1
|
Bugshan A and Farooq I: Oral squamous cell
carcinoma: Metastasis, potentially associated malignant disorders,
etiology and recent advancements in diagnosis. F1000Res. 9:2292020.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Antra, Parashar P, Hungyo H, Jain A, Ahmad
S and Tandon V: Unraveling molecular mechanisms of head and neck
cancer. Crit Rev Oncol Hematol. 178:1037782022. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hsiao JR, Chang CC, Lee WT, Huang CC, Ou
CY, Tsai ST, Chen KC, Huang JS, Wong TY, Lai YH, et al: The
interplay between oral microbiome, lifestyle factors and genetic
polymorphisms in the risk of oral squamous cell carcinoma.
Carcinogenesis. 39:778–787. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Almangush A, Leivo I and Mäkitie AA:
Biomarkers for immunotherapy of oral squamous cell carcinoma:
Current status and challenges. Front Oncol. 11:6166292021.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Patil S, Al-Brakati A, Abidi NH, Almasri
MA, Almeslet AS, Patil VR, Raj AT and Bhandi S: CD44-positive
cancer stem cells from oral squamous cell carcinoma exhibit reduced
proliferation and stemness gene expression upon adipogenic
induction. Med Oncol. 39:232022. View Article : Google Scholar : PubMed/NCBI
|
6
|
Swain N, Thakur M, Pathak J, Patel S and
Hosalkar R: Aldehyde dehydrogenase 1: Its key role in cell
physiology and oral carcinogenesis. Dent Med Probl. 59:629–635.
2022. View Article : Google Scholar : PubMed/NCBI
|
7
|
Fukumoto C, Uchida D and Kawamata H:
Diversity of the origin of cancer stem cells in oral squamous cell
carcinoma and its clinical implications. Cancers (Basel).
14:35882022. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang
J, Zhang G, Wang X, Dong Z, Chen F and Cui H: Targeting cancer stem
cell pathways for cancer therapy. Signal Transduct Target Ther.
5:82020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Stefanovska B, André F and Fromigué O:
Tribbles pseudokinase 3 regulation and contribution to cancer.
Cancers (Basel). 13:18222021. View Article : Google Scholar : PubMed/NCBI
|
10
|
Salazar M, Lorente M, Garcia-Taboada E,
Pérez Gómez E, Dávila D, Zúñiga-García P, María Flores J, Rodríguez
A, Hegedus Z, Mosén-Ansorena D, et al: Loss of tribbles
pseudokinase-3 promotes Akt-driven tumorigenesis via FOXO
inactivation. Cell Death Differ. 22:131–144. 2015. View Article : Google Scholar
|
11
|
Yu Y, Qiu L, Guo J, Yang D, Qu L, Yu J,
Zhan F, Xue M and Zhong M: TRIB3 mediates the expression of Wnt5a
and activation of nuclear factor-κB in porphyromonas endodontalis
lipopolysaccharide-treated osteoblasts. Mol Oral Microbiol.
30:295–306. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Cao X, Fang X, Guo M, Li X, He Y, Xie M,
Xu Y and Liu X: TRB3 mediates vascular remodeling by activating the
MAPK signaling pathway in hypoxic pulmonary hypertension. Respir
Res. 22:3122021. View Article : Google Scholar : PubMed/NCBI
|
13
|
Vidal L, Victoria I, Gaba L, Martín MG,
Brunet M, Colom H, Cortal M, Gómez-Ferrería M, Yeste-Velasco M,
Perez A, et al: A first-in-human phase I/Ib dose-escalation
clinical trial of the autophagy inducer ABTL0812 in patients with
advanced solid tumours. Eur J Cancer. 146:87–94. 2021. View Article : Google Scholar : PubMed/NCBI
|
14
|
Erazo T, Lorente M, López-Plana A,
Muñoz-Guardiola P, Fernández-Nogueira P, García-Martínez JA,
Bragado P, Fuster G, Salazar M, Espadaler J, et al: The new
antitumor drug ABTL0812 inhibits the Akt/mTORC1 axis by
upregulating tribbles-3 pseudokinase. Clin Cancer Res.
