Iron metabolism and the tumor microenvironment: A new perspective on cancer intervention and therapy (Review)
- Authors:
- Xiaorui Bu
- Lufang Wang
-
Affiliations: Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China - Published online on: December 31, 2024 https://doi.org/10.3892/ijmm.2024.5480
- Article Number: 39
-
Copyright: © Bu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Dixon SJ and Stockwell BR: The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 10:9–17. 2014. View Article : Google Scholar | |
Schümann K, Ettle T, Szegner B, Elsenhans B and Solomons NW: On risks and benefits of iron supplementation recommendations for iron intake revisited. J Trace Elem Med Biol. 21:147–168. 2007. View Article : Google Scholar : PubMed/NCBI | |
Muckenthaler MU, Rivella S, Hentze MW and Galy B: A red carpet for iron metabolism. Cell. 168:344–361. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez R, Schreiber SL and Conrad M: Persister cancer cells: Iron addiction and vulnerability to ferroptosis. Mol Cell. 82:728–740. 2022. View Article : Google Scholar : | |
Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB and Jiang X: Role of mitochondria in ferroptosis. Mol Cell. 73:354–363.e3. 2019. View Article : Google Scholar : | |
Kurz T, Eaton JW and Brunk UT: The role of lysosomes in iron metabolism and recycling. Int J Biochem Cell Biol. 43:1686–1697. 2011. View Article : Google Scholar : PubMed/NCBI | |
Silva B and Faustino P: An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta. 1852:1347–1359. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liang C, Zhang X, Yang M and Dong X: Recent progress in ferroptosis inducers for cancer therapy. Adv Mater. 31:e19041972019. View Article : Google Scholar : PubMed/NCBI | |
Mu Q, Chen L, Gao X, Shen S, Sheng W, Min J and Wang F: The role of iron homeostasis in remodeling immune function and regulating inflammatory disease. Sci Bull (Beijing). 66:1806–1816. 2021. View Article : Google Scholar : PubMed/NCBI | |
Slominski RM, Raman C, Chen JY and Slominski AT: How cancer hijacks the body's homeostasis through the neuroendocrine system. Trends Neurosci. 46:263–275. 2023. View Article : Google Scholar : PubMed/NCBI | |
Slominski RM, Kim TK, Janjetovic Z, Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R, Crossman DK, et al: Malignant melanoma: An overview, new perspectives, and vitamin D signaling. Cancers (Basel). 16:22622024. View Article : Google Scholar : PubMed/NCBI | |
Ajoolabady A, Tang D, Kroemer G and Ren J: Ferroptosis in hepatocellular carcinoma: Mechanisms and targeted therapy. Br J Cancer. 128:190–205. 2023. View Article : Google Scholar : | |
Yang M, Wu X, Hu J, Wang Y, Wang Y, Zhang L, Huang W, Wang X, Li N, Liao L, et al: COMMD10 inhibits HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe balance in hepatocellular carcinoma. J Hepatol. 76:1138–1150. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Fan Y, Hou J, Liu B, Zhang B, Shang Y, Chang Y, Cao P and Tan K: Integrated analysis identifies TfR1 as a prognostic biomarker which correlates with immune infiltration in breast cancer. Aging (Albany NY). 13:21671–21699. 2021. View Article : Google Scholar : PubMed/NCBI | |
Candelaria PV, Leoh LS, Penichet ML and Daniels-Wells TR: Antibodies targeting the transferrin receptor 1 (TfR1) as direct anti-cancer agents. Front Immunol. 12:6076922021. View Article : Google Scholar : PubMed/NCBI | |
Soyer HP, Smolle J, Torne R and Kerl H: Transferrin receptor expression in normal skin and in various cutaneous tumors. J Cutan Pathol. 14:1–5. 1987. View Article : Google Scholar : PubMed/NCBI | |
Gammella E, Buratti P, Cairo G and Recalcati S: The transferrin receptor: The cellular iron gate. Metallomics. 9:1367–1375. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kawabata H: Transferrin and transferrin receptors update. Free Radic Biol Med. 133:46–54. 2019. View Article : Google Scholar | |
Thompson EB: The many roles of c-Myc in apoptosis. Annu Rev Physiol. 60:575–600. 1998. View Article : Google Scholar : PubMed/NCBI | |
Chen BY, Pathak JL, Lin HY, Guo WQ, Chen WJ, Luo G, Wang LJ, Sun XF, Ding Y, Li J, et al: Inflammation triggers chondrocyte ferroptosis in TMJOA via HIF-1α/TFRC. J Dent Res. 103:712–722. 2024. View Article : Google Scholar : PubMed/NCBI | |
