q, Sun Y and Xu C: DAPK promoter methylation and bladder cancer risk: A systematic review and meta-analysis. PLoS One. 11:e01672282016. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Qiu Z and Wu C: Diagnostic value of the combination of DAPK methylation in urinary sediment and B ultrasound for recurrent urinary bladder cancer. World J Surg Oncol. 21:2672023. View Article : Google Scholar : PubMed/NCBI | |
Han SY, Iliopoulos D, Druck T, Guler G, Grubbs CJ, Pereira M, Zhang Z, You M, Lubet RA, Fong LY and Huebner K: CpG methylation in the Fhit regulatory region: Relation to Fhit expression in murine tumors. Oncogene. 23:3990–3998. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kandimalla R, van Tilborg AA and Zwarthoff EC: DNA methylation-based biomarkers in bladder cancer. Nat Rev Urol. 10:327–335. 2013. View Article : Google Scholar : PubMed/NCBI | |
Costa VL, Henrique R, Danielsen SA, Duarte-Pereira S, Eknaes M, Skotheim RI, Rodrigues A, Magalhães JS, Oliveira J, Lothe RA, et al: Three epigenetic biomarkers, GDF15, TMEFF2, and VIM, accurately predict bladder cancer from DNA-based analyses of urine samples. Clin Cancer Res. 16:5842–5851. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Chen Z, Zhu T, Yu J, Ma K, Zhang H, He Y, Luo X and Zhu J: Hypermethylated SFRP1, but none of other nine genes 'informative' for western countries, is valuable for bladder cancer detection in Mainland China. J Cancer Res Clin Oncol. 135:1717–1727. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gao Q, Chen F, Zhang L, Wei A, Wang Y, Wu Z and Cao W: Inhibition of DNA methyltransferase aberrations reinstates antioxidant aging suppressors and ameliorates renal aging. Aging Cell. 21:e135262022. View Article : Google Scholar : | |
Li XT, Song JW, Zhang ZZ, Zhang MW, Liang LR, Miao R, Liu Y, Chen YH, Liu XY and Zhong JC: Sirtuin 7 mitigates renal ferroptosis, fibrosis and injury in hypertensive mice by facilitating the KLF15/Nrf2 signaling. Free Radic Biol Med. 193:459–473. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Fan X, Wang Q, Zhen J, Li X, Zhou P, Lang Y, Sheng Q, Zhang T, Huang T, et al: ROS promote hyper-methylation of NDRG2 promoters in a DNMTS-dependent manner: Contributes to the progression of renal fibrosis. Redox Biol. 62:1026742023. View Article : Google Scholar : PubMed/NCBI | |
Ming S, Tian J, Ma K, Pei C, Li L, Wang Z, Fang Z, Liu M, Dong H, Li W, et al: Oxalate-induced apoptosis through ERS-ROS-NF-κB signalling pathway in renal tubular epithelial cell. Mol Med. 28:882022. View Article : Google Scholar | |
Doi S, Zou Y, Togao O, Pastor JV, John GB, Wang L, Shiizaki K, Gotschall R, Schiavi S, Yorioka N, et al: Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem. 286:8655–8665. 2011. View Article : Google Scholar : PubMed/NCBI | |
Brandt S, Bernhardt A, Häberer S, Wolters K, Gehringer F, Reichardt C, Krause A, Geffers R, Kahlfuß S, Jeron A, et al: Comparative analysis of acute kidney injury models and related fibrogenic responses: Convergence on methylation patterns regulated by cold shock protein. Cells. 13:3672024. View Article : Google Scholar : PubMed/NCBI | |
Miao J, Liu J, Niu J, Zhang Y, Shen W, Luo C, Liu Y, Li C, Li H, Yang P, et al: Wnt/β-catenin/RAS signaling mediates age-related renal fibrosis and is associated with mitochondrial dysfunction. Aging Cell. 18:e130042019. View Article : Google Scholar | |
Edeling M, Ragi G, Huang S, Pavenstadt H and Susztak K: Developmental signalling pathways in renal fibrosis: The roles of Notch, Wnt and Hedgehog. Nat Rev Nephrol. 12:426–439. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Wei Y, Li T, Lin L, Yang Z and Ye L: DNA methylation-mediated lowly expressed AOX1 promotes cell migration and invasion of prostate cancer. Urol Int. 107:517–525. 2023. View Article : Google Scholar | |
Ding M, Wang Q, Zhu W, Chang J, Liao H and Xiao G: DNA methylation-mediated low expression of ZNF582 promotes the proliferation, migration, and invasion of clear cell renal cell carcinoma. Clin Exp Nephrol. 27:24–31. 2023. View Article : Google Scholar | |