22:2508–2519. 2016. View Article : Google Scholar
|
15
|
Qu J, Liu B, Li B, Du G, Li Y, Wang J, He
L and Wan X: TRIB3 suppresses proliferation and invasion and
promotes apoptosis of endometrial cancer cells by regulating the
AKT signaling pathway. Onco Targets Ther. 12:2235–2245. 2019.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang WL, Hong GC, Chien PJ, Huang YH, Lee
HT, Wang PH, Lee YC and Chang WW: Tribbles pseudokinase 3
contributes to cancer stemness of endometrial cancer cells by
regulating β-catenin expression. Cancers (Basel). 12:37852020.
View Article : Google Scholar
|
17
|
Shen P, Zhang TY and Wang SY: TRIB3
promotes oral squamous cell carcinoma cell proliferation by
activating the AKT signaling pathway. Exp Ther Med. 21:3132021.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Lacazette E: A laboratory practical
illustrating the use of the ChIP-qPCR method in a robust model:
Estrogen receptor alpha immunoprecipitation using Mcf-7 culture
cells. Biochem Mol Biol Educ. 45:152–160. 2017. View Article : Google Scholar
|
19
|
Iglesias-Ara A, Osinalde N and Zubiaga AM:
Detection of E2F-induced transcriptional activity using a dual
luciferase reporter assay. The Retinoblastoma Protein.
Santiago-Cardona PG: Springer New York; New York, NY: pp. 153–166.
2018, View Article : Google Scholar
|
20
|
Yang J and Zhang Y: I-TASSER server: New
development for protein structure and function predictions. Nucleic
Acids Res. 43(W1): W174–W181. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Song W, Zhang WH, Zhang H, Li Y, Zhang Y,
Yin W and Yang Q: Validation of housekeeping genes for the
normalization of RT-qPCR expression studies in oral squamous cell
carcinoma cell line treated by 5 kinds of chemotherapy drugs. Cell
Mol Biol (Noisy-le-grand). 62:29–34. 2016. View Article : Google Scholar
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
23
|
Finn RS, Martin M, Rugo HS, Jones S, Im
SA, Gelmon K, Harbeck N, Lipatov ON, Walshe JM, Moulder S, et al:
Palbociclib and letrozole in advanced breast cancer. N Engl J Med.
375:1925–1936. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Burcham ZM, Pechal JL, Schmidt CJ, Bose
JL, Rosch JW, Benbow ME and Jordan HR: Bacterial community
succession, transmigration, and differential gene transcription in
a controlled vertebrate decomposition model. Front Microbiol.
10:7452019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Marx JO, Brice AK, Boston RC and Smith AL:
Incidence rates of spontaneous disease in laboratory mice used at a
large biomedical research institution. J Am Assoc Lab Anim Sci.
52:782–791. 2013.PubMed/NCBI
|
26
|
Patil S: CD44 sorted cells have an
augmented potential for proliferation, epithelial-mesenchymal
transition, stemness, and a predominantly inflammatory cytokine and
angiogenic secretome. Curr Issues Mol Biol. 43:423–433. 2021.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Ghuwalewala S, Ghatak D, Das P, Dey S,
Sarkar S, Alam N, Panda CK and Roychoudhury S: CD44(high)CD24(low)
molecular signature determines the cancer stem cell and EMT
phenotype in oral squamous cell carcinoma. Stem Cell Res.