Finley LWS, Carracedo A, Lee J, Souza A, Egia A, Zhang J, Teruya-Feldstein J, Moreira PI, Cardoso SM, Clish CB, et al: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell. 19:416–428. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chitambar CR, Al-Gizawiy MM, Alhajala HS, Pechman KR, Wereley JP, Wujek R, Clark PA, Kuo JS, Antholine WE and Schmainda KM: Gallium maltolate disrupts tumor iron metabolism and retards the growth of glioblastoma by inhibiting mitochondrial function and ribonucleotide reductase. Mol Cancer Ther. 17:1240–1250. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kenneth NS, Mudie S, Naron S and Rocha S: TfR1 interacts with the IKK complex and is involved in IKK-NF-κB signalling. Biochem J. 449:275–284. 2013. View Article : Google Scholar | |
Jeong SM, Hwang S and Seong RH: Transferrin receptor regulates pancreatic cancer growth by modulating mitochondrial respiration and ROS generation. Biochem Biophys Res Commun. 471:373–379. 2016. View Article : Google Scholar : PubMed/NCBI | |
Polak KZ, Schaffer P, Donaghy D, Zenk MC and Olver CS: Iron, hepcidin, and microcytosis in canine hepatocellular carcinoma. Vet Clin Pathol. 51:208–215. 2022. View Article : Google Scholar : PubMed/NCBI | |
Habashy HO, Powe DG, Staka CM, Rakha EA, Ball G, Green AR, Aleskandarany M, Paish EC, Douglas Macmillan R, Nicholson RI, et al: Transferrin receptor (CD71) is a marker of poor prognosis in breast cancer and can predict response to tamoxifen. Breast Cancer Res Treat. 119:283–293. 2010. View Article : Google Scholar | |
Yang DC, Wang F, Elliott RL and Head JF: Expression of transferrin receptor and ferritin H-chain mRNA are associated with clinical and histopathological prognostic indicators in breast cancer. Anticancer Res. 21:541–549. 2001.PubMed/NCBI | |
Basuli D, Tesfay L, Deng Z, Paul B, Yamamoto Y, Ning G, Xian W, McKeon F, Lynch M, Crum CP, et al: Iron addiction: A novel therapeutic target in ovarian cancer. Oncogene. 36:4089–4099. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chan KT, Choi MY, Lai KKY, Tan W, Tung LN, Lam HY, Tong DK, Lee NP and Law S: Overexpression of transferrin receptor CD71 and its tumorigenic properties in esophageal squamous cell carcinoma. Oncol Rep. 31:1296–1304. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ryschich E, Huszty G, Knaebel HP, Hartel M, Büchler MW and Schmidt J: Transferrin receptor is a marker of malignant phenotype in human pancreatic cancer and in neuroendocrine carcinoma of the pancreas. Eur J Cancer. 40:1418–1422. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kondo K, Noguchi M, Mukai K, Matsuno Y, Sato Y, Shimosato Y and Monden Y: Transferrin receptor expression in adenocarcinoma of the lung as a histopathologic indicator of prognosis. Chest. 97:1367–1371. 1990. View Article : Google Scholar : PubMed/NCBI | |
Smith NW, Strutton GM, Walsh MD, Wright GR, Seymour GJ, Lavin MF and Gardiner RA: Transferrin receptor expression in primary superficial human bladder tumours identifies patients who develop recurrences. Br J Urol. 65:339–344. 1990. View Article : Google Scholar : PubMed/NCBI | |
Jamnongkan W, Thanan R, Techasen A, Namwat N, Loilome W, Intarawichian P, Titapun A and Yongvanit P: Upregulation of transferrin receptor-1 induces cholangiocarcinoma progression via induction of labile iron pool. Tumour Biol. 39:10104283177176552017. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Liu T, Wu J, Wang Y, Hong Y and Zhou H: Transferrin receptor-involved HIF-1 signaling pathway in cervical cancer. Cancer Gene Ther. 26:356–365. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Zhang J, Dai R, Xu J and Feng H: Transferrin receptor-1 and VEGF are prognostic factors for osteosarcoma. J Orthop Surg Res. 14:2962019. View Article : Google Scholar : PubMed/NCBI | |
Greene CJ, Attwood K, Sharma NJ, Gross KW, Smith GJ, Xu B and Kauffman EC: Transferrin receptor 1 upregulation in primary tumor and downregulation in benign kidney is associated with progression and mortality in renal cell carcinoma patients. Oncotarget. 8:107052–107075. 2017. View Article : Google Scholar : | |
Adachi M, Kai K, Yamaji K, Ide T, Noshiro H, Kawaguchi A and Aishima S: Transferrin receptor 1 overexpression is associated with tumour de-differentiation and acts as a potential prognostic indicator of hepatocellular carcinoma. Histopathology. 75:63–73. 2019. View Article : Google Scholar : PubMed/NCBI | |