Heichman KA and Warren JD: DNA methylation biomarkers and their utility for solid cancer diagnostics. Clin Chem Lab Med. 50:1707–1721. 2012. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Xu Y, Guo X, Tan C, Zhu X, Liu G, Lyu X and Bei C: Methylation-regulated tumor suppressor gene PDE7B promotes HCC invasion and metastasis through the PI3K/AKT signaling pathway. BMC Cancer. 24:6242024. View Article : Google Scholar : PubMed/NCBI | |
Lopez-Serra P and Esteller M: DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene. 31:1609–1622. 2012. View Article : Google Scholar : | |
Zhu L, Tang N, Hang H, Zhou Y, Dong J, Yang Y, Mao L, Qiu Y, Fu X and Cao W: Loss of Claudin-1 incurred by DNMT aberration promotes pancreatic cancer progression. Cancer Lett. 586:2166112024. View Article : Google Scholar : PubMed/NCBI | |
Lam TW, Tong JH, To KF, Chan A, Liew CT, Lai PB and Wong N: Correlative analysis of DNA methyltransferase expression and promoter hypermethylation of tumor suppressor genes in hepatocellular carcinoma. Cancer Genomics Proteomics. 3:271–277. 2006.PubMed/NCBI | |
Nishiyama A and Nakanishi M: Navigating the DNA methylation landscape of cancer. Trends Genet. 37:1012–1027. 2021. View Article : Google Scholar : PubMed/NCBI | |
O'Hagan HM, Wang W, Sen S, Destefano Shields C, Lee SS, Zhang YW, Clements EG, Cai Y, Van Neste L, Easwaran H, et al: Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands. Cancer Cell. 20:606–619. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xiao X, Chen M, Sang Y, Xue J, Jiang K, Chen Y, Zhang L, Yu S, Lv W, Li Y, et al: Methylation-mediated silencing of ATF3 promotes thyroid cancer progression by regulating prognostic genes in the MAPK and PI3K/AKT pathways. Thyroid. 33:1441–1454. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhu S, Xu H, Chen R, Shen Q, Yang D, Peng H, Tong J and Fu Q: DNA methylation and miR-92a-3p-mediated repression of HIP1R promotes pancreatic cancer progression by activating the PI3K/AKT pathway. J Cell Mol Med. 27:788–802. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Cui D, Ren J, Wang K, Zeng T and Gao L: CACNA2D3 is downregulated in gliomas and functions as a tumor suppressor. Mol Carcinog. 56:945–959. 2017. View Article : Google Scholar | |
Clevers H and Nusse R: Wnt/β-catenin signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI | |
van Es JH, Haegebarth A, Kujala P, Itzkovitz S, Koo BK, Boj SF, Korving J, van den Born M, van Oudenaarden A, Robine S and Clevers H: A critical role for the Wnt effector Tcf4 in adult intestinal homeostatic self-renewal. Mol Cell Biol. 32:1918–1927. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yao H, Ashihara E and Maekawa T: Targeting the Wnt/β-catenin signaling pathway in human cancers. Expert Opin Ther Targets. 15:873–887. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang XZ, Cheng TT, He QJ, Lei ZY, Chi J, Tang Z, Liao QX, Zhang H, Zeng LS and Cui SZ: LINC01133 as ceRNA inhibits gastric cancer progression by sponging miR-106a-3p to regulate APC expression and the Wnt/β-catenin pathway. Mol Cancer. 17:1262018. View Article : Google Scholar | |
Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, Vogelstein B and Clevers H: Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science. 275:1784–1787. 1997. View Article : Google Scholar : PubMed/NCBI | |
Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, Koyama K, Utsunomiya J, Baba S and Hedge P: Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science. 253:665–669. 1991. View Article : Google Scholar : PubMed/NCBI | |
Yuan TL and Cantley LC: PI3K pathway alterations in cancer: Variations on a theme. Oncogene. 27:5497–5510. 2008. View Article : Google Scholar : PubMed/NCBI | |
Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, Carey M, Hu Z, Guan Y, Sahin A, et al: An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 68:6084–6091. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jouali F, Marchoudi N, Talbi S, Bilal B, El Khasmi M, Rhaissi H and Fekkak J: Detection of PIK3/AKT pathway in Moroccan population with triple negative breast cancer. BMC Cancer. 18:9002018. View Article : Google Scholar : PubMed/NCBI | |