16:405–417. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Abbas O, Richards JE, Yaar R and
Mahalingam M: Stem cell markers (cytokeratin 15, cytokeratin 19 and
p63) in in situ and invasive cutaneous epithelial lesions. Mod
Pathol. 24:90–97. 2011. View Article : Google Scholar
|
29
|
Menz A, Bauer R, Kluth M, Marie von Bargen
C, Gorbokon N, Viehweger F, Lennartz M, Völkl C, Fraune C, Uhlig R,
et al: Diagnostic and prognostic impact of cytokeratin 19
expression analysis in human tumors: A tissue microarray study of
13,172 tumors. Hum Pathol. 115:19–36. 2021. View Article : Google Scholar : PubMed/NCBI
|
30
|
Nascimento RB, Machado IAR, Silva JC,
Faria LAS, Borba FC, Porto LPA, Santos JN, Ramalho LMP, Rodini CO,
Rodrigues MFSD, et al: Differential expression of cadherins switch
and caveolin-2 during stages of oral carcinogenesis. J Oral
Maxillofac Pathol. 27:507–514. 2023. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sakamoto K, Aragaki T, Morita K, Kawachi
H, Kayamori K, Nakanishi S, Omura K, Miki Y, Okada N, Katsube K, et
al: Down-regulation of keratin 4 and keratin 13 expression in oral
squamous cell carcinoma and epithelial dysplasia: A clue for
histopathogenesis. Histopathology. 58:531–542. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lee SH, Oh SY, Do SI, Lee HJ, Kang HJ, Rho
YS, Bae WJ and Lim YC: SOX2 regulates self-renewal and
tumorigenicity of stem-like cells of head and neck squamous cell
carcinoma. Br J Cancer. 111:2122–2130. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Jing C, Duan Y, Zhou M, Yue K, Zhuo S, Li
X, Liu D, Ye B, Lai Q, Li L, et al: Blockade of deubiquitinating
enzyme PSMD14 overcomes chemoresistance in head and neck squamous
cell carcinoma by antagonizing E2F1/Akt/SOX2-mediated stemness.
Theranostics. 11:2655–2669. 2021. View Article : Google Scholar : PubMed/NCBI
|
34
|
Xu Q, Zhang Q, Ishida Y, Hajjar S, Tang X,
Shi H, Dang CV and Le AD: EGF induces epithelial-mesenchymal
transition and cancer stem-like cell properties in human oral
cancer cells via promoting Warburg effect. Oncotarget. 8:9557–9571.
2017. View Article : Google Scholar :
|
35
|
Miaczynska M: Effects of membrane
trafficking on signaling by receptor tyrosine kinases. Cold Spring
Harb Perspect Biol. 5:a0090352013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang XW, Zhou JC, Peng D, Hua F, Li K, Yu
JJ, Lv XX, Cui B, Liu SS, Yu JM, et al: Disrupting the TRIB3-SQSTM1
interaction reduces liver fibrosis by restoring autophagy and
suppressing exosome-mediated HSC activation. Autophagy. 16:782–796.
2020. View Article : Google Scholar :
|
37
|
Homewood CA, Warhurst DC, Peters W and
Baggaley VC: Lysosomes, pH and the anti-malarial action of
chloroquine. Nature. 235:50–52. 1972. View Article : Google Scholar : PubMed/NCBI
|
38
|
Qi X, Jiang L and Cao J: Senotherapies: A
novel strategy for synergistic anti-tumor therapy. Drug Discov
Today. 27:1033652022. View Article : Google Scholar : PubMed/NCBI
|
39
|
Cam H and Dynlacht BD: Emerging roles for
E2F: beyond the G1/S transition and DNA replication. Cancer Cell.
3:311–316. 2003. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ruscetti M, Morris JP IV, Mezzadra R,
Russell J, Leibold J, Romesser PB, Simon J, Kulick A, Ho YJ,
Fennell M, et al: Senescence-induced vascular remodeling creates
therapeutic vulnerabilities in pancreas cancer. Cell.