Das Gupta A, Patil J and Shah VI: Transferrin receptor expression by blast cells in acute lymphoblastic leukemia correlates with white cell count & immunophenotype. Indian J Med Res. 104:226–233. 1996.PubMed/NCBI | |
Hagag AA, Badraia IM, Abdelmageed MM, Hablas NM, Hazzaa SME and Nosair NA: Prognostic value of transferrin receptor-1 (CD71) expression in acute lymphoblastic leukemia. Endocr Metab Immune Disord Drug Targets. 18:610–617. 2018. View Article : Google Scholar : PubMed/NCBI | |
Maguire A, Chen X, Wisner L, Ramsower C, Glinsmann-Gibson B and Rimsza LM: Over-expression of transferrin receptor (TFRC/CD71) and low expression of innate and adaptive immune cell subsets in HIV-associated, GCB-DLBCL by digital gene expression profiling. Blood. 134(Suppl 1): S27832019. View Article : Google Scholar | |
Joachim JH and Mehta KJ: Hepcidin in hepatocellular carcinoma. Br J Cancer. 127:185–192. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li P, Wu X, Chen P and Gu Z: Prognostic significance of iron metabolism related genes in human lung adenocarcinoma. Cancer Manag Res. 15:203–216. 2023. View Article : Google Scholar : PubMed/NCBI | |
Grunewald TGP, Bach H, Cossarizza A and Matsumoto I: The STEAP protein family: Versatile oxidoreductases and targets for cancer immunotherapy with overlapping and distinct cellular functions. Biol Cell. 104:641–657. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ohgami RS, Campagna DR, McDonald A and Fleming MD: The steap proteins are metalloreductases. Blood. 108:1388–1394. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, Sharp JJ, Fujiwara Y, Barker JE and Fleming MD: Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet. 37:1264–1269. 2005. View Article : Google Scholar : PubMed/NCBI | |
Scarl RT, Lawrence CM, Gordon HM and Nunemaker CS: STEAP4: Its emerging role in metabolism and homeostasis of cellular iron and copper. J Endocrinol. 234:R123–R134. 2017. View Article : Google Scholar : PubMed/NCBI | |
Muckenthaler MU, Galy B and Hentze MW: Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr. 28:197–213. 2008. View Article : Google Scholar : PubMed/NCBI | |
Galy B, Conrad M and Muckenthaler M: Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol. 25:133–155. 2024. View Article : Google Scholar | |
Ke Q and Costa M: Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 70:1469–1480. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rashid M, Zadeh LR, Baradaran B, Molavi O, Ghesmati Z, Sabzichi M and Ramezani F: Up-down regulation of HIF-1α in cancer progression. Gene. 798:1457962021. View Article : Google Scholar | |
Yang L, Liu Q, Lu Q, Xiao JJ, Fu AY, Wang S, Ni L, Hu JW, Yu H, Wu X and Zhang BF: Scavenger receptor class B type I deficiency induces iron overload and ferroptosis in renal tubular epithelial cells via hypoxia-inducible factor-1α/transferrin receptor 1 signaling pathway. Antioxid Redox Signal. 41:56–73. 2024. View Article : Google Scholar | |
Clérigues V, Murphy CL, Guillén MI and Alcaraz MJ: Haem oxygenase-1 induction reverses the actions of interleukin-1β on hypoxia-inducible transcription factors and human chondrocyte metabolism in hypoxia. Clin Sci (Lond). 125:99–108. 2013. View Article : Google Scholar | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nakamura T, Naguro I and Ichijo H: Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochim Biophys Acta Gen Subj. 1863:1398–1409. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y and Vergely C: Lipid peroxidation and iron metabolism: Two corner stones in the homeostasis control of ferroptosis. Int J Mol Sci. 24:4492022. View Article : Google Scholar | |
Bhattacharyya A, Chattopadhyay R, Mitra S and Crowe SE: Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 94:329–354. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kiran KR, Deepika VB, Swathy PS, Prasad K, Kabekkodu SP, Murali TS, Satyamoorthy K and Muthusamy A: ROS-dependent DNA damage and repair during germination of NaCl primed seeds. J Photochem Photobiol B. 213:1120502020. View Article : Google Scholar : PubMed/NCBI | |
Ursini F and Maiorino M: Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Kang R, Klionsky DJ and Tang D: GPX4 in cell death, autophagy, and disease. Autophagy. 19:2621–2638. 2023. View Article : Google Scholar : PubMed/NCBI | |
Probst L, Dächert J, Schenk B and Fulda S: Lipoxygenase inhibitors protect acute lymphoblastic leukemia cells from ferroptotic cell death. Biochem Pharmacol. 140:41–52. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shintoku R, Takigawa Y, Yamada K, Kubota C, Yoshimoto Y, Takeuchi T, Koshiishi I and Torii S: Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Cancer Sci. 108:2187–2194. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Yang A, Jia J, Popov YV, Schuppan D and You H: Lysyl oxidase (LOX) family members: rationale and their potential as therapeutic targets for liver fibrosis. Hepatology. 72:729–741. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shah R, Shchepinov MS and Pratt DA: Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent Sci. 4:387–396. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Karakhanova S, Hartwig W, D'Haese JG, Philippov PP, Werner J and Bazhin AV: Mitochondria and mitochondrial ROS in cancer: Novel targets for anticancer therapy. J Cell Physiol. 231:2570–2581. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Ma Y, Ma X, Liu L, Jv X, Li A, Shen Q, Jia W, Qu L, Shi L and Xie J: TFEB regulates cellular labile iron and prevents ferroptosis in a TfR1-dependent manner. Free Radic Biol Med. 208:445–457. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Liang W, Huo D, Wang H, Wang Y, Cong C, Zhang C, Yan S, Gao M, Su X, et al: SPY1 inhibits neuronal ferroptosis in amyotrophic lateral sclerosis by reducing lipid peroxidation through regulation of GCH1 and TFR1. Cell Death Differ. 30:369–382. 2023. View Article : Google Scholar : | |
Koppula P, Lei G, Zhang Y, Yan Y, Mao C, Kondiparthi L, Shi J, Liu X, Horbath A, Das M, et al: A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers. Nat Commun. 13:22062022. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Kuang F, Kroemer G, Klionsky DJ, Kang R and Tang D: Autophagy-dependent ferroptosis: Machinery and regulation. Cell Chem Biol. 27:420–435. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Luo M, Zhang K, Zhang J, Gao T, Connell DO, Yao F, Mu C, Cai B, Shang Y and Chen W: Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma. Nat Commun. 11:4332020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Cao Y, Xiao J, Shang J, Tan Q, Ping F, Huang W, Wu F, Zhang H and Zhang X: Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury. Cell Death Differ. 27:2635–2650. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kang R, Kroemer G and Tang D: The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med. 133:162–168. 2019. View Article : Google Scholar | |
Bellezza I, Giambanco I, Minelli A and Donato R: Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res. 1865:721–733. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dodson M, Castro-Portuguez R and Zhang DD: NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 23:1011072019. View Article : Google Scholar : PubMed/NCBI | |
Han P, Wang X, Zhou T, Cheng J, Wang C, Sun F and Zhao X: Inhibition of ferroptosis attenuates oligospermia in male Nrf2 knockout mice. Free Radic Biol Med. 193:421–429. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi Y, Kamai T, Higashi S, Murakami S, Arai K, Shirataki H and Yoshida KI: Nrf2 gene mutation and single nucleotide polymorphism rs6721961 of the Nrf2 promoter region in renal cell cancer. BMC Cancer. 19:11372019. View Article : Google Scholar : PubMed/NCBI | |
Rojo de la Vega M, Chapman E and Zhang DD: Nrf2 and the hallmarks of cancer. Cancer Cell. 34:21–43. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tang YC, Hsiao JR, Jiang SS, Chang JY, Chu PY, Liu KJ, Fang HL, Lin LM, Chen HH, Huang YW, et al: c-MYC-directed NRF2 drives malignant progression of head and neck cancer via glucose-6-phosphate dehydrogenase and transketolase activation. Theranostics. 11:5232–5247. 2021. View Article : Google Scholar : PubMed/NCBI | |
Menegon S, Columbano A and Giordano S: The dual roles of NRF2 in cancer. Trends Mol Med. 22:578–593. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Jia Z, Wang J, Huang S, Yang S, Xiao S, Xia D and Zhou Y: Curcumin reverses erastin-induced chondrocyte ferroptosis by upregulating Nrf2. Heliyon. 9:e201632023. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Sun L, Hao Y, Suo C, Shen S, Wei H, Ma W, Zhang P, Wang T, Gu X, et al: ENO1 suppresses cancer cell ferroptosis by degrading the mRNA of iron regulatory protein 1. Nat Cancer. 3:75–89. 2022. View Article : Google Scholar : PubMed/NCBI | |
Arabpour J, Rezaei K, Khojini JY, Razi S, Hayati MJ and Gheibihayat SM: The potential role and mechanism of circRNAs in Ferroptosis: A comprehensive review. Pathol Res Pract. 255:1552032024. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Li M, Yao X, Fei Y, Lin Z, Li Z, Cai K, Zhao Y and Luo Z: HCAR1/MCT1 regulates tumor ferroptosis through the lactate-mediated AMPK-SCD1 activity and its therapeutic implications. Cell Rep. 33:1084872020. View Article : Google Scholar : PubMed/NCBI | |
Ganz T: Macrophages and iron metabolism. Microbiol Spectr. 4:2016. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Zhao Q, Yang T, Ding W and Zhao Y: Cellular metabolism and macrophage functional polarization. Int Rev Immunol. 34:82–100. 2015. View Article : Google Scholar | |
Cronin SJF, Woolf CJ, Weiss G and Penninger JM: The role of iron regulation in immunometabolism and immune-related disease. Front Mol Biosci. 6:1162019. View Article : Google Scholar : PubMed/NCBI | |
Arnhold J, Furtmüller PG and Obinger C: Redox properties of myeloperoxidase. Redox Rep. 8:179–186. 2003. View Article : Google Scholar : PubMed/NCBI | |
Malerba M, Louis S, Cuvellier S, Shambat SM, Hua C, Gomart C, Fouet A, Ortonne N, Decousser JW, Zinkernagel AS, et al: Epidermal hepcidin is required for neutrophil response to bacterial infection. J Clin Invest. 130:329–334. 2020. View Article : Google Scholar : | |
Puri S, Kumar R, Rojas IG, Salvatori O and Edgerton M: Iron chelator deferasirox reduces candida albicans invasion of oral epithelial cells and infection levels in murine oropharyngeal candidiasis. Antimicrob Agents Chemother. 63:e02152–18. 2019. View Article : Google Scholar : PubMed/NCBI | |
Littwitz-Salomon E, Moreira D, Frost JN, Choi C, Liou KT, Ahern DK, O'Shaughnessy S, Wagner B, Biron CA, Drakesmith H, et al: Metabolic requirements of NK cells during the acute response against retroviral infection. Nat Commun. 12:53762021. View Article : Google Scholar : PubMed/NCBI | |
Yao L, Hou J, Wu X, Lu Y, Jin Z, Yu Z, Yu B, Li J, Yang Z, Li C, et al: Cancer-associated fibroblasts impair the cytotoxic function of NK cells in gastric cancer by inducing ferroptosis via iron regulation. Redox Biol. 67:1029232023. View Article : Google Scholar : PubMed/NCBI | |
Li L, Xia Y, Yuan S, Li F, Xie X, Luo Y, Yang XP and He R: Iron deprivation restrains the differentiation and pathogenicity of T helper 17 cell. J Leukoc Biol. 110:1057–1067. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 13:81–90. 2017. View Article : Google Scholar | |
Veglia F, Tyurin VA, Blasi M, De Leo A, Kossenkov AV, Donthireddy L, To TKJ, Schug Z, Basu S, Wang F, et al: Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature. 569:73–78. 2019. View Article : Google Scholar : PubMed/NCBI | |
Srivastava MK, Sinha P, Clements VK, Rodriguez P and Ostrand-Rosenberg S: Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 70:68–77. 2010. View Article : Google Scholar | |
Ostrand-Rosenberg S: Myeloid-derived suppressor cells: More mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother. 59:1593–1600. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, et al: CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 569:270–274. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kong R, Wang N, Han W, Bao W and Lu J: IFNγ-mediated repression of system xc− drives vulnerability to induced ferroptosis in hepatocellular carcinoma cells. J Leukoc Biol. 110:301–314. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Zhou X, Xie F and Zhang L, Yan H, Huang J, Zhang C, Zhou F, Chen J and Zhang L: Ferroptosis in cancer and cancer immunotherapy. Cancer Commun (Lond). 42:88–116. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lei G, Zhang Y, Koppula P, Liu X, Zhang J, Lin SH, Ajani JA, Xiao Q, Liao Z, Wang H and Gan B: The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 30:146–162. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhai X, Lin Y, Zhu L, Wang Y, Zhang J, Liu J, Li L and Lu X: Ferroptosis in cancer immunity and immunotherapy: Multifaceted interplay and clinical implications. Cytokine Growth Factor Rev. 75:101–109. 2024. View Article : Google Scholar | |
Stockwell BR: Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 185:2401–2421. 2022. View Article : Google Scholar : PubMed/NCBI |