Hennessy BT, Smith DL, Ram PT, Lu Y and Mills GB: Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 4:988–1004. 2005. View Article : Google Scholar : PubMed/NCBI | |
Park JI: MAPK-ERK pathway. Int J Mol Sci. 24:96662023. View Article : Google Scholar : PubMed/NCBI | |
Ullah R, Yin Q, Snell AH and Wan L: RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol. 85:123–154. 2022. View Article : Google Scholar | |
Gurbuz V, Sozen S, Bilen CY and Konac E: miR-148a, miR-152 and miR-200b promote prostate cancer metastasis by targeting DNMT1 and PTEN expression. Oncol Lett. 22:8052021. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharyya S, Feferman L and Tobacman JK: Dihydrotestosterone inhibits arylsulfatase B and Dickkopf Wnt signaling pathway inhibitor (DKK)-3 leading to enhanced Wnt signaling in prostate epithelium in response to stromal Wnt3A. Prostate. 79:689–700. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kardooni H, Gonzalez-Gualda E, Stylianakis E, Saffaran S, Waxman J and Kypta RM: CRISPR-mediated reactivation of DKK3 expression attenuates TGF-β signaling in prostate cancer. Cancers (Basel). 10:1652018. View Article : Google Scholar | |
Lodygin D, Epanchintsev A, Menssen A, Diebold J and Hermeking H: Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Res. 65:4218–4227. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharyya S, Feferman L and Tobacman JK: Chondroitin sulfatases differentially regulate Wnt signaling in prostate stem cells through effects on SHP2, phospho-ERK1/2, and Dickkopf Wnt signaling pathway inhibitor (DKK3). Oncotarget. 8:100242–100260. 2017. View Article : Google Scholar : PubMed/NCBI | |
Arai E, Kanai Y, Ushijima S, Fujimoto H, Mukai K and Hirohashi S: Regional DNA hypermethylation and DNA methyltransferase (DNMT) 1 protein overexpression in both renal tumors and corresponding nontumorous renal tissues. Int J Cancer. 119:288–296. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liao F, Liao Z, Zhang T, Jiang W, Zhu P, Zhao Z, Shi H, Zhao D, Zhou N and Huang X: ECFC-derived exosomal THBS1 mediates angiogenesis and osteogenesis in distraction osteogenesis via the PI3K/AKT/ERK pathway. J Orthop Translat. 37:12–22. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rubinek T and Wolf I: The role of alpha-Klotho as a universal tumor suppressor. Vitam Horm. 101:197–214. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Y and Sun Z: Current understanding of Klotho. Ageing Res Rev. 8:43–51. 2009. View Article : Google Scholar : | |
Chen B, Ma X, Liu S, Zhao W and Wu J: Inhibition of lung cancer cells growth, motility and induction of apoptosis by Klotho, a novel secreted Wnt antagonist, in a dose-dependent manner. Cancer Biol Ther. 13:1221–1228. 2012. View Article : Google Scholar : PubMed/NCBI | |
Camilli TC, Xu M, O'Connell MP, Chien B, Frank BP, Subaran S, Indig FE, Morin PJ, Hewitt SM and Weeraratna AT: Loss of Klotho during melanoma progression leads to increased filamin cleavage, increased Wnt5A expression, and enhanced melanoma cell motility. Pigment Cell Melanoma Res. 24:175–186. 2011. View Article : Google Scholar | |
Li X, Lu P, Shao XF, Jiang T, Liu F and Li G: Klotho regulates epithelial-to-mesenchymal transition in vitro via Wnt/β-catenin pathway and attenuates chronic allograft dysfunction in a rat renal transplant model. Ann Transplant. 26:e9300662021. View Article : Google Scholar | |
Prud'homme GJ: Cancer stem cells and novel targets for antitumor strategies. Curr Pharm Des. 18:2838–2849. 2012. View Article : Google Scholar : PubMed/NCBI | |
Costa VL, Henrique R, Ribeiro FR, Carvalho JR, Oliveira J, Lobo F, Teixeira MR and Jerónimo C: Epigenetic regulation of Wnt signaling pathway in urological cancer. Epigenetics. 5:343–351. 2010. View Article : Google Scholar : PubMed/NCBI | |
Henrique R, Ribeiro FR, Fonseca D, Hoque MO, Carvalho AL, Costa VL, Pinto M, Oliveira J, Teixeira MR, Sidransky D and Jerónimo C: High promoter methylation levels of APC predict poor prognosis in sextant biopsies from prostate cancer patients. Clin Cancer Res. 13:6122–6129. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rogler A, Kendziorra E, Giedl J, Stoehr C, Taubert H, Goebell PJ, Wullich B, Stöckle M, Lehmann J, Petsch S, et al: Functional analyses and prognostic significance of SFRP1 expression in bladder cancer. J Cancer Res Clin Oncol. 141:1779–1790. 2015. View Article : Google Scholar : PubMed/NCBI | |
Robertson KD and Jones PA: DNA methylation: Past, present and future directions. Carcinogenesis. 21:461–467. 2000. View Article : Google Scholar : PubMed/NCBI | |
Myöhänen SK, Baylin SB and Herman JG: Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia. Cancer Res. 58:591–593. 1998.PubMed/NCBI | |
Kucuk O: Cancer biomarkers. Mol Aspects Med. 45:1–2. 2015. View Article : Google Scholar : PubMed/NCBI | |
O'Reilly E, Tuzova AV, Walsh AL, Russell NM, O'Brien O, Kelly S, Dhomhnallain ON, DeBarra L, Dale CM, Brugman R, et al: epiCaPture: A urine DNA methylation test for early detection of aggressive prostate cancer. JCO Precis Oncol. 2019:PO.18.001342019.PubMed/NCBI | |
Mikeska T and Craig JM: DNA methylation biomarkers: Cancer and beyond. Genes (Basel). 5:821–864. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mahon KL, Qu W, Devaney J, Paul C, Castillo L, Wykes RJ, Chatfield MD, Boyer MJ, Stockler MR, Marx G, et al: Methylated glutathione S-transferase 1 (mGSTP1) is a potential plasma free DNA epigenetic marker of prognosis and response to chemotherapy in castrate-resistant prostate cancer. Br J Cancer. 111:1802–1809. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ibrahim J, Peeters M, Van Camp G and Opde Beeck K: Methylation biomarkers for early cancer detection and diagnosis: Current and future perspectives. Eur J Cancer. 178:91–113. 2023. View Article : Google Scholar | |
Waterhouse RL Jr, Van Neste L, Moses KA, Barnswell C, Silberstein JL, Jalkut M, Tutrone R, Sylora J, Anglade R, Murdock M, et al: Evaluation of an epigenetic assay for predicting repeat prostate biopsy outcome in African American men. Urology. 128:62–65. 2019. View Article : Google Scholar | |
Yamagishi M, Kuze Y, Kobayashi S, Nakashima M, Morishima S, Kawamata T, Makiyama J, Suzuki K, Seki M, Abe K, et al: Mechanisms of action and resistance in histone methylation-targeted therapy. Nature. 627:221–228. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sgro A, Cursons J, Waryah C, Woodward EA, Foroutan M, Lyu R, Yeoh GCT, Leedman PJ and Blancafort P: Epigenetic reactivation of tumor suppressor genes with CRISPRa technologies as precision therapy for hepatocellular carcinoma. Clin Epigenetics. 15:732023. View Article : Google Scholar : PubMed/NCBI | |
Patra A, Deb M, Dahiya R and Patra SK: 5-Aza-2′-deoxycytidine stress response and apoptosis in prostate cancer. Clin Epigenetics. 2:339–348. 2011. View Article : Google Scholar | |
Issa JP: Decitabine. Curr Opin Oncol. 15:446–451. 2003. View Article : Google Scholar : PubMed/NCBI | |
Graça I, Sousa EJ, Baptista T, Almeida M, Ramalho-Carvalho J, Palmeira C, Henrique R and Jerónimo C: Anti-tumoral effect of the non-nucleoside DNMT inhibitor RG108 in human prostate cancer cells. Curr Pharm Des. 20:1803–1811. 2014. View Article : Google Scholar | |
Wang C, Lei L, Xu Y, Li Y, Zhang J, Xu Y and Si S: Trichostatin C synergistically interacts with DNMT inhibitor to induce antineoplastic effect via inhibition of axl in bladder and lung cancer cells. Pharmaceuticals (Basel). 17:4252024. View Article : Google Scholar : PubMed/NCBI | |
Laranjeira ABA, Hollingshead MG, Nguyen D, Kinders RJ, Doroshow JH and Yang SX: DNA damage, demethylation and anticancer activity of DNA methyltransferase (DNMT) inhibitors. Sci Rep. 13:59642023. View Article : Google Scholar : PubMed/NCBI | |
Kim SJ, Cheresh P, Eren M, Jablonski RP, Yeldandi A, Ridge KM, Budinger GRS, Kim DH, Wolf M, Vaughan DE and Kamp DW: Klotho, an antiaging molecule, attenuates oxidant-induced alveolar epithelial cell mtDNA damage and apoptosis. Am J Physiol Lung Cell Mol Physiol. 313:L16–L26. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yamada Y, Venkadakrishnan VB, Mizuno K, Bakht M, Ku SY, Garcia MM and Beltran H: Targeting DNA methylation and B7-H3 in RB1-deficient and neuroendocrine prostate cancer. Sci Transl Med. 15:eadf67322023. View Article : Google Scholar : PubMed/NCBI | |
Tikoo K, Ali IY, Gupta J and Gupta C: 5-Azacytidine prevents cisplatin induced nephrotoxicity and potentiates anticancer activity of cisplatin by involving inhibition of metallothionein, pAKT and DNMT1 expression in chemical induced cancer rats. Toxicol Lett. 191:158–166. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hosokawa O, Okabe M, Saito S, Saito T and Kurasaki M: Protective role of metallothionein on DNA damage in rat kidney caused by cis-diamminedichloroplatinum. Pharmacol Toxicol. 86:276–282. 2000. View Article : Google Scholar : PubMed/NCBI | |
Francia G, Green SK, Bocci G, Man S, Emmenegger U, Ebos JM, Weinerman A, Shaked Y and Kerbel RS: Down-regulation of DNA mismatch repair proteins in human and murine tumor spheroids: Implications for multicellular resistance to alkylating agents. Mol Cancer Ther. 4:1484–1494. 2005. View Article : Google Scholar : PubMed/NCBI | |
Plumb JA, Strathdee G, Sludden J, Kaye SB and Brown R: Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res. 60:6039–6044. 2000.PubMed/NCBI | |
Dai X, Ren T, Zhang Y and Nan N: Methylation multiplicity and its clinical values in cancer. Expert Rev Mol Med. 23:e22021. View Article : Google Scholar : PubMed/NCBI | |
Ricketts CJ, Hill VK and Linehan WM: Tumor-specific hypermethylation of epigenetic biomarkers, including SFRP1, predicts for poorer survival in patients from the TCGA kidney renal clear cell carcinoma (KIRC) project. PLoS One. 9:e856212014. View Article : Google Scholar : PubMed/NCBI | |
Peters I, Dubrowinskaja N, Abbas M, Seidel C, Kogosov M, Scherer R, Gebauer K, Merseburger AS, Kuczyk MA, Grünwald V and Serth J: DNA methylation biomarkers predict progression-free and overall survival of metastatic renal cell cancer (mRCC) treated with antiangiogenic therapies. PLoS One. 9:e914402014. View Article : Google Scholar : PubMed/NCBI | |
Dubrowinskaja N, Gebauer K, Peters I, Hennenlotter J, Abbas M, Scherer R, Tezval H, Merseburger AS, Stenzl A, Grünwald V, et al: Neurofilament heavy polypeptide CpG island methylation associates with prognosis of renal cell carcinoma and prediction of antivascular endothelial growth factor therapy response. Cancer Med. 3:300–309. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lou W, Krill D, Dhir R, Becich MJ, Dong JT, Frierson HF Jr, Isaacs WB, Isaacs JT and Gao AC: Methylation of the CD44 metastasis suppressor gene in human prostate cancer. Cancer Res. 59:2329–2331. 1999.PubMed/NCBI | |
Kito H, Suzuki H, Ichikawa T, Sekita N, Kamiya N, Akakura K, Igarashi T, Nakayama T, Watanabe M, Harigaya K and Ito H: Hypermethylation of the CD44 gene is associated with progression and metastasis of human prostate cancer. Prostate. 49:110–115. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yegnasubramanian S, Kowalski J, Gonzalgo ML, Zahurak M, Piantadosi S, Walsh PC, Bova GS, De Marzo AM, Isaacs WB and Nelson WG: Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res. 64:1975–1986. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pan Y, Liu G, Zhou F, Su B and Li Y: DNA methylation profiles in cancer diagnosis and therapeutics. Clin Exp Med. 18:1–14. 2018. View Article : Google Scholar | |
Altucci L and Rots MG: Epigenetic drugs: From chemistry via biology to medicine and back. Clin Epigenetics. 8:562016. View Article : Google Scholar : PubMed/NCBI | |
Egger G, Liang G, Aparicio A and Jones PA: Epigenetics in human disease and prospects for epigenetic therapy. Nature. 429:457–463. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cossio FP, Esteller M and Berdasco M: Towards a more precise therapy in cancer: Exploring epigenetic complexity. Curr Opin Chem Biol. 57:41–49. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kondrashov A and Karpova E: Notes on functional modules in the assembly of CRISPR/Cas9-mediated epigenetic modifiers. Methods Mol Biol. 2198:401–428. 2021. View Article : Google Scholar | |
Liang F, Dong Z, Ye J, Hu W, Bhandari RK, Mai K and Wang X: In vivo DNA methylation editing in zebrafish. Epigenetics. 18:21923262023. View Article : Google Scholar : PubMed/NCBI |