181:424–441.e21. 2020. View Article : Google Scholar : PubMed/NCBI
|
41
|
Xiang J, Bandura J, Zhang P, Jin Y, Reuter
H and Edgar BA: EGFR-dependent TOR-independent endocycles support
Drosophila gut epithelial regeneration. Nat Commun. 8:151252017.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Yu JJ, Zhou DD, Yang XX, Cui B, Tan FW,
Wang J, Li K, Shang S, Zhang C, Lv XX, et al: TRIB3-EGFR
interaction promotes lung cancer progression and defines a
therapeutic target. Nat Commun. 11:36602020. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yu JM, Sun W, Wang ZH, Liang X, Hua F, Li
K, Lv XX, Zhang XW, Liu YY, Yu JJ, et al: TRIB3 supports breast
cancer stemness by suppressing FOXO1 degradation and enhancing SOX2
transcription. Nat Commun. 10:57202019. View Article : Google Scholar : PubMed/NCBI
|
44
|
Li CM, Haratipour P, Lingeman RG, Perry
JJP, Gu L, Hickey RJ and Malkas LH: Novel peptide therapeutic
approaches for cancer treatment. Cells. 10:29082021. View Article : Google Scholar : PubMed/NCBI
|
45
|
De Groot AS, Roberts BJ, Mattei A, Lelias
S, Boyle C and Martin WD: Immunogenicity risk assessment of
synthetic peptide drugs and their impurities. Drug Discov Today.
28:1037142023. View Article : Google Scholar : PubMed/NCBI
|
46
|
Settembre C, Di Malta C, Polito VA, Garcia
Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D,
Colella P, et al: TFEB links autophagy to lysosomal biogenesis.
Science. 332:1429–1433. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ferron M, Settembre C, Shimazu J, Lacombe
J, Kato S, Rawlings DJ, Ballabio A and Karsenty G: A
RANKL-PKCβ-TFEB signaling cascade is necessary for lysosomal
biogenesis in osteoclasts. Genes Dev. 27:955–969. 2013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Yin Q, Jian Y, Xu M, Huang X, Wang N, Liu
Z, Li Q, Li J, Zhou H, Xu L, et al: CDK4/6 regulate lysosome
biogenesis through TFEB/TFE3. J Cell Biol. 219:e2019110362020.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Lv XX, Zheng XY, Yu JJ, Ma HR, Hua C and
Gao RT: EGFR enhances the stemness and progression of oral cancer
through inhibiting autophagic degradation of SOX2. Cancer Med.
9:1131–1140. 2020. View Article : Google Scholar :
|
50
|
Hu F, Li C, Zheng X, Zhang H, Shen Y, Zhou
L, Yang X, Han B and Zhang X: Lung adenocarcinoma resistance to
therapy with EGFR-tyrosine kinase inhibitors is related to
increased expression of cancer stem cell markers SOX2, OCT4 and
NANOG. Oncol Rep. 43:727–735. 2020.PubMed/NCBI
|
51
|
Chou YT, Lee CC, Hsiao SH, Lin SE, Lin SC,
Chung CH, Chung CH, Kao YR, Wang YH, Chen CT, et al: The emerging
role of SOX2 in cell proliferation and survival and its cross-talk
with oncogenic signaling in lung cancer. Stem Cells. 31:2607–2619.
2013. View Article : Google Scholar : PubMed/NCBI
|
52
|
Ellis P, Fagan BM, Magness ST, Hutton S,
Taranova O, Hayashi S, McMahon A, Rao M and Pevny L: SOX2, a
persistent marker for multipotential neural stem cells derived from
embryonic stem cells, the embryo or the adult. Dev Neurosci.
26:148–165. 2004. View Article : Google Scholar
|
53
|
Garros-Regulez L, Garcia I,
Carrasco-Garcia E, Lantero A, Aldaz P, Moreno-Cugnon L,
Arrizabalaga O, Undabeitia J, Torres-Bayona S, Villanua J, et al:
Targeting SOX2 as a therapeutic strategy in glioblastoma. Front
Oncol. 6:2222016. View Article : Google Scholar : PubMed/NCBI
|
54
|
Zhang X, Lu F, Wang J, Yin F, Xu Z, Qi D,
Wu X, Cao Y, Liang W, Liu Y, et al: Pluripotent stem cell protein
Sox2 confers sensitivity to LSD1 inhibition in cancer cells. Cell
Rep. 5:445–457. 2013. View Article : Google Scholar : PubMed/NCBI
|
55
|
Tang Z, Kang B, Li C, Chen T and Zhang Z:
GEPIA2: An enhanced web server for large-scale expression profiling
and interactive analysis. Nucleic Acids Res. 47(W1): W556–W560.
2019. View Article : Google Scholar : PubMed/NCBI